Some Remarks on Stability of Generalized Equations
The paper concerns the computation of the graphical derivative and the regular (Fréchet) coderivative of the solution map to a class of generalized equations, where the multivalued term amounts to the regular normal cone to a (possibly nonconvex) set given by C 2 inequalities. Instead of the linear...
Uložené v:
| Vydané v: | Journal of optimization theory and applications Ročník 159; číslo 3; s. 681 - 697 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Boston
Springer US
01.12.2013
Springer Nature B.V |
| Predmet: | |
| ISSN: | 0022-3239, 1573-2878 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | The paper concerns the computation of the graphical derivative and the regular (Fréchet) coderivative of the solution map to a class of generalized equations, where the multivalued term amounts to the regular normal cone to a (possibly nonconvex) set given by
C
2
inequalities. Instead of the linear independence qualification condition, standardly used in this context, one assumes a combination of the Mangasarian–Fromovitz and the constant rank qualification conditions. Based on the obtained generalized derivatives, new optimality conditions for a class of mathematical programs with equilibrium constraints are derived, and a workable characterization of the isolated calmness of the considered solution map is provided. |
|---|---|
| Bibliografia: | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 |
| ISSN: | 0022-3239 1573-2878 |
| DOI: | 10.1007/s10957-012-0147-x |