Deep convolutional autoencoder for radar-based classification of similar aided and unaided human activities
Radar-based activity recognition is a problem that has been of great interest due to applications such as border control and security, pedestrian identification for automotive safety, and remote health monitoring. This paper seeks to show the efficacy of micro-Doppler analysis to distinguish even th...
Gespeichert in:
| Veröffentlicht in: | IEEE transactions on aerospace and electronic systems Jg. 54; H. 4; S. 1709 - 1723 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
IEEE
01.08.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 0018-9251, 1557-9603 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Radar-based activity recognition is a problem that has been of great interest due to applications such as border control and security, pedestrian identification for automotive safety, and remote health monitoring. This paper seeks to show the efficacy of micro-Doppler analysis to distinguish even those gaits whose micro-Doppler signatures are not visually distinguishable. Moreover, a three-layer, deep convolutional autoencoder (CAE) is proposed, which utilizes unsupervised pretraining to initialize the weights in the subsequent convolutional layers. This architecture is shown to be more effective than other deep learning architectures, such as convolutional neural networks and autoencoders, as well as conventional classifiers employing predefined features, such as support vector machines (SVM), random forest, and extreme gradient boosting. Results show the performance of the proposed deep CAE yields a correct classification rate of 94.2% for micro-Doppler signatures of 12 different human activities measured indoors using a 4 GHz continuous wave radar-17.3% improvement over SVM. |
|---|---|
| AbstractList | Radar-based activity recognition is a problem that has been of great interest due to applications such as border control and security, pedestrian identification for automotive safety, and remote health monitoring. This paper seeks to show the efficacy of micro-Doppler analysis to distinguish even those gaits whose micro-Doppler signatures are not visually distinguishable. Moreover, a three-layer, deep convolutional autoencoder (CAE) is proposed, which utilizes unsupervised pretraining to initialize the weights in the subsequent convolutional layers. This architecture is shown to be more effective than other deep learning architectures, such as convolutional neural networks and autoencoders, as well as conventional classifiers employing predefined features, such as support vector machines (SVM), random forest, and extreme gradient boosting. Results show the performance of the proposed deep CAE yields a correct classification rate of 94.2% for micro-Doppler signatures of 12 different human activities measured indoors using a 4 GHz continuous wave radar—17.3% improvement over SVM. Radar-based activity recognition is a problem that has been of great interest due to applications such as border control and security, pedestrian identification for automotive safety, and remote health monitoring. This paper seeks to show the efficacy of micro-Doppler analysis to distinguish even those gaits whose micro-Doppler signatures are not visually distinguishable. Moreover, a three-layer, deep convolutional autoencoder (CAE) is proposed, which utilizes unsupervised pretraining to initialize the weights in the subsequent convolutional layers. This architecture is shown to be more effective than other deep learning architectures, such as convolutional neural networks and autoencoders, as well as conventional classifiers employing predefined features, such as support vector machines (SVM), random forest, and extreme gradient boosting. Results show the performance of the proposed deep CAE yields a correct classification rate of 94.2% for micro-Doppler signatures of 12 different human activities measured indoors using a 4 GHz continuous wave radar-17.3% improvement over SVM. |
| Author | Seyfioglu, Mehmet Saygin Ozbayoglu, Ahmet Murat Gurbuz, Sevgi Zubeyde |
| Author_xml | – sequence: 1 givenname: Mehmet Saygin surname: Seyfioglu fullname: Seyfioglu, Mehmet Saygin email: msseyfioglu@etu.edu.tr organization: TOBB University of Economics and Technology, Ankara, Turkey – sequence: 2 givenname: Ahmet Murat surname: Ozbayoglu fullname: Ozbayoglu, Ahmet Murat email: mozbayoglu@etu.edu.tr organization: TOBB University of Economics and Technology, Ankara, Turkey – sequence: 3 givenname: Sevgi Zubeyde orcidid: 0000-0001-7487-9087 surname: Gurbuz fullname: Gurbuz, Sevgi Zubeyde email: szgurbuz@ua.edu organization: University of Alabama, Tuscaloosa, AL, USA |
| BookMark | eNp9kM1OwzAQhC1UJNrCAyAuljin2HEc28eqlB-pEgfKOdrYjnBJ42InlXh7ElJx4MBpdzUzK803Q5PGNxaha0oWlBJ1t12uXxcpoXKRCqUEl2doSjkXicoJm6Ap6aVEpZxeoFmMu_7MZMam6OPe2gPWvjn6umudb6DG0LXeNtobG3DlAw5gICQlRGuwriFGVzkNgxn7Cke3dzUEDM70OjQGd824v3d7aDDo1h1d62y8ROcV1NFeneYcvT2st6unZPPy-LxabhLNuGqTygiZaVPKlOdEcKUM5ZZDyhixqsyzUjKTMSGV0VSleU611FyaHDQHylXG5uh2_HsI_rOzsS12vgt9s1iklArKKOmfzZEYXTr4GIOtCu3an1ZtAFcXlBQD2WIgWwxkixPZPkn_JA_B7SF8_Zu5GTPOWvvrl6lknCn2DTF2hyY |
| CODEN | IEARAX |
| CitedBy_id | crossref_primary_10_1016_j_cmpb_2022_107305 crossref_primary_10_1109_TAES_2018_2883847 crossref_primary_10_1007_s11042_023_17759_8 crossref_primary_10_1109_ACCESS_2019_2950960 crossref_primary_10_1109_TGRS_2024_3358956 crossref_primary_10_1109_JSEN_2021_3139735 crossref_primary_10_1109_MGRS_2018_2853555 crossref_primary_10_1109_JSEN_2024_3364497 crossref_primary_10_3390_s23052820 crossref_primary_10_1109_ACCESS_2019_2942305 crossref_primary_10_1109_LGRS_2019_2930636 crossref_primary_10_1109_ACCESS_2021_3054368 crossref_primary_10_1088_1361_6501_add03b crossref_primary_10_1109_JSEN_2022_3141213 crossref_primary_10_1109_ACCESS_2020_3021943 crossref_primary_10_1109_MAP_2022_3208813 crossref_primary_10_3390_app12115463 crossref_primary_10_1109_JSEN_2020_3000498 crossref_primary_10_1109_TGRS_2022_3162833 crossref_primary_10_1109_TAES_2020_2975447 crossref_primary_10_1016_j_engappai_2024_108935 crossref_primary_10_1109_JERM_2019_2893587 crossref_primary_10_1109_JSEN_2020_3033278 crossref_primary_10_3390_rs11091068 crossref_primary_10_1109_LGRS_2020_2980320 crossref_primary_10_1109_TIM_2024_3366575 crossref_primary_10_3390_s19112598 crossref_primary_10_1109_ACCESS_2021_3074088 crossref_primary_10_1109_MSP_2018_2890128 crossref_primary_10_1016_j_cviu_2020_103111 crossref_primary_10_3390_s22030809 crossref_primary_10_1109_JSEN_2024_3439686 crossref_primary_10_1016_j_neucom_2018_11_109 crossref_primary_10_1016_j_aap_2022_106744 crossref_primary_10_3390_app122010264 crossref_primary_10_1088_1361_6501_ad9622 crossref_primary_10_3390_s20072025 crossref_primary_10_3390_sym10110659 crossref_primary_10_1109_JSEN_2024_3453070 crossref_primary_10_1007_s10489_024_06156_9 crossref_primary_10_1109_ACCESS_2020_2971064 crossref_primary_10_3390_rs11212584 crossref_primary_10_3390_s20195466 crossref_primary_10_1109_TBCAS_2021_3090995 crossref_primary_10_1109_JIOT_2020_3024234 crossref_primary_10_1109_JIOT_2018_2867649 crossref_primary_10_32604_cmc_2023_034176 crossref_primary_10_1109_ACCESS_2021_3053298 crossref_primary_10_1016_j_neucom_2020_01_125 crossref_primary_10_1007_s11042_023_16795_8 crossref_primary_10_1016_j_future_2023_09_029 crossref_primary_10_1109_ACCESS_2025_3589938 crossref_primary_10_1109_JSEN_2021_3117942 crossref_primary_10_1109_TGRS_2023_3329561 crossref_primary_10_1049_iet_rsn_2019_0618 crossref_primary_10_1007_s11831_023_09986_x crossref_primary_10_1109_JSEN_2022_3177173 crossref_primary_10_1109_ACCESS_2024_3356350 crossref_primary_10_1109_TMTT_2022_3200097 crossref_primary_10_3390_su17010041 crossref_primary_10_3390_s22197175 crossref_primary_10_1109_JIOT_2023_3291051 crossref_primary_10_1109_TAES_2021_3068436 crossref_primary_10_1109_LGRS_2019_2919770 crossref_primary_10_3390_pr13030747 crossref_primary_10_3390_electronics12071539 crossref_primary_10_1109_TIM_2021_3054673 crossref_primary_10_32604_cmc_2023_033417 crossref_primary_10_1109_ACCESS_2020_2997033 crossref_primary_10_3233_MGS_230022 crossref_primary_10_12677_AAM_2023_127331 crossref_primary_10_1109_ACCESS_2022_3150838 crossref_primary_10_1109_TGRS_2020_3019915 crossref_primary_10_1109_TIM_2023_3328079 crossref_primary_10_1109_TGRS_2021_3104907 crossref_primary_10_1109_TAP_2024_3452427 crossref_primary_10_1109_MRA_2024_3352851 crossref_primary_10_1007_s13534_025_00469_5 crossref_primary_10_1109_JMW_2025_3575723 crossref_primary_10_1109_ACCESS_2019_2943567 crossref_primary_10_1109_ACCESS_2025_3584461 crossref_primary_10_3390_sym11050630 crossref_primary_10_1109_TAES_2020_2969579 crossref_primary_10_1049_tje2_12327 crossref_primary_10_1109_ACCESS_2021_3083980 crossref_primary_10_1109_LGRS_2020_3045176 crossref_primary_10_7232_JKIIE_2025_51_1_108 crossref_primary_10_1016_j_gaitpost_2024_08_007 crossref_primary_10_3390_s23115024 crossref_primary_10_1109_JSEN_2020_3046991 crossref_primary_10_1109_JIOT_2019_2929833 crossref_primary_10_1109_ACCESS_2025_3593957 crossref_primary_10_1109_TRS_2025_3601306 crossref_primary_10_3390_s24144570 crossref_primary_10_3390_s23177486 crossref_primary_10_1109_TAES_2024_3502354 crossref_primary_10_1002_aisy_201900088 crossref_primary_10_3390_s25103138 crossref_primary_10_1109_JSEN_2019_2957382 crossref_primary_10_1109_TAES_2024_3353148 crossref_primary_10_1109_TAES_2024_3411594 crossref_primary_10_1109_TVT_2021_3115877 crossref_primary_10_1109_TIM_2025_3565041 crossref_primary_10_1016_j_asoc_2023_110164 crossref_primary_10_1109_JIOT_2021_3113671 crossref_primary_10_3390_app132312728 crossref_primary_10_1109_LGRS_2025_3609444 crossref_primary_10_1007_s10462_023_10662_6 crossref_primary_10_1088_1361_6501_ad7b60 crossref_primary_10_1016_j_autcon_2022_104181 crossref_primary_10_1109_TGRS_2023_3274207 crossref_primary_10_1016_j_patcog_2024_111117 crossref_primary_10_1109_LSENS_2021_3061561 crossref_primary_10_3390_s21093226 crossref_primary_10_1016_j_atmosres_2025_108114 crossref_primary_10_1109_JIOT_2021_3116136 crossref_primary_10_3390_app13052956 crossref_primary_10_3390_s21227731 crossref_primary_10_1109_JSEN_2020_3004581 crossref_primary_10_3390_s19040947 crossref_primary_10_1109_TIM_2025_3550240 crossref_primary_10_1007_s11276_021_02670_7 crossref_primary_10_1109_JSEN_2025_3595930 crossref_primary_10_1109_JSEN_2021_3088122 crossref_primary_10_1049_iet_rsn_2019_0447 crossref_primary_10_1109_JIOT_2022_3229462 crossref_primary_10_1109_JSTARS_2021_3073678 crossref_primary_10_1109_JIOT_2021_3063504 crossref_primary_10_1109_TIV_2022_3146639 crossref_primary_10_3390_s20226467 crossref_primary_10_1109_TBCAS_2021_3137290 crossref_primary_10_1109_TAES_2024_3381086 crossref_primary_10_1186_s13634_022_00941_9 crossref_primary_10_1109_JSEN_2022_3164152 crossref_primary_10_1109_TGRS_2021_3123109 crossref_primary_10_1109_TGRS_2023_3271759 crossref_primary_10_1109_JSEN_2023_3327963 crossref_primary_10_3390_rs13040706 crossref_primary_10_1016_j_ins_2021_04_074 crossref_primary_10_1007_s42001_021_00107_x crossref_primary_10_1145_3472290 crossref_primary_10_1109_TGRS_2019_2908758 crossref_primary_10_1177_1475921720924601 crossref_primary_10_1109_TAES_2025_3558488 crossref_primary_10_1007_s11227_023_05354_5 crossref_primary_10_1016_j_patcog_2020_107561 crossref_primary_10_3390_s25113337 crossref_primary_10_1109_JIOT_2019_2907580 crossref_primary_10_3390_rs14010123 crossref_primary_10_1109_JSEN_2021_3078339 crossref_primary_10_1109_ACCESS_2021_3088452 crossref_primary_10_1109_TAES_2024_3427101 crossref_primary_10_1109_JSEN_2021_3118836 crossref_primary_10_1109_TBME_2019_2893528 crossref_primary_10_1007_s11042_024_19830_4 crossref_primary_10_1016_j_engappai_2023_106051 crossref_primary_10_1109_JBHI_2020_2994471 crossref_primary_10_3390_s22051721 crossref_primary_10_1109_ACCESS_2021_3061424 crossref_primary_10_1109_JSEN_2022_3162590 crossref_primary_10_1109_ACCESS_2022_3228639 crossref_primary_10_1051_itmconf_20224801010 crossref_primary_10_1109_JSEN_2019_2892073 crossref_primary_10_1016_j_measurement_2024_114939 crossref_primary_10_3390_s22155782 crossref_primary_10_1177_00405175241261401 crossref_primary_10_1109_TCE_2025_3557084 crossref_primary_10_1109_TASE_2020_3042158 crossref_primary_10_3390_s24185944 crossref_primary_10_1109_TGRS_2019_2929096 crossref_primary_10_1049_iet_rsn_2020_0183 crossref_primary_10_1109_MITS_2022_3162886 crossref_primary_10_1049_iet_rsn_2019_0240 crossref_primary_10_3390_make6020040 crossref_primary_10_1007_s00521_022_07776_3 crossref_primary_10_1109_ACCESS_2021_3053491 crossref_primary_10_3390_rs13214264 crossref_primary_10_3390_s19091962 crossref_primary_10_1049_iet_rsn_2018_5054 crossref_primary_10_1109_JBHI_2023_3240895 crossref_primary_10_1109_JBHI_2020_3027967 crossref_primary_10_1109_ACCESS_2019_2898642 crossref_primary_10_1109_JSEN_2024_3447790 crossref_primary_10_1109_TAES_2024_3403077 crossref_primary_10_1016_j_compag_2020_105557 crossref_primary_10_1109_TII_2023_3316164 crossref_primary_10_1016_j_foodcont_2025_111606 crossref_primary_10_1109_JSEN_2021_3126436 crossref_primary_10_1109_MAES_2020_3021322 crossref_primary_10_1109_ACCESS_2021_3073090 crossref_primary_10_1109_ACCESS_2025_3544627 crossref_primary_10_1109_JSEN_2023_3323314 crossref_primary_10_3390_electronics11010156 crossref_primary_10_3389_fphys_2021_668350 crossref_primary_10_1016_j_smhl_2022_100334 crossref_primary_10_1109_JSEN_2020_3006386 |
| Cites_doi | 10.1049/iet-rsn.2015.0580 10.1109/LGRS.2015.2491329 10.1109/ACSSC.2014.7094509 10.1109/LGRS.2014.2311819 10.1109/TGRS.2015.2505409 10.1613/jair.953 10.1109/LGRS.2015.2452946 10.1109/MSP.2015.2502784 10.1109/TAES.2014.130762 10.1145/2939672.2939785 10.1109/TBME.2014.2367038 10.1109/LGRS.2014.2336231 10.1126/science.1127647 10.1109/TAES.2014.130082 10.1109/CVPR.2015.7298594 10.1109/TAES.2016.140682 10.1145/3065386 10.1093/bioinformatics/btm344 10.1109/TAES.2017.2651678 10.1049/iet-rsn.2014.0250 10.1049/iet-rsn.2015.0144 10.1109/CVPR.2016.90 10.1109/TGRS.2009.2012849 10.1109/RADAR.2016.7485147 10.3390/s16091401 10.1109/RADAR.2017.7944373 10.1109/ICCV.2011.6126474 10.1109/LGRS.2015.2439393 10.1109/JBHI.2014.2361252 10.1109/ACCESS.2016.2617282 10.1109/RADAR.2012.6212271 10.1109/MRRS.2011.6053628 10.1109/COMCAS.2013.6685318 10.1109/TPAMI.2013.50 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 7TB 8FD FR3 H8D L7M |
| DOI | 10.1109/TAES.2018.2799758 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Aerospace Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Aerospace Database Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Aerospace Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1557-9603 |
| EndPage | 1723 |
| ExternalDocumentID | 10_1109_TAES_2018_2799758 8283539 |
| Genre | orig-research |
| GroupedDBID | -~X 0R~ 29I 4.4 41~ 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P H~9 IAAWW IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 OCL P2P RIA RIE RNS TN5 VH1 AAYXX CITATION 7SP 7TB 8FD FR3 H8D L7M RIG |
| ID | FETCH-LOGICAL-c359t-fd784cdb825607599d15e5a2330e9b64b83d43789dc192661c8c58d6ac5a15943 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 282 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000441403600010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0018-9251 |
| IngestDate | Mon Jun 30 10:21:14 EDT 2025 Tue Nov 18 22:03:05 EST 2025 Sat Nov 29 01:51:26 EST 2025 Wed Aug 27 02:54:33 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c359t-fd784cdb825607599d15e5a2330e9b64b83d43789dc192661c8c58d6ac5a15943 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-7487-9087 |
| PQID | 2117131023 |
| PQPubID | 85477 |
| PageCount | 15 |
| ParticipantIDs | crossref_citationtrail_10_1109_TAES_2018_2799758 ieee_primary_8283539 crossref_primary_10_1109_TAES_2018_2799758 proquest_journals_2117131023 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-08-01 |
| PublicationDateYYYYMMDD | 2018-08-01 |
| PublicationDate_xml | – month: 08 year: 2018 text: 2018-08-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on aerospace and electronic systems |
| PublicationTitleAbbrev | T-AES |
| PublicationYear | 2018 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref15 ref14 ref54 ref10 david (ref23) 2016 ref17 lecun (ref48) 1990 ref19 ref18 nair (ref37) 0 yessad (ref11) 2011 kim (ref16) 2009; 47 erhan (ref53) 2009; 1341 ref50 ref45 ref41 ref43 erhan (ref20) 2010; 11 ref8 ref7 hinton (ref44) 2006; 313 ref4 ref3 ref6 ref5 rosa (ref34) 0; 158 simonyan (ref40) 0 gurbuz (ref35) 2015 ref36 abadi (ref52) 2016 ref31 ref30 ref32 ng (ref46) 2011; 72 ref2 ref1 ref39 trommel (ref42) 0 kingma (ref47) 0 kim (ref9) 2015; 12 ioannou (ref38) 2015 srivastava (ref49) 2014; 15 ref24 ref26 erhan (ref22) 2010; 11 ref25 ref28 chollet (ref51) 2015 ref29 masci (ref21) 2011 ritchie (ref33) 2016; 16 otero (ref27) 0 |
| References_xml | – start-page: 538 year: 0 ident: ref27 article-title: Application of a continuous wave radar for human gait recognition publication-title: Defense and Security – ident: ref26 doi: 10.1049/iet-rsn.2015.0580 – ident: ref18 doi: 10.1109/LGRS.2015.2491329 – volume: 72 start-page: 1 year: 2011 ident: ref46 article-title: Sparse autoencoder publication-title: Cs294a lecture notes – ident: ref1 doi: 10.1109/ACSSC.2014.7094509 – ident: ref12 doi: 10.1109/LGRS.2014.2311819 – ident: ref13 doi: 10.1109/TGRS.2015.2505409 – ident: ref25 doi: 10.1613/jair.953 – start-page: 396 year: 1990 ident: ref48 article-title: Handwritten digit recognition with a back-propagation network publication-title: Proc Adv Neural Inform Process Syst 2 – ident: ref54 doi: 10.1109/LGRS.2015.2452946 – ident: ref4 doi: 10.1109/MSP.2015.2502784 – ident: ref29 doi: 10.1109/TAES.2014.130762 – volume: 11 start-page: 625 year: 2010 ident: ref22 article-title: Why does unsupervised pre-training help deep learning? publication-title: J Mach Learn Res – ident: ref36 doi: 10.1145/2939672.2939785 – ident: ref6 doi: 10.1109/TBME.2014.2367038 – volume: 12 start-page: 289 year: 2015 ident: ref9 article-title: Human detection using doppler radar based on physical characteristics of targets publication-title: IEEE Geosci Remote Sens Lett doi: 10.1109/LGRS.2014.2336231 – year: 0 ident: ref47 article-title: Adam: A method for stochastic optimization publication-title: Proc Int Conf Learn Represent – volume: 313 start-page: 504 year: 2006 ident: ref44 article-title: Reducing the dimensionality of data with neural networks publication-title: Science doi: 10.1126/science.1127647 – start-page: 807 year: 0 ident: ref37 article-title: Rectified linear units improve restricted boltzmann machines publication-title: Proc 27th Int Conf Mach Learning – volume: 15 start-page: 1929 year: 2014 ident: ref49 article-title: Dropout: a simple way to prevent neural networks from overfitting publication-title: J Mach Learn Res – year: 2015 ident: ref38 article-title: Decision forests, convolutional networks and the models in-between – ident: ref30 doi: 10.1109/TAES.2014.130082 – ident: ref24 doi: 10.1109/CVPR.2015.7298594 – ident: ref3 doi: 10.1109/TAES.2016.140682 – start-page: 52 year: 2011 ident: ref21 article-title: Stacked convolutional auto-encoders for hierarchical feature extraction publication-title: Artificial Neural Networks in Machine Learning – start-page: 20 year: 2016 ident: ref23 article-title: Deeppainter: Painter classification using deep convolutional autoencoders publication-title: Proc Int Conf Artif Neural Netw – year: 0 ident: ref40 article-title: Very deep convolutional networks for large-scale image recognition publication-title: Proc Int Conf Learn Represent – ident: ref39 doi: 10.1145/3065386 – ident: ref32 doi: 10.1093/bioinformatics/btm344 – ident: ref31 doi: 10.1109/TAES.2017.2651678 – year: 2015 ident: ref35 article-title: Identification of biological signals with radar Short Term Scientific Mission Report – start-page: 280 year: 2011 ident: ref11 article-title: Micro-doppler classification for ground surveillance radar using speech recognition tools publication-title: Pattern Recognit – ident: ref7 doi: 10.1049/iet-rsn.2014.0250 – ident: ref8 doi: 10.1049/iet-rsn.2015.0144 – ident: ref41 doi: 10.1109/CVPR.2016.90 – volume: 47 start-page: 1328 year: 2009 ident: ref16 article-title: Human activity classification based on micro-doppler signatures using a support vector machine publication-title: IEEE Trans Geosc Remote Sens doi: 10.1109/TGRS.2009.2012849 – ident: ref19 doi: 10.1109/RADAR.2016.7485147 – volume: 16 start-page: 1401 year: 2016 ident: ref33 article-title: Through wall radar classification of human micro-doppler using singular value decomposition analysis publication-title: SENSORS doi: 10.3390/s16091401 – start-page: 81 year: 0 ident: ref42 article-title: Multi-target human gait classification using deep convolutional neural networks on micro-doppler spectrograms publication-title: Proc Radar Conf – ident: ref17 doi: 10.1109/RADAR.2017.7944373 – ident: ref50 doi: 10.1109/ICCV.2011.6126474 – year: 2015 ident: ref51 publication-title: Keras – volume: 11 start-page: 625 year: 2010 ident: ref20 article-title: Why does unsupervised pre-training help deep learning? publication-title: J Mach Learning Res – ident: ref2 doi: 10.1109/LGRS.2015.2439393 – year: 2016 ident: ref52 article-title: Tensorflow: Large-scale machine learning on heterogeneous distributed systems – volume: 158 start-page: 28 year: 0 ident: ref34 article-title: Classification success of six machine learning algorithms in radar ornithology publication-title: Ibis The international journal of avian science – ident: ref15 doi: 10.1109/TAES.2014.130082 – ident: ref5 doi: 10.1109/JBHI.2014.2361252 – ident: ref43 doi: 10.1109/ACCESS.2016.2617282 – ident: ref28 doi: 10.1109/RADAR.2012.6212271 – ident: ref10 doi: 10.1109/MRRS.2011.6053628 – volume: 1341 start-page: 3 year: 2009 ident: ref53 article-title: Visualizing higher-layer features of a deep network – ident: ref14 doi: 10.1109/COMCAS.2013.6685318 – ident: ref45 doi: 10.1109/TPAMI.2013.50 |
| SSID | ssj0014843 |
| Score | 2.6595645 |
| Snippet | Radar-based activity recognition is a problem that has been of great interest due to applications such as border control and security, pedestrian... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1709 |
| SubjectTerms | Activity recognition Artificial neural networks Assisted living Classification Continuous wave radar Convolutional autoencoder (CAE) deep learning Diagnostic systems Feature recognition gait recognition Legged locomotion Machine learning micro-Doppler Neural networks Pedestrian safety Radar Radar signatures Remote monitoring Spectrogram Support vector machines |
| Title | Deep convolutional autoencoder for radar-based classification of similar aided and unaided human activities |
| URI | https://ieeexplore.ieee.org/document/8283539 https://www.proquest.com/docview/2117131023 |
| Volume | 54 |
| WOSCitedRecordID | wos000441403600010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1557-9603 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014843 issn: 0018-9251 databaseCode: RIE dateStart: 19650101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB5a8aAHX1WsL3LwJG67bbKb5Fh84EGKYIXelmyShaJuy_bx-81kYykogrccJmHZL9n5ZjPzDcB1QRNJlexHVLO-C1CEjBTjLBKpIwtWybywXl3_mQ-HYjyWLw24XdfCWGt98pnt4NDf5ZupXuKvsq5AcTAqm9DknNe1WusbAyZChlzPHWDntMMNZi-W3dHg4RWTuESnz6Xk2N19wwf5pio_vsTevTzu_-_BDmAv0EgyqHE_hIYtj2B3Q1ywBe_31s4IZpWH3eXs1XIxReVKYyvi2CqplFFVhJ7MEI08GhOHPFZkWpD55HPiAl-CKpKGqNKQZVmPfWc_gjURK6_Iegxvjw-ju6cotFaItANnERWGC6ZNLpDx8ERK00tsovqUxlbmKcsFNYxyIY12FND5cC10IkyqdKIcAWL0BLbKaWlPgVglhGY66RUqZ3FhRMEkljTo1MjY0LQN8ffLznTQHcf2Fx-Zjz9imSE-GeKTBXzacLOeMqtFN_4ybiEga8OARRsuvhHNwrGcZy7adUE5qlWc_T7rHHZw7TrD7wK2FtXSXsK2Xi0m8-rK77gvFJzTzA |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB50FdSDb3F95uBJrNs2aZscxQeK6yK4greSJiksale6u_5-M2l2ERTBWw4TUvolnW-amW8ATkqaCCpFHFDFYhugcBFIlrGAp5YsGCmK0jh1_W7W6_GXF_E4B2ezWhhjjEs-M-c4dHf5eqgm-Kusw1EcjIp5WEgYi6OmWmt2Z8C4z5GL7BG2btvfYUah6PQvrp8wjYufx5kQGfZ3_-aFXFuVH99i52Bu1v73aOuw6okkuWiQ34A5U23Cyjd5wS14vTLmg2Beud9f1l5OxkPUrtSmJpavklpqWQfoyzRRyKQxdcihRYYlGQ3eBzb0JagjqYmsNJlUzdj19iNYFfHpNFm34fnmun95G_jmCoGy8IyDUmecKV1w5DxZIoSOEpPImNLQiCJlBaea0YwLrSwJtF5ccZVwnUqVSEuBGN2BVjWszC4QIzlXTCVRKQsWlpqXTGBRg0q1CDVN2xBOX3auvPI4NsB4y10EEooc8ckRn9zj04bT2ZSPRnbjL-MtBGRm6LFow8EU0dwfzFFu410blqNexd7vs45h6bb_0M27d737fVjGdZp8vwNojeuJOYRF9TkejOojt_u-AD9B1xM |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+convolutional+autoencoder+for+radar-based+classification+of+similar+aided+and+unaided+human+activities&rft.jtitle=IEEE+transactions+on+aerospace+and+electronic+systems&rft.au=Mehmet+Saygin+Seyfioglu&rft.au=Ozbayoglu%2C+Ahmet+Murat&rft.au=Sevgi+Zubeyde+Gurbuz&rft.date=2018-08-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0018-9251&rft.eissn=1557-9603&rft.volume=54&rft.issue=4&rft.spage=1709&rft_id=info:doi/10.1109%2FTAES.2018.2799758&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9251&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9251&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9251&client=summon |