Deep convolutional autoencoder for radar-based classification of similar aided and unaided human activities

Radar-based activity recognition is a problem that has been of great interest due to applications such as border control and security, pedestrian identification for automotive safety, and remote health monitoring. This paper seeks to show the efficacy of micro-Doppler analysis to distinguish even th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on aerospace and electronic systems Jg. 54; H. 4; S. 1709 - 1723
Hauptverfasser: Seyfioglu, Mehmet Saygin, Ozbayoglu, Ahmet Murat, Gurbuz, Sevgi Zubeyde
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York IEEE 01.08.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:0018-9251, 1557-9603
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Radar-based activity recognition is a problem that has been of great interest due to applications such as border control and security, pedestrian identification for automotive safety, and remote health monitoring. This paper seeks to show the efficacy of micro-Doppler analysis to distinguish even those gaits whose micro-Doppler signatures are not visually distinguishable. Moreover, a three-layer, deep convolutional autoencoder (CAE) is proposed, which utilizes unsupervised pretraining to initialize the weights in the subsequent convolutional layers. This architecture is shown to be more effective than other deep learning architectures, such as convolutional neural networks and autoencoders, as well as conventional classifiers employing predefined features, such as support vector machines (SVM), random forest, and extreme gradient boosting. Results show the performance of the proposed deep CAE yields a correct classification rate of 94.2% for micro-Doppler signatures of 12 different human activities measured indoors using a 4 GHz continuous wave radar-17.3% improvement over SVM.
AbstractList Radar-based activity recognition is a problem that has been of great interest due to applications such as border control and security, pedestrian identification for automotive safety, and remote health monitoring. This paper seeks to show the efficacy of micro-Doppler analysis to distinguish even those gaits whose micro-Doppler signatures are not visually distinguishable. Moreover, a three-layer, deep convolutional autoencoder (CAE) is proposed, which utilizes unsupervised pretraining to initialize the weights in the subsequent convolutional layers. This architecture is shown to be more effective than other deep learning architectures, such as convolutional neural networks and autoencoders, as well as conventional classifiers employing predefined features, such as support vector machines (SVM), random forest, and extreme gradient boosting. Results show the performance of the proposed deep CAE yields a correct classification rate of 94.2% for micro-Doppler signatures of 12 different human activities measured indoors using a 4 GHz continuous wave radar—17.3% improvement over SVM.
Radar-based activity recognition is a problem that has been of great interest due to applications such as border control and security, pedestrian identification for automotive safety, and remote health monitoring. This paper seeks to show the efficacy of micro-Doppler analysis to distinguish even those gaits whose micro-Doppler signatures are not visually distinguishable. Moreover, a three-layer, deep convolutional autoencoder (CAE) is proposed, which utilizes unsupervised pretraining to initialize the weights in the subsequent convolutional layers. This architecture is shown to be more effective than other deep learning architectures, such as convolutional neural networks and autoencoders, as well as conventional classifiers employing predefined features, such as support vector machines (SVM), random forest, and extreme gradient boosting. Results show the performance of the proposed deep CAE yields a correct classification rate of 94.2% for micro-Doppler signatures of 12 different human activities measured indoors using a 4 GHz continuous wave radar-17.3% improvement over SVM.
Author Seyfioglu, Mehmet Saygin
Ozbayoglu, Ahmet Murat
Gurbuz, Sevgi Zubeyde
Author_xml – sequence: 1
  givenname: Mehmet Saygin
  surname: Seyfioglu
  fullname: Seyfioglu, Mehmet Saygin
  email: msseyfioglu@etu.edu.tr
  organization: TOBB University of Economics and Technology, Ankara, Turkey
– sequence: 2
  givenname: Ahmet Murat
  surname: Ozbayoglu
  fullname: Ozbayoglu, Ahmet Murat
  email: mozbayoglu@etu.edu.tr
  organization: TOBB University of Economics and Technology, Ankara, Turkey
– sequence: 3
  givenname: Sevgi Zubeyde
  orcidid: 0000-0001-7487-9087
  surname: Gurbuz
  fullname: Gurbuz, Sevgi Zubeyde
  email: szgurbuz@ua.edu
  organization: University of Alabama, Tuscaloosa, AL, USA
BookMark eNp9kM1OwzAQhC1UJNrCAyAuljin2HEc28eqlB-pEgfKOdrYjnBJ42InlXh7ElJx4MBpdzUzK803Q5PGNxaha0oWlBJ1t12uXxcpoXKRCqUEl2doSjkXicoJm6Ap6aVEpZxeoFmMu_7MZMam6OPe2gPWvjn6umudb6DG0LXeNtobG3DlAw5gICQlRGuwriFGVzkNgxn7Cke3dzUEDM70OjQGd824v3d7aDDo1h1d62y8ROcV1NFeneYcvT2st6unZPPy-LxabhLNuGqTygiZaVPKlOdEcKUM5ZZDyhixqsyzUjKTMSGV0VSleU611FyaHDQHylXG5uh2_HsI_rOzsS12vgt9s1iklArKKOmfzZEYXTr4GIOtCu3an1ZtAFcXlBQD2WIgWwxkixPZPkn_JA_B7SF8_Zu5GTPOWvvrl6lknCn2DTF2hyY
CODEN IEARAX
CitedBy_id crossref_primary_10_1016_j_cmpb_2022_107305
crossref_primary_10_1109_TAES_2018_2883847
crossref_primary_10_1007_s11042_023_17759_8
crossref_primary_10_1109_ACCESS_2019_2950960
crossref_primary_10_1109_TGRS_2024_3358956
crossref_primary_10_1109_JSEN_2021_3139735
crossref_primary_10_1109_MGRS_2018_2853555
crossref_primary_10_1109_JSEN_2024_3364497
crossref_primary_10_3390_s23052820
crossref_primary_10_1109_ACCESS_2019_2942305
crossref_primary_10_1109_LGRS_2019_2930636
crossref_primary_10_1109_ACCESS_2021_3054368
crossref_primary_10_1088_1361_6501_add03b
crossref_primary_10_1109_JSEN_2022_3141213
crossref_primary_10_1109_ACCESS_2020_3021943
crossref_primary_10_1109_MAP_2022_3208813
crossref_primary_10_3390_app12115463
crossref_primary_10_1109_JSEN_2020_3000498
crossref_primary_10_1109_TGRS_2022_3162833
crossref_primary_10_1109_TAES_2020_2975447
crossref_primary_10_1016_j_engappai_2024_108935
crossref_primary_10_1109_JERM_2019_2893587
crossref_primary_10_1109_JSEN_2020_3033278
crossref_primary_10_3390_rs11091068
crossref_primary_10_1109_LGRS_2020_2980320
crossref_primary_10_1109_TIM_2024_3366575
crossref_primary_10_3390_s19112598
crossref_primary_10_1109_ACCESS_2021_3074088
crossref_primary_10_1109_MSP_2018_2890128
crossref_primary_10_1016_j_cviu_2020_103111
crossref_primary_10_3390_s22030809
crossref_primary_10_1109_JSEN_2024_3439686
crossref_primary_10_1016_j_neucom_2018_11_109
crossref_primary_10_1016_j_aap_2022_106744
crossref_primary_10_3390_app122010264
crossref_primary_10_1088_1361_6501_ad9622
crossref_primary_10_3390_s20072025
crossref_primary_10_3390_sym10110659
crossref_primary_10_1109_JSEN_2024_3453070
crossref_primary_10_1007_s10489_024_06156_9
crossref_primary_10_1109_ACCESS_2020_2971064
crossref_primary_10_3390_rs11212584
crossref_primary_10_3390_s20195466
crossref_primary_10_1109_TBCAS_2021_3090995
crossref_primary_10_1109_JIOT_2020_3024234
crossref_primary_10_1109_JIOT_2018_2867649
crossref_primary_10_32604_cmc_2023_034176
crossref_primary_10_1109_ACCESS_2021_3053298
crossref_primary_10_1016_j_neucom_2020_01_125
crossref_primary_10_1007_s11042_023_16795_8
crossref_primary_10_1016_j_future_2023_09_029
crossref_primary_10_1109_ACCESS_2025_3589938
crossref_primary_10_1109_JSEN_2021_3117942
crossref_primary_10_1109_TGRS_2023_3329561
crossref_primary_10_1049_iet_rsn_2019_0618
crossref_primary_10_1007_s11831_023_09986_x
crossref_primary_10_1109_JSEN_2022_3177173
crossref_primary_10_1109_ACCESS_2024_3356350
crossref_primary_10_1109_TMTT_2022_3200097
crossref_primary_10_3390_su17010041
crossref_primary_10_3390_s22197175
crossref_primary_10_1109_JIOT_2023_3291051
crossref_primary_10_1109_TAES_2021_3068436
crossref_primary_10_1109_LGRS_2019_2919770
crossref_primary_10_3390_pr13030747
crossref_primary_10_3390_electronics12071539
crossref_primary_10_1109_TIM_2021_3054673
crossref_primary_10_32604_cmc_2023_033417
crossref_primary_10_1109_ACCESS_2020_2997033
crossref_primary_10_3233_MGS_230022
crossref_primary_10_12677_AAM_2023_127331
crossref_primary_10_1109_ACCESS_2022_3150838
crossref_primary_10_1109_TGRS_2020_3019915
crossref_primary_10_1109_TIM_2023_3328079
crossref_primary_10_1109_TGRS_2021_3104907
crossref_primary_10_1109_TAP_2024_3452427
crossref_primary_10_1109_MRA_2024_3352851
crossref_primary_10_1007_s13534_025_00469_5
crossref_primary_10_1109_JMW_2025_3575723
crossref_primary_10_1109_ACCESS_2019_2943567
crossref_primary_10_1109_ACCESS_2025_3584461
crossref_primary_10_3390_sym11050630
crossref_primary_10_1109_TAES_2020_2969579
crossref_primary_10_1049_tje2_12327
crossref_primary_10_1109_ACCESS_2021_3083980
crossref_primary_10_1109_LGRS_2020_3045176
crossref_primary_10_7232_JKIIE_2025_51_1_108
crossref_primary_10_1016_j_gaitpost_2024_08_007
crossref_primary_10_3390_s23115024
crossref_primary_10_1109_JSEN_2020_3046991
crossref_primary_10_1109_JIOT_2019_2929833
crossref_primary_10_1109_ACCESS_2025_3593957
crossref_primary_10_1109_TRS_2025_3601306
crossref_primary_10_3390_s24144570
crossref_primary_10_3390_s23177486
crossref_primary_10_1109_TAES_2024_3502354
crossref_primary_10_1002_aisy_201900088
crossref_primary_10_3390_s25103138
crossref_primary_10_1109_JSEN_2019_2957382
crossref_primary_10_1109_TAES_2024_3353148
crossref_primary_10_1109_TAES_2024_3411594
crossref_primary_10_1109_TVT_2021_3115877
crossref_primary_10_1109_TIM_2025_3565041
crossref_primary_10_1016_j_asoc_2023_110164
crossref_primary_10_1109_JIOT_2021_3113671
crossref_primary_10_3390_app132312728
crossref_primary_10_1109_LGRS_2025_3609444
crossref_primary_10_1007_s10462_023_10662_6
crossref_primary_10_1088_1361_6501_ad7b60
crossref_primary_10_1016_j_autcon_2022_104181
crossref_primary_10_1109_TGRS_2023_3274207
crossref_primary_10_1016_j_patcog_2024_111117
crossref_primary_10_1109_LSENS_2021_3061561
crossref_primary_10_3390_s21093226
crossref_primary_10_1016_j_atmosres_2025_108114
crossref_primary_10_1109_JIOT_2021_3116136
crossref_primary_10_3390_app13052956
crossref_primary_10_3390_s21227731
crossref_primary_10_1109_JSEN_2020_3004581
crossref_primary_10_3390_s19040947
crossref_primary_10_1109_TIM_2025_3550240
crossref_primary_10_1007_s11276_021_02670_7
crossref_primary_10_1109_JSEN_2025_3595930
crossref_primary_10_1109_JSEN_2021_3088122
crossref_primary_10_1049_iet_rsn_2019_0447
crossref_primary_10_1109_JIOT_2022_3229462
crossref_primary_10_1109_JSTARS_2021_3073678
crossref_primary_10_1109_JIOT_2021_3063504
crossref_primary_10_1109_TIV_2022_3146639
crossref_primary_10_3390_s20226467
crossref_primary_10_1109_TBCAS_2021_3137290
crossref_primary_10_1109_TAES_2024_3381086
crossref_primary_10_1186_s13634_022_00941_9
crossref_primary_10_1109_JSEN_2022_3164152
crossref_primary_10_1109_TGRS_2021_3123109
crossref_primary_10_1109_TGRS_2023_3271759
crossref_primary_10_1109_JSEN_2023_3327963
crossref_primary_10_3390_rs13040706
crossref_primary_10_1016_j_ins_2021_04_074
crossref_primary_10_1007_s42001_021_00107_x
crossref_primary_10_1145_3472290
crossref_primary_10_1109_TGRS_2019_2908758
crossref_primary_10_1177_1475921720924601
crossref_primary_10_1109_TAES_2025_3558488
crossref_primary_10_1007_s11227_023_05354_5
crossref_primary_10_1016_j_patcog_2020_107561
crossref_primary_10_3390_s25113337
crossref_primary_10_1109_JIOT_2019_2907580
crossref_primary_10_3390_rs14010123
crossref_primary_10_1109_JSEN_2021_3078339
crossref_primary_10_1109_ACCESS_2021_3088452
crossref_primary_10_1109_TAES_2024_3427101
crossref_primary_10_1109_JSEN_2021_3118836
crossref_primary_10_1109_TBME_2019_2893528
crossref_primary_10_1007_s11042_024_19830_4
crossref_primary_10_1016_j_engappai_2023_106051
crossref_primary_10_1109_JBHI_2020_2994471
crossref_primary_10_3390_s22051721
crossref_primary_10_1109_ACCESS_2021_3061424
crossref_primary_10_1109_JSEN_2022_3162590
crossref_primary_10_1109_ACCESS_2022_3228639
crossref_primary_10_1051_itmconf_20224801010
crossref_primary_10_1109_JSEN_2019_2892073
crossref_primary_10_1016_j_measurement_2024_114939
crossref_primary_10_3390_s22155782
crossref_primary_10_1177_00405175241261401
crossref_primary_10_1109_TCE_2025_3557084
crossref_primary_10_1109_TASE_2020_3042158
crossref_primary_10_3390_s24185944
crossref_primary_10_1109_TGRS_2019_2929096
crossref_primary_10_1049_iet_rsn_2020_0183
crossref_primary_10_1109_MITS_2022_3162886
crossref_primary_10_1049_iet_rsn_2019_0240
crossref_primary_10_3390_make6020040
crossref_primary_10_1007_s00521_022_07776_3
crossref_primary_10_1109_ACCESS_2021_3053491
crossref_primary_10_3390_rs13214264
crossref_primary_10_3390_s19091962
crossref_primary_10_1049_iet_rsn_2018_5054
crossref_primary_10_1109_JBHI_2023_3240895
crossref_primary_10_1109_JBHI_2020_3027967
crossref_primary_10_1109_ACCESS_2019_2898642
crossref_primary_10_1109_JSEN_2024_3447790
crossref_primary_10_1109_TAES_2024_3403077
crossref_primary_10_1016_j_compag_2020_105557
crossref_primary_10_1109_TII_2023_3316164
crossref_primary_10_1016_j_foodcont_2025_111606
crossref_primary_10_1109_JSEN_2021_3126436
crossref_primary_10_1109_MAES_2020_3021322
crossref_primary_10_1109_ACCESS_2021_3073090
crossref_primary_10_1109_ACCESS_2025_3544627
crossref_primary_10_1109_JSEN_2023_3323314
crossref_primary_10_3390_electronics11010156
crossref_primary_10_3389_fphys_2021_668350
crossref_primary_10_1016_j_smhl_2022_100334
crossref_primary_10_1109_JSEN_2020_3006386
Cites_doi 10.1049/iet-rsn.2015.0580
10.1109/LGRS.2015.2491329
10.1109/ACSSC.2014.7094509
10.1109/LGRS.2014.2311819
10.1109/TGRS.2015.2505409
10.1613/jair.953
10.1109/LGRS.2015.2452946
10.1109/MSP.2015.2502784
10.1109/TAES.2014.130762
10.1145/2939672.2939785
10.1109/TBME.2014.2367038
10.1109/LGRS.2014.2336231
10.1126/science.1127647
10.1109/TAES.2014.130082
10.1109/CVPR.2015.7298594
10.1109/TAES.2016.140682
10.1145/3065386
10.1093/bioinformatics/btm344
10.1109/TAES.2017.2651678
10.1049/iet-rsn.2014.0250
10.1049/iet-rsn.2015.0144
10.1109/CVPR.2016.90
10.1109/TGRS.2009.2012849
10.1109/RADAR.2016.7485147
10.3390/s16091401
10.1109/RADAR.2017.7944373
10.1109/ICCV.2011.6126474
10.1109/LGRS.2015.2439393
10.1109/JBHI.2014.2361252
10.1109/ACCESS.2016.2617282
10.1109/RADAR.2012.6212271
10.1109/MRRS.2011.6053628
10.1109/COMCAS.2013.6685318
10.1109/TPAMI.2013.50
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7TB
8FD
FR3
H8D
L7M
DOI 10.1109/TAES.2018.2799758
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Aerospace Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1557-9603
EndPage 1723
ExternalDocumentID 10_1109_TAES_2018_2799758
8283539
Genre orig-research
GroupedDBID -~X
0R~
29I
4.4
41~
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
H~9
IAAWW
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
OCL
P2P
RIA
RIE
RNS
TN5
VH1
AAYXX
CITATION
7SP
7TB
8FD
FR3
H8D
L7M
RIG
ID FETCH-LOGICAL-c359t-fd784cdb825607599d15e5a2330e9b64b83d43789dc192661c8c58d6ac5a15943
IEDL.DBID RIE
ISICitedReferencesCount 282
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000441403600010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0018-9251
IngestDate Mon Jun 30 10:21:14 EDT 2025
Tue Nov 18 22:03:05 EST 2025
Sat Nov 29 01:51:26 EST 2025
Wed Aug 27 02:54:33 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c359t-fd784cdb825607599d15e5a2330e9b64b83d43789dc192661c8c58d6ac5a15943
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7487-9087
PQID 2117131023
PQPubID 85477
PageCount 15
ParticipantIDs crossref_citationtrail_10_1109_TAES_2018_2799758
ieee_primary_8283539
crossref_primary_10_1109_TAES_2018_2799758
proquest_journals_2117131023
PublicationCentury 2000
PublicationDate 2018-08-01
PublicationDateYYYYMMDD 2018-08-01
PublicationDate_xml – month: 08
  year: 2018
  text: 2018-08-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on aerospace and electronic systems
PublicationTitleAbbrev T-AES
PublicationYear 2018
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref54
ref10
david (ref23) 2016
ref17
lecun (ref48) 1990
ref19
ref18
nair (ref37) 0
yessad (ref11) 2011
kim (ref16) 2009; 47
erhan (ref53) 2009; 1341
ref50
ref45
ref41
ref43
erhan (ref20) 2010; 11
ref8
ref7
hinton (ref44) 2006; 313
ref4
ref3
ref6
ref5
rosa (ref34) 0; 158
simonyan (ref40) 0
gurbuz (ref35) 2015
ref36
abadi (ref52) 2016
ref31
ref30
ref32
ng (ref46) 2011; 72
ref2
ref1
ref39
trommel (ref42) 0
kingma (ref47) 0
kim (ref9) 2015; 12
ioannou (ref38) 2015
srivastava (ref49) 2014; 15
ref24
ref26
erhan (ref22) 2010; 11
ref25
ref28
chollet (ref51) 2015
ref29
masci (ref21) 2011
ritchie (ref33) 2016; 16
otero (ref27) 0
References_xml – start-page: 538
  year: 0
  ident: ref27
  article-title: Application of a continuous wave radar for human gait recognition
  publication-title: Defense and Security
– ident: ref26
  doi: 10.1049/iet-rsn.2015.0580
– ident: ref18
  doi: 10.1109/LGRS.2015.2491329
– volume: 72
  start-page: 1
  year: 2011
  ident: ref46
  article-title: Sparse autoencoder
  publication-title: Cs294a lecture notes
– ident: ref1
  doi: 10.1109/ACSSC.2014.7094509
– ident: ref12
  doi: 10.1109/LGRS.2014.2311819
– ident: ref13
  doi: 10.1109/TGRS.2015.2505409
– ident: ref25
  doi: 10.1613/jair.953
– start-page: 396
  year: 1990
  ident: ref48
  article-title: Handwritten digit recognition with a back-propagation network
  publication-title: Proc Adv Neural Inform Process Syst 2
– ident: ref54
  doi: 10.1109/LGRS.2015.2452946
– ident: ref4
  doi: 10.1109/MSP.2015.2502784
– ident: ref29
  doi: 10.1109/TAES.2014.130762
– volume: 11
  start-page: 625
  year: 2010
  ident: ref22
  article-title: Why does unsupervised pre-training help deep learning?
  publication-title: J Mach Learn Res
– ident: ref36
  doi: 10.1145/2939672.2939785
– ident: ref6
  doi: 10.1109/TBME.2014.2367038
– volume: 12
  start-page: 289
  year: 2015
  ident: ref9
  article-title: Human detection using doppler radar based on physical characteristics of targets
  publication-title: IEEE Geosci Remote Sens Lett
  doi: 10.1109/LGRS.2014.2336231
– year: 0
  ident: ref47
  article-title: Adam: A method for stochastic optimization
  publication-title: Proc Int Conf Learn Represent
– volume: 313
  start-page: 504
  year: 2006
  ident: ref44
  article-title: Reducing the dimensionality of data with neural networks
  publication-title: Science
  doi: 10.1126/science.1127647
– start-page: 807
  year: 0
  ident: ref37
  article-title: Rectified linear units improve restricted boltzmann machines
  publication-title: Proc 27th Int Conf Mach Learning
– volume: 15
  start-page: 1929
  year: 2014
  ident: ref49
  article-title: Dropout: a simple way to prevent neural networks from overfitting
  publication-title: J Mach Learn Res
– year: 2015
  ident: ref38
  article-title: Decision forests, convolutional networks and the models in-between
– ident: ref30
  doi: 10.1109/TAES.2014.130082
– ident: ref24
  doi: 10.1109/CVPR.2015.7298594
– ident: ref3
  doi: 10.1109/TAES.2016.140682
– start-page: 52
  year: 2011
  ident: ref21
  article-title: Stacked convolutional auto-encoders for hierarchical feature extraction
  publication-title: Artificial Neural Networks in Machine Learning
– start-page: 20
  year: 2016
  ident: ref23
  article-title: Deeppainter: Painter classification using deep convolutional autoencoders
  publication-title: Proc Int Conf Artif Neural Netw
– year: 0
  ident: ref40
  article-title: Very deep convolutional networks for large-scale image recognition
  publication-title: Proc Int Conf Learn Represent
– ident: ref39
  doi: 10.1145/3065386
– ident: ref32
  doi: 10.1093/bioinformatics/btm344
– ident: ref31
  doi: 10.1109/TAES.2017.2651678
– year: 2015
  ident: ref35
  article-title: Identification of biological signals with radar Short Term Scientific Mission Report
– start-page: 280
  year: 2011
  ident: ref11
  article-title: Micro-doppler classification for ground surveillance radar using speech recognition tools
  publication-title: Pattern Recognit
– ident: ref7
  doi: 10.1049/iet-rsn.2014.0250
– ident: ref8
  doi: 10.1049/iet-rsn.2015.0144
– ident: ref41
  doi: 10.1109/CVPR.2016.90
– volume: 47
  start-page: 1328
  year: 2009
  ident: ref16
  article-title: Human activity classification based on micro-doppler signatures using a support vector machine
  publication-title: IEEE Trans Geosc Remote Sens
  doi: 10.1109/TGRS.2009.2012849
– ident: ref19
  doi: 10.1109/RADAR.2016.7485147
– volume: 16
  start-page: 1401
  year: 2016
  ident: ref33
  article-title: Through wall radar classification of human micro-doppler using singular value decomposition analysis
  publication-title: SENSORS
  doi: 10.3390/s16091401
– start-page: 81
  year: 0
  ident: ref42
  article-title: Multi-target human gait classification using deep convolutional neural networks on micro-doppler spectrograms
  publication-title: Proc Radar Conf
– ident: ref17
  doi: 10.1109/RADAR.2017.7944373
– ident: ref50
  doi: 10.1109/ICCV.2011.6126474
– year: 2015
  ident: ref51
  publication-title: Keras
– volume: 11
  start-page: 625
  year: 2010
  ident: ref20
  article-title: Why does unsupervised pre-training help deep learning?
  publication-title: J Mach Learning Res
– ident: ref2
  doi: 10.1109/LGRS.2015.2439393
– year: 2016
  ident: ref52
  article-title: Tensorflow: Large-scale machine learning on heterogeneous distributed systems
– volume: 158
  start-page: 28
  year: 0
  ident: ref34
  article-title: Classification success of six machine learning algorithms in radar ornithology
  publication-title: Ibis The international journal of avian science
– ident: ref15
  doi: 10.1109/TAES.2014.130082
– ident: ref5
  doi: 10.1109/JBHI.2014.2361252
– ident: ref43
  doi: 10.1109/ACCESS.2016.2617282
– ident: ref28
  doi: 10.1109/RADAR.2012.6212271
– ident: ref10
  doi: 10.1109/MRRS.2011.6053628
– volume: 1341
  start-page: 3
  year: 2009
  ident: ref53
  article-title: Visualizing higher-layer features of a deep network
– ident: ref14
  doi: 10.1109/COMCAS.2013.6685318
– ident: ref45
  doi: 10.1109/TPAMI.2013.50
SSID ssj0014843
Score 2.6595645
Snippet Radar-based activity recognition is a problem that has been of great interest due to applications such as border control and security, pedestrian...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1709
SubjectTerms Activity recognition
Artificial neural networks
Assisted living
Classification
Continuous wave radar
Convolutional autoencoder (CAE)
deep learning
Diagnostic systems
Feature recognition
gait recognition
Legged locomotion
Machine learning
micro-Doppler
Neural networks
Pedestrian safety
Radar
Radar signatures
Remote monitoring
Spectrogram
Support vector machines
Title Deep convolutional autoencoder for radar-based classification of similar aided and unaided human activities
URI https://ieeexplore.ieee.org/document/8283539
https://www.proquest.com/docview/2117131023
Volume 54
WOSCitedRecordID wos000441403600010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1557-9603
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014843
  issn: 0018-9251
  databaseCode: RIE
  dateStart: 19650101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB5a8aAHX1WsL3LwJG67bbKb5Fh84EGKYIXelmyShaJuy_bx-81kYykogrccJmHZL9n5ZjPzDcB1QRNJlexHVLO-C1CEjBTjLBKpIwtWybywXl3_mQ-HYjyWLw24XdfCWGt98pnt4NDf5ZupXuKvsq5AcTAqm9DknNe1WusbAyZChlzPHWDntMMNZi-W3dHg4RWTuESnz6Xk2N19wwf5pio_vsTevTzu_-_BDmAv0EgyqHE_hIYtj2B3Q1ywBe_31s4IZpWH3eXs1XIxReVKYyvi2CqplFFVhJ7MEI08GhOHPFZkWpD55HPiAl-CKpKGqNKQZVmPfWc_gjURK6_Iegxvjw-ju6cotFaItANnERWGC6ZNLpDx8ERK00tsovqUxlbmKcsFNYxyIY12FND5cC10IkyqdKIcAWL0BLbKaWlPgVglhGY66RUqZ3FhRMEkljTo1MjY0LQN8ffLznTQHcf2Fx-Zjz9imSE-GeKTBXzacLOeMqtFN_4ybiEga8OARRsuvhHNwrGcZy7adUE5qlWc_T7rHHZw7TrD7wK2FtXSXsK2Xi0m8-rK77gvFJzTzA
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB50FdSDb3F95uBJrNs2aZscxQeK6yK4greSJiksale6u_5-M2l2ERTBWw4TUvolnW-amW8ATkqaCCpFHFDFYhugcBFIlrGAp5YsGCmK0jh1_W7W6_GXF_E4B2ezWhhjjEs-M-c4dHf5eqgm-Kusw1EcjIp5WEgYi6OmWmt2Z8C4z5GL7BG2btvfYUah6PQvrp8wjYufx5kQGfZ3_-aFXFuVH99i52Bu1v73aOuw6okkuWiQ34A5U23Cyjd5wS14vTLmg2Beud9f1l5OxkPUrtSmJpavklpqWQfoyzRRyKQxdcihRYYlGQ3eBzb0JagjqYmsNJlUzdj19iNYFfHpNFm34fnmun95G_jmCoGy8IyDUmecKV1w5DxZIoSOEpPImNLQiCJlBaea0YwLrSwJtF5ccZVwnUqVSEuBGN2BVjWszC4QIzlXTCVRKQsWlpqXTGBRg0q1CDVN2xBOX3auvPI4NsB4y10EEooc8ckRn9zj04bT2ZSPRnbjL-MtBGRm6LFow8EU0dwfzFFu410blqNexd7vs45h6bb_0M27d737fVjGdZp8vwNojeuJOYRF9TkejOojt_u-AD9B1xM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+convolutional+autoencoder+for+radar-based+classification+of+similar+aided+and+unaided+human+activities&rft.jtitle=IEEE+transactions+on+aerospace+and+electronic+systems&rft.au=Mehmet+Saygin+Seyfioglu&rft.au=Ozbayoglu%2C+Ahmet+Murat&rft.au=Sevgi+Zubeyde+Gurbuz&rft.date=2018-08-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0018-9251&rft.eissn=1557-9603&rft.volume=54&rft.issue=4&rft.spage=1709&rft_id=info:doi/10.1109%2FTAES.2018.2799758&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9251&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9251&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9251&client=summon