Group-Based Distributed Auction Algorithms for Multi-Robot Task Assignment

This paper studies the multi-robot task assignment problem in which a fleet of dispersed robots needs to efficiently transport a set of dynamically appearing packages from their initial locations to corresponding destinations within prescribed time-windows. Each robot can carry multiple packages sim...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on automation science and engineering Jg. 20; H. 2; S. 1292 - 1303
Hauptverfasser: Bai, Xiaoshan, Fielbaum, Andres, Kronmuller, Maximilian, Knoedler, Luzia, Alonso-Mora, Javier
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York IEEE 01.04.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:1545-5955, 1558-3783
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract This paper studies the multi-robot task assignment problem in which a fleet of dispersed robots needs to efficiently transport a set of dynamically appearing packages from their initial locations to corresponding destinations within prescribed time-windows. Each robot can carry multiple packages simultaneously within its capacity. Given a sufficiently large robot fleet, the objective is to minimize the robots' total travel time to transport the packages within their respective time-window constraints. The problem is shown to be NP-hard, and we design two group-based distributed auction algorithms to solve this task assignment problem. Guided by the auction algorithms, robots first distributively calculate feasible package groups that they can serve, and then communicate to find an assignment of package groups. We quantify the potential of the algorithms with respect to the number of employed robots and the capacity of the robots by considering the robots' total travel time to transport all packages. Simulation results show that the designed algorithms are competitive compared with an exact centralized Integer Linear Program representation solved with the commercial solver Gurobi, and superior to popular greedy algorithms and a heuristic distributed task allocation method. Note to Practitioners-This work presents two group-based distributed auction algorithms for a sufficiently large fleet of robots to efficiently transport a set of dynamically appearing dispersed packages from their initial locations to corresponding destinations within prescribed time-windows. Each robot can carry multiple packages simultaneously within its capacity, and the objective is to minimize the robots' total travel time to transport all the packages within the prescribed time-windows. The paper's practical contributions are threefold: First, the multi-robot task assignment problem is formulated through a robot-group assignment strategy, which enables complex logistic scheduling for tasks grouped according to their distributions and time-windows. Second, we theoretically show that the multi-robot task assignment problem is an NP-hard problem, which implies the necessity for designing approximate task assignment algorithms. Third, the proposed group-based distributed auction algorithms are efficient and can be adapted for real scenarios.
AbstractList This paper studies the multi-robot task assignment problem in which a fleet of dispersed robots needs to efficiently transport a set of dynamically appearing packages from their initial locations to corresponding destinations within prescribed time-windows. Each robot can carry multiple packages simultaneously within its capacity. Given a sufficiently large robot fleet, the objective is to minimize the robots’ total travel time to transport the packages within their respective time-window constraints. The problem is shown to be NP-hard, and we design two group-based distributed auction algorithms to solve this task assignment problem. Guided by the auction algorithms, robots first distributively calculate feasible package groups that they can serve, and then communicate to find an assignment of package groups. We quantify the potential of the algorithms with respect to the number of employed robots and the capacity of the robots by considering the robots’ total travel time to transport all packages. Simulation results show that the designed algorithms are competitive compared with an exact centralized Integer Linear Program representation solved with the commercial solver Gurobi, and superior to popular greedy algorithms and a heuristic distributed task allocation method. Note to Practitioners—This work presents two group-based distributed auction algorithms for a sufficiently large fleet of robots to efficiently transport a set of dynamically appearing dispersed packages from their initial locations to corresponding destinations within prescribed time-windows. Each robot can carry multiple packages simultaneously within its capacity, and the objective is to minimize the robots’ total travel time to transport all the packages within the prescribed time-windows. The paper’s practical contributions are threefold: First, the multi-robot task assignment problem is formulated through a robot-group assignment strategy, which enables complex logistic scheduling for tasks grouped according to their distributions and time-windows. Second, we theoretically show that the multi-robot task assignment problem is an NP-hard problem, which implies the necessity for designing approximate task assignment algorithms. Third, the proposed group-based distributed auction algorithms are efficient and can be adapted for real scenarios.
Author Bai, Xiaoshan
Kronmuller, Maximilian
Knoedler, Luzia
Alonso-Mora, Javier
Fielbaum, Andres
Author_xml – sequence: 1
  givenname: Xiaoshan
  orcidid: 0000-0002-6782-5571
  surname: Bai
  fullname: Bai, Xiaoshan
  email: baixiaoshan@szu.edu.cn
  organization: College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen, China
– sequence: 2
  givenname: Andres
  orcidid: 0000-0003-0411-3064
  surname: Fielbaum
  fullname: Fielbaum, Andres
  email: a.s.fielbaumschnitzler@tudelft.nl
  organization: Department of Cognitive Robotics, Delft University of Technology, CD Delft, The Netherlands
– sequence: 3
  givenname: Maximilian
  orcidid: 0000-0002-5199-7942
  surname: Kronmuller
  fullname: Kronmuller, Maximilian
  email: m.kronmuller@tudelft.nl
  organization: Department of Cognitive Robotics, Delft University of Technology, CD Delft, The Netherlands
– sequence: 4
  givenname: Luzia
  orcidid: 0000-0002-0417-9912
  surname: Knoedler
  fullname: Knoedler, Luzia
  email: l.knoedler@tudelft.nl
  organization: Department of Cognitive Robotics, Delft University of Technology, CD Delft, The Netherlands
– sequence: 5
  givenname: Javier
  orcidid: 0000-0003-0058-570X
  surname: Alonso-Mora
  fullname: Alonso-Mora, Javier
  email: j.alonsomora@tudelft.nl
  organization: Department of Cognitive Robotics, Delft University of Technology, CD Delft, The Netherlands
BookMark eNp9kM1KAzEUhYNUsK0-gLgZcD01P5MmWY61VqUiaF2HTJrU1OmkJpmFb-8MLS5cuLjcw-Gce-EbgUHjGwPAJYIThKC4WZVv8wmGGE8IYhQW8AQMEaU8J4yTQa8LmlNB6RkYxbiFEBdcwCF4WgTf7vNbFc06u3MxBVe1qdNlq5PzTVbWGx9c-tjFzPqQPbd1cvmrr3zKVip-ZmWMbtPsTJPOwalVdTQXxz0G7_fz1ewhX74sHmflMteEipRbiAWthF5jVSG0LirLkeEaF8girTWlhiiFtaUVZ5zSziymsPMqzTQslCVjcH24uw_-qzUxya1vQ9O9lJgJhvm0my6FDikdfIzBWLkPbqfCt0RQ9shkj0z2yOQRWddhfzraJdVjSEG5-t_m1aHpjDG_nwTjaEoQ-QGL1Hub
CODEN ITASC7
CitedBy_id crossref_primary_10_1007_s10586_025_05400_2
crossref_primary_10_1111_joes_12684
crossref_primary_10_1109_TIE_2024_3374366
crossref_primary_10_1109_TASE_2023_3312214
crossref_primary_10_3390_drones7110679
crossref_primary_10_3390_vehicles7020035
crossref_primary_10_1109_TASE_2025_3574280
crossref_primary_10_1109_TEVC_2024_3364493
crossref_primary_10_1109_TASE_2025_3546281
crossref_primary_10_1016_j_apenergy_2025_126546
crossref_primary_10_1109_TAI_2025_3536428
crossref_primary_10_1016_j_tcs_2025_115277
crossref_primary_10_3233_AIS_230196
crossref_primary_10_1007_s11227_025_07027_x
crossref_primary_10_1016_j_robot_2024_104722
crossref_primary_10_1109_TASE_2025_3560121
crossref_primary_10_3390_drones8120766
crossref_primary_10_1109_TRO_2024_3359530
crossref_primary_10_1109_TRO_2024_3475209
crossref_primary_10_3390_s23136082
crossref_primary_10_54097_0869dc58
crossref_primary_10_1109_TSMC_2024_3410693
crossref_primary_10_3390_app122312181
crossref_primary_10_1109_TCE_2024_3421516
crossref_primary_10_3390_electronics14122361
crossref_primary_10_1016_j_ast_2025_110791
crossref_primary_10_1109_TCYB_2023_3340659
crossref_primary_10_3390_aerospace12050405
crossref_primary_10_1016_j_comcom_2024_107986
crossref_primary_10_1109_TASE_2025_3536356
crossref_primary_10_1016_j_cja_2023_12_027
crossref_primary_10_12677_MOS_2023_126479
crossref_primary_10_1109_JIOT_2024_3491944
crossref_primary_10_1177_01423312231183588
crossref_primary_10_3390_agronomy14020391
crossref_primary_10_1007_s43684_024_00069_7
crossref_primary_10_1016_j_swevo_2025_102112
crossref_primary_10_3390_jsan13050047
crossref_primary_10_1016_j_future_2025_107925
crossref_primary_10_1007_s13042_024_02218_z
crossref_primary_10_1016_j_eswa_2024_123238
crossref_primary_10_3390_drones7040267
crossref_primary_10_1016_j_cie_2024_110410
crossref_primary_10_1109_TASE_2024_3398996
crossref_primary_10_1109_ACCESS_2024_3505947
crossref_primary_10_1109_TASE_2025_3528757
crossref_primary_10_1109_TITS_2023_3287163
crossref_primary_10_3390_electronics14050842
crossref_primary_10_1016_j_asoc_2023_111223
crossref_primary_10_1109_LRA_2025_3592080
crossref_primary_10_3390_s23115103
crossref_primary_10_1109_TASE_2025_3541409
crossref_primary_10_3390_drones8090422
crossref_primary_10_1109_TASE_2023_3281577
crossref_primary_10_1109_ACCESS_2022_3206537
crossref_primary_10_1016_j_cosrev_2024_100651
crossref_primary_10_1016_j_eswa_2025_127408
crossref_primary_10_1109_TIV_2024_3419183
crossref_primary_10_1109_TSMC_2025_3571717
crossref_primary_10_1007_s10462_024_10977_y
crossref_primary_10_1016_j_eswa_2025_129340
crossref_primary_10_1109_LRA_2024_3487077
crossref_primary_10_1109_TAES_2023_3235864
crossref_primary_10_3390_drones8100553
crossref_primary_10_1109_TASE_2023_3336076
crossref_primary_10_1109_TASE_2025_3550740
crossref_primary_10_1016_j_swevo_2024_101565
crossref_primary_10_1109_TASE_2025_3558945
crossref_primary_10_3390_s24061724
Cites_doi 10.1016/j.cor.2010.06.001
10.1109/TSMC.2016.2523910
10.1109/ICRA.2017.7989038
10.1177/0278364904045564
10.1109/TSMC.2015.2416127
10.1016/j.cor.2004.08.001
10.1146/annurev-control-060117-105157
10.1137/1.9781611973594
10.1109/TASE.2019.2914113
10.1109/LRA.2021.3074883
10.1109/TAC.2014.2344291
10.1016/S0305-0548(03)00158-8
10.1016/j.trc.2019.01.019
10.1109/IROS.2004.1389434
10.1109/TASE.2006.872110
10.1016/j.robot.2013.06.007
10.1007/s10732-014-9247-0
10.1016/j.automatica.2015.07.010
10.1016/j.trc.2010.07.008
10.1016/j.cor.2005.02.039
10.1016/j.robot.2008.12.001
10.1109/TAC.2009.2026926
10.1073/pnas.1611675114
10.1049/iet-cta.2018.6125
10.1109/TCYB.2020.2974832
10.1109/TSMC.2013.2276392
10.1137/1018115
10.1109/JIOT.2020.3025797
10.1109/TCYB.2015.2418052
10.1016/j.ins.2018.04.044
10.1016/j.trb.2016.03.009
10.1016/j.ejor.2017.12.008
10.1007/BF02022044
10.1177/0278364913496484
10.1287/trsc.1090.0272
10.1007/s10846-012-9740-3
10.1287/mnsc.18.11.664
10.1109/TRO.2009.2022423
10.1287/trsc.1090.0301
10.1007/s10514-019-09828-5
10.1137/1.9780898718515
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
DOI 10.1109/TASE.2022.3175040
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-3783
EndPage 1303
ExternalDocumentID 10_1109_TASE_2022_3175040
9781631
Genre orig-research
GrantInformation_xml – fundername: European Union’s Horizon 2020 Research and Innovation Program
  grantid: 101017008
  funderid: 10.13039/100010661
– fundername: AI for Retail Lab (AIRLab) through Ahold Delhaize
– fundername: National Natural Science Foundation of China
  grantid: 62003217
  funderid: 10.13039/501100001809
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c359t-f0295b9cd2ab11d4bf81e8c241f1ccc55e3aa2cf5b87855f1c460e3abc7c04af3
IEDL.DBID RIE
ISICitedReferencesCount 85
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000800768500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1545-5955
IngestDate Sun Nov 09 07:06:11 EST 2025
Sat Nov 29 04:12:48 EST 2025
Tue Nov 18 21:27:19 EST 2025
Wed Aug 27 02:18:14 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 2
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c359t-f0295b9cd2ab11d4bf81e8c241f1ccc55e3aa2cf5b87855f1c460e3abc7c04af3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5199-7942
0000-0003-0411-3064
0000-0002-0417-9912
0000-0002-6782-5571
0000-0003-0058-570X
PQID 2797286728
PQPubID 27623
PageCount 12
ParticipantIDs crossref_primary_10_1109_TASE_2022_3175040
ieee_primary_9781631
proquest_journals_2797286728
crossref_citationtrail_10_1109_TASE_2022_3175040
PublicationCentury 2000
PublicationDate 2023-04-01
PublicationDateYYYYMMDD 2023-04-01
PublicationDate_xml – month: 04
  year: 2023
  text: 2023-04-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on automation science and engineering
PublicationTitleAbbrev TASE
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref36
ref31
ref11
ref33
ref10
ref32
Liu (ref30)
ref2
ref1
ref17
ref39
ref16
ref38
ref19
ref18
Toth (ref9) 2014; 18
Stephen (ref42)
Garey (ref45) 1979
ref24
ref23
Ma (ref29)
ref26
ref25
ref20
ref41
ref22
ref44
ref21
ref43
ref28
ref27
ref8
ref7
ref4
ref3
ref6
ref5
ref40
References_xml – ident: ref21
  doi: 10.1016/j.cor.2010.06.001
– ident: ref33
  doi: 10.1109/TSMC.2016.2523910
– ident: ref35
  doi: 10.1109/ICRA.2017.7989038
– ident: ref5
  doi: 10.1177/0278364904045564
– ident: ref25
  doi: 10.1109/TSMC.2015.2416127
– ident: ref12
  doi: 10.1016/j.cor.2004.08.001
– ident: ref4
  doi: 10.1146/annurev-control-060117-105157
– volume: 18
  volume-title: Vehicle Routing: Problems, Methods, and Applications
  year: 2014
  ident: ref9
  doi: 10.1137/1.9781611973594
– ident: ref39
  doi: 10.1109/TASE.2019.2914113
– start-page: 837
  volume-title: Proc. 16th Conf. Auto. Agents MultiAgent Syst.
  ident: ref29
  article-title: Lifelong multi-agent path finding for online pickup and delivery tasks
– ident: ref3
  doi: 10.1109/LRA.2021.3074883
– ident: ref8
  doi: 10.1109/TAC.2014.2344291
– ident: ref16
  doi: 10.1016/S0305-0548(03)00158-8
– ident: ref23
  doi: 10.1016/j.trc.2019.01.019
– ident: ref31
  doi: 10.1109/IROS.2004.1389434
– ident: ref32
  doi: 10.1109/TASE.2006.872110
– ident: ref2
  doi: 10.1016/j.robot.2013.06.007
– volume-title: Computers and Intractability: A Guide to the Theory of NP-Completeness
  year: 1979
  ident: ref45
– ident: ref17
  doi: 10.1007/s10732-014-9247-0
– ident: ref28
  doi: 10.1016/j.automatica.2015.07.010
– start-page: 1152
  volume-title: Proc. 18th Int. Conf. Auton. Agents MultiAgent Syst.
  ident: ref30
  article-title: Task and path planning for multi-agent pickup and delivery
– start-page: 1
  volume-title: Proc. DIMACS Workshop Satisfiability Problem, Theory Appl.
  ident: ref42
  article-title: Finding hard instances of the satisfiability problem: A survey
– ident: ref14
  doi: 10.1016/j.trc.2010.07.008
– ident: ref20
  doi: 10.1016/j.cor.2005.02.039
– ident: ref6
  doi: 10.1016/j.robot.2008.12.001
– ident: ref7
  doi: 10.1109/TAC.2009.2026926
– ident: ref19
  doi: 10.1073/pnas.1611675114
– ident: ref26
  doi: 10.1049/iet-cta.2018.6125
– ident: ref38
  doi: 10.1109/TCYB.2020.2974832
– ident: ref24
  doi: 10.1109/TSMC.2013.2276392
– ident: ref44
  doi: 10.1137/1018115
– ident: ref43
  doi: 10.1109/JIOT.2020.3025797
– ident: ref27
  doi: 10.1109/TCYB.2015.2418052
– ident: ref40
  doi: 10.1016/j.ins.2018.04.044
– ident: ref15
  doi: 10.1016/j.trb.2016.03.009
– ident: ref34
  doi: 10.1016/j.ejor.2017.12.008
– ident: ref37
  doi: 10.1007/BF02022044
– ident: ref10
  doi: 10.1177/0278364913496484
– ident: ref13
  doi: 10.1287/trsc.1090.0272
– ident: ref1
  doi: 10.1007/s10846-012-9740-3
– ident: ref41
  doi: 10.1287/mnsc.18.11.664
– ident: ref11
  doi: 10.1109/TRO.2009.2022423
– ident: ref18
  doi: 10.1287/trsc.1090.0301
– ident: ref22
  doi: 10.1007/s10514-019-09828-5
– ident: ref36
  doi: 10.1137/1.9780898718515
SSID ssj0024890
Score 2.6091743
Snippet This paper studies the multi-robot task assignment problem in which a fleet of dispersed robots needs to efficiently transport a set of dynamically appearing...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1292
SubjectTerms Algorithms
Assignment problem
Collision avoidance
Dispersion
Distributed algorithms
distributed auction algorithm
Greedy algorithms
Heuristic algorithms
Integer programming
Multi-robot
Multiple robots
NP-hard
Operations research
Optimization
Packages
Robot sensing systems
Robots
Task analysis
task assignment
Task complexity
Task scheduling
time-windows
Travel time
Windows (intervals)
Title Group-Based Distributed Auction Algorithms for Multi-Robot Task Assignment
URI https://ieeexplore.ieee.org/document/9781631
https://www.proquest.com/docview/2797286728
Volume 20
WOSCitedRecordID wos000800768500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-3783
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0024890
  issn: 1545-5955
  databaseCode: RIE
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA9zeNCDX1OcTunBk5jZNk2THKtuiIchOmG3kqTJHM5V1s6_3yTt5kARPBRCSEr7Xvu-8t7vAXCBkI6t1IOZkXwwYhGCXAsBtZBCZpIqLrRrNkEGAzoasccGuFrVwiilXPKZ6tqhO8vPcrmwoTKLBmvMB-PrbBBCqlqtb1w96uIp1iKAmGFcn2AGPrseJs894wmGYdcqS9_GOdZ0kGuq8kMSO_XS3_3fg-2BndqM9JKK7_ugoWYHYHsNXLAFHlxYCd4YNZV5dxYf17a2MuOkAoz1kuk4n0_K1_fCM5ar50px4VMu8tIb8uLNM5ybjF2ywCF46feGt_ew7pwAJcKshNoPGRZMZiEXQZBFQtNAUWm0tQ6klBgrxHkoNRaUUIzNZBT7Zk5IIv2Ia3QEmrN8po6BF3CEmLkVj7ktSyWMmxcVQuFYKB0HvA38JS1TWcOK2-4W09S5Fz5LLflTS_60Jn8bXK62fFSYGn8tbll6rxbWpG6DzpJhaf3XFWlIGAlpbK6T33edgi3bLr7KvOmAZjlfqDOwKT_LSTE_dx_UF55nyZI
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED_GFNQHv6Y4ndoHn8TMfqVtHqduTJ1DdMLeSpImczhX2Tr_fpO0mwNF8KEQQlLau_a-cvc7gDPPk4GWeihRkg_5xPcQlYwhyTjjCY8EZdI0mwi73ajfJ48luFjUwgghTPKZqOuhOctPUj7ToTKNBqvMB-XrrGDfd528WusbWS8yERVtEyBMMC7OMB2bXPYaz03lC7puXatLW0c6lrSQaavyQxYbBdPa-t-jbcNmYUhajZzzO1AS413YWIIXrMCdCSyhK6WoEutGI-Tq5lZq3MghY63GaJBOhtnr-9RStqtlinHRU8rSzOrR6ZuleDccmHSBPXhpNXvXbVT0TkDcwyRD0nYJZoQnLmWOk_hMRo6IuNLX0uGcYyw8Sl0uMYvCCGM16Qe2mmM85LZPpbcP5XE6FgdgOdTziLoVDaguTA0JVS_KmMABEzJwaBXsOS1jXgCL6_4Wo9g4GDaJNfljTf64IH8VzhdbPnJUjb8WVzS9FwsLUlehNmdYXPx309gNSehGgboOf991Cmvt3kMn7tx2749gXTePz_NwalDOJjNxDKv8MxtOJyfm4_oCRYfM2Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Group-Based+Distributed+Auction+Algorithms+for+Multi-Robot+Task+Assignment&rft.jtitle=IEEE+transactions+on+automation+science+and+engineering&rft.au=Bai%2C+Xiaoshan&rft.au=Fielbaum%2C+Andres&rft.au=Kronm%C3%BCller%2C+Maximilian&rft.au=Knoedler%2C+Luzia&rft.date=2023-04-01&rft.issn=1545-5955&rft.eissn=1558-3783&rft.volume=20&rft.issue=2&rft.spage=1292&rft.epage=1303&rft_id=info:doi/10.1109%2FTASE.2022.3175040&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TASE_2022_3175040
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-5955&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-5955&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-5955&client=summon