Spatial Origin-Destination Flow Imputation Using Graph Convolutional Networks
Due to the limitation of data collection techniques and privacy issues, the problem of missing spatial origin-destination flows frequently occurs. Data imputation provides great support for the acquisition of complete flow data, which enables us to better understand regional connections and mobility...
Uloženo v:
| Vydáno v: | IEEE transactions on intelligent transportation systems Ročník 22; číslo 12; s. 7474 - 7484 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
IEEE
01.12.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 1524-9050, 1558-0016 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Due to the limitation of data collection techniques and privacy issues, the problem of missing spatial origin-destination flows frequently occurs. Data imputation provides great support for the acquisition of complete flow data, which enables us to better understand regional connections and mobility patterns. However, existing models or approaches neglect the network structure of spatial flows, thus resulting in inappropriate estimates and a low performance. The development of graph neural networks offers a powerful tool to deal with graph-structured data. In this article, we proposed a spatial interaction graph convolutional network model, which combines graph convolution and a mapping function to predict flow data from the perspective of network learning. This model utilizes geographical unit embedding in local spatial networks to improve prediction accuracy. A negative sampling technique is adopted to reduce misestimation. Experiments on Beijing taxi trip data verified the usefulness of our model in spatial flow prediction. We also demonstrated that a biased training sample had a negative impact on the model's performance. More attributes of geographical units, a more proper negative sampling rate and a larger training set can increase the prediction accuracy of flow data. |
|---|---|
| AbstractList | Due to the limitation of data collection techniques and privacy issues, the problem of missing spatial origin-destination flows frequently occurs. Data imputation provides great support for the acquisition of complete flow data, which enables us to better understand regional connections and mobility patterns. However, existing models or approaches neglect the network structure of spatial flows, thus resulting in inappropriate estimates and a low performance. The development of graph neural networks offers a powerful tool to deal with graph-structured data. In this article, we proposed a spatial interaction graph convolutional network model, which combines graph convolution and a mapping function to predict flow data from the perspective of network learning. This model utilizes geographical unit embedding in local spatial networks to improve prediction accuracy. A negative sampling technique is adopted to reduce misestimation. Experiments on Beijing taxi trip data verified the usefulness of our model in spatial flow prediction. We also demonstrated that a biased training sample had a negative impact on the model's performance. More attributes of geographical units, a more proper negative sampling rate and a larger training set can increase the prediction accuracy of flow data. |
| Author | Yao, Xin Gao, Yong Liu, Yu Zhu, Di Manley, Ed Wang, Jiaoe |
| Author_xml | – sequence: 1 givenname: Xin orcidid: 0000-0002-0109-2643 surname: Yao fullname: Yao, Xin email: yaoxin@pku.edu.cn organization: Institute of Remote Sensing and Geographical Information Systems, School of Earth and Space Sciences, Peking University, Beijing, China – sequence: 2 givenname: Yong orcidid: 0000-0003-1562-6228 surname: Gao fullname: Gao, Yong email: gaoyong@pku.edu.cn organization: Institute of Remote Sensing and Geographical Information Systems, School of Earth and Space Sciences, Peking University, Beijing, China – sequence: 3 givenname: Di orcidid: 0000-0002-3237-6032 surname: Zhu fullname: Zhu, Di email: patrick.zhu@pku.edu.cn organization: Institute of Remote Sensing and Geographical Information Systems, School of Earth and Space Sciences, Peking University, Beijing, China – sequence: 4 givenname: Ed orcidid: 0000-0002-8904-0513 surname: Manley fullname: Manley, Ed email: e.j.manley@leeds.ac.uk organization: School of Geography, University of Leeds, Leeds, U.K – sequence: 5 givenname: Jiaoe surname: Wang fullname: Wang, Jiaoe email: wangje@igsnrr.ac.cn organization: China Academy of Sciences, Institute of Geographic Sciences and Natural Resources Research, Beijing, China – sequence: 6 givenname: Yu orcidid: 0000-0002-0016-2902 surname: Liu fullname: Liu, Yu email: liuyu@urban.pku.edu.cn organization: Institute of Remote Sensing and Geographical Information Systems, School of Earth and Space Sciences, Peking University, Beijing, China |
| BookMark | eNp9kDFPwzAQhS0EEm3hByCWSMwpZztx4xEVWioVOrSdIydciksaBzuh4t_jKBUDA5PP7-47P78hOa9MhYTcUBhTCvJ-s9isxwwYjDkA5xTOyIDGcRICUHHe1SwKJcRwSYbO7b0axZQOyMu6Vo1WZbCyeqer8BFdoysvmSqYleYYLA512_T3rdPVLphbVb8HU1N9mbLtdA-_YnM09sNdkYtClQ6vT-eIbGdPm-lzuFzNF9OHZZjzWDYhFsJbyRAlMq5iZDCZ8EwVKHkcJXmSoMhACkExKbhSnDGBsW8pobKcR298RO76vbU1n623nO5Na70TlzIBbCIhEtRP0X4qt8Y5i0VaW31Q9julkHappV1qaZdaekrNM5M_TK777zdW6fJf8rYnNSL-viQpBxlx_gMscHxg |
| CODEN | ITISFG |
| CitedBy_id | crossref_primary_10_1109_JSEN_2024_3354330 crossref_primary_10_1080_17538947_2025_2523491 crossref_primary_10_3390_rs14153579 crossref_primary_10_1016_j_tre_2025_104075 crossref_primary_10_1007_s42001_025_00414_7 crossref_primary_10_1016_j_is_2024_102457 crossref_primary_10_1049_itr2_12186 crossref_primary_10_1109_TITS_2024_3467094 crossref_primary_10_1016_j_cities_2024_105047 crossref_primary_10_1007_s10707_022_00467_0 crossref_primary_10_1016_j_neucom_2023_126765 crossref_primary_10_3390_su14052645 crossref_primary_10_1016_j_inffus_2023_102149 crossref_primary_10_1109_TPWRS_2021_3093521 crossref_primary_10_1016_j_knosys_2022_110188 crossref_primary_10_1109_TITS_2024_3450846 crossref_primary_10_1145_3653070 crossref_primary_10_1080_23249935_2023_2239377 crossref_primary_10_1007_s13177_024_00456_7 crossref_primary_10_1016_j_jag_2023_103238 crossref_primary_10_1016_j_energy_2022_125592 crossref_primary_10_1016_j_physa_2025_130791 crossref_primary_10_3390_rs14041016 crossref_primary_10_7498_aps_74_20250314 crossref_primary_10_1016_j_cities_2025_105901 crossref_primary_10_1111_mice_13458 crossref_primary_10_1016_j_aap_2023_107340 crossref_primary_10_1109_TMC_2024_3480983 crossref_primary_10_1016_j_tre_2023_103320 crossref_primary_10_1371_journal_pone_0331170 crossref_primary_10_1109_TITS_2025_3527019 crossref_primary_10_3390_ijgi14040172 crossref_primary_10_1016_j_neucom_2024_129165 crossref_primary_10_1016_j_scs_2024_105777 crossref_primary_10_1109_JAS_2024_124611 crossref_primary_10_1016_j_scs_2023_104834 crossref_primary_10_1016_j_eswa_2024_125534 crossref_primary_10_1016_j_neunet_2025_107682 crossref_primary_10_1049_itr2_12319 crossref_primary_10_1111_gean_12278 crossref_primary_10_1080_10106049_2024_2331223 crossref_primary_10_1111_mice_13505 crossref_primary_10_3390_ijgi14050182 crossref_primary_10_1142_S0129183125501232 crossref_primary_10_1145_3485125 crossref_primary_10_1016_j_inffus_2024_102294 crossref_primary_10_1080_13658816_2025_2536512 crossref_primary_10_1007_s43762_025_00161_5 crossref_primary_10_1016_j_scs_2024_106015 crossref_primary_10_1111_mice_13398 crossref_primary_10_1016_j_jag_2023_103610 crossref_primary_10_1016_j_jag_2024_104328 crossref_primary_10_3390_s23104803 crossref_primary_10_1140_epjds_s13688_022_00335_9 crossref_primary_10_1016_j_kscej_2025_100381 crossref_primary_10_1080_13658816_2024_2321229 crossref_primary_10_1016_j_jag_2024_104163 crossref_primary_10_1080_13658816_2025_2524394 crossref_primary_10_1080_13658816_2025_2508840 crossref_primary_10_1016_j_jtrangeo_2025_104270 crossref_primary_10_1016_j_jag_2022_102936 crossref_primary_10_1109_ACCESS_2023_3264216 crossref_primary_10_3390_app12157608 |
| Cites_doi | 10.1038/s41467-019-11841-2 10.1016/j.jtrangeo.2003.12.003 10.1609/aaai.v33i01.33013656 10.24963/ijcai.2018/505 10.1145/3274895.3274896 10.1038/srep01376 10.1016/0966-6923(95)00013-S 10.1038/nature14539 10.1016/j.tourman.2012.10.009 10.1016/j.jtrangeo.2014.02.002 10.1016/0041-1647(67)90035-4 10.1080/13658816.2015.1086923 10.1007/978-3-642-77500-0_10 10.1109/MPRV.2011.41 10.1111/j.1538-4632.1971.tb00364.x 10.1016/j.jtrangeo.2011.12.002 10.1007/978-3-319-93417-4_38 10.1080/13658816.2017.1413192 10.1073/pnas.1018962108 10.1109/TITS.2015.2480157 10.1007/s10109-012-0166-z 10.1016/j.compenvurbsys.2015.02.005 10.1111/j.1435-5597.1994.tb01760.x 10.1007/978-3-7908-1937-3_1 10.2307/2084520 10.1080/13658816.2015.1137298 10.1198/004017005000000283 10.1109/TPAMI.2007.250598 10.1016/S0191-2615(00)00009-6 10.3390/ijgi6020038 10.1080/13658816.2014.999244 10.1016/j.compenvurbsys.2009.11.001 10.1007/s12061-018-9264-8 10.1111/j.1467-9671.2011.01273.x 10.1038/nature10856 10.1023/A:1020149315435 10.1109/TKDE.2018.2807452 10.1007/s10110-003-0189-4 10.1126/science.1248676 10.1111/j.1467-9671.2012.01344.x 10.1111/j.1467-9787.1994.tb00880.x 10.1080/24694452.2019.1694403 10.1016/j.proeng.2017.01.071 10.2190/VAKC-3GRF-3XUG-WY4W 10.1109/TITS.2018.2815678 10.1016/j.jairtraman.2007.02.001 10.1145/3292500.3330925 10.1016/j.apgeog.2017.07.001 10.1111/tgis.12042 10.1016/j.chaos.2015.05.022 10.1016/S0191-2615(99)00014-4 10.1007/978-3-642-59787-9_17 10.1371/journal.pone.0045985 10.1111/j.1467-8306.1981.tb01367.x 10.1080/00330124.2012.679445 10.1016/j.trb.2008.07.001 10.1080/24694452.2016.1191990 10.1080/13658816.2019.1697879 10.1016/j.isprsjprs.2019.02.010 10.1016/j.physrep.2018.01.001 10.1080/00045608.2015.1018773 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD FR3 JQ2 KR7 L7M L~C L~D |
| DOI | 10.1109/TITS.2020.3003310 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Civil Engineering Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1558-0016 |
| EndPage | 7484 |
| ExternalDocumentID | 10_1109_TITS_2020_3003310 9130943 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Smart Guangzhou Spatio-Temporal Information Cloud Platform Construction grantid: GZIT2016-A5-147 – fundername: National Natural Science Foundation of China grantid: 41971331; 41830645; 41625003; 41771425 funderid: 10.13039/501100001809 – fundername: National Key Research and Development Program of China grantid: 2017YFB0503602 funderid: 10.13039/501100012166 |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AIBXA AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIE RNS ZY4 AAYXX CITATION 7SC 7SP 8FD FR3 JQ2 KR7 L7M L~C L~D |
| ID | FETCH-LOGICAL-c359t-ef6905bee9e23a5e20773bafe93548c88e6b09661e8f3aa3226e5354a6abc34d3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 87 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000722718400016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1524-9050 |
| IngestDate | Sat Oct 04 23:59:37 EDT 2025 Sat Nov 29 06:34:55 EST 2025 Tue Nov 18 21:57:15 EST 2025 Wed Aug 27 02:26:24 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 12 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c359t-ef6905bee9e23a5e20773bafe93548c88e6b09661e8f3aa3226e5354a6abc34d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-1562-6228 0000-0002-0109-2643 0000-0002-3237-6032 0000-0002-0016-2902 0000-0002-8904-0513 |
| PQID | 2602790461 |
| PQPubID | 75735 |
| PageCount | 11 |
| ParticipantIDs | crossref_primary_10_1109_TITS_2020_3003310 crossref_citationtrail_10_1109_TITS_2020_3003310 proquest_journals_2602790461 ieee_primary_9130943 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-12-01 |
| PublicationDateYYYYMMDD | 2021-12-01 |
| PublicationDate_xml | – month: 12 year: 2021 text: 2021-12-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on intelligent transportation systems |
| PublicationTitleAbbrev | TITS |
| PublicationYear | 2021 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref56 ref12 ref59 ref15 ref58 ref14 ref52 ref55 ref11 li (ref61) 2018 ref10 ref17 ref16 ref19 ref18 defferrard (ref29) 2016 jenks (ref63) 1967; 7 ref50 ref46 ref45 ref48 ref47 trouillon (ref54) 2016 ref42 ref41 ref44 ref43 haynes (ref22) 1984 ref49 ref8 ref7 ref9 ref4 yang (ref57) 2015 ref3 ref6 ref5 ref40 lecun (ref24) 2015; 521 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 kotnis (ref53) 2017 ref68 ref67 ref23 ref26 ref69 ref25 ref64 ref20 ref66 ref65 ref21 fotheringham (ref51) 1981; 71 kipf (ref28) 2017 ref27 ref60 ref62 |
| References_xml | – ident: ref59 doi: 10.1038/s41467-019-11841-2 – ident: ref39 doi: 10.1016/j.jtrangeo.2003.12.003 – ident: ref48 doi: 10.1609/aaai.v33i01.33013656 – ident: ref30 doi: 10.24963/ijcai.2018/505 – ident: ref31 doi: 10.1145/3274895.3274896 – ident: ref18 doi: 10.1038/srep01376 – ident: ref27 doi: 10.1016/0966-6923(95)00013-S – volume: 521 start-page: 436 year: 2015 ident: ref24 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – ident: ref4 doi: 10.1016/j.tourman.2012.10.009 – year: 2017 ident: ref53 article-title: Analysis of the impact of negative sampling on link prediction in knowledge graphs publication-title: arXiv 1708 06816 – ident: ref14 doi: 10.1016/j.jtrangeo.2014.02.002 – ident: ref41 doi: 10.1016/0041-1647(67)90035-4 – start-page: 1 year: 2015 ident: ref57 article-title: Embedding entities and relations for learning and inference in knowledge bases publication-title: Proc Conf Track 3rd Int Conf Learn Represent (ICLR) – ident: ref15 doi: 10.1080/13658816.2015.1086923 – start-page: 3538 year: 2018 ident: ref61 article-title: Deeper insights into graph convolutional networks for semi-supervised learning publication-title: Proc 32nd AAAI Conf Artif Intell (AAAI) – ident: ref25 doi: 10.1007/978-3-642-77500-0_10 – ident: ref16 doi: 10.1109/MPRV.2011.41 – ident: ref52 doi: 10.1111/j.1538-4632.1971.tb00364.x – ident: ref13 doi: 10.1016/j.jtrangeo.2011.12.002 – ident: ref34 doi: 10.1007/978-3-319-93417-4_38 – ident: ref21 doi: 10.1080/13658816.2017.1413192 – ident: ref10 doi: 10.1073/pnas.1018962108 – ident: ref6 doi: 10.1109/TITS.2015.2480157 – ident: ref65 doi: 10.1007/s10109-012-0166-z – ident: ref49 doi: 10.1016/j.compenvurbsys.2015.02.005 – start-page: 1 year: 2017 ident: ref28 article-title: Semi-supervised classification with graph convolutional networks publication-title: Proc Conf Track 5th Int Conf Learn Represent (ICLR) – start-page: 3844 year: 2016 ident: ref29 article-title: Convolutional neural networks on graphs with fast localized spectral filtering publication-title: Proc 30th Conf Neural Inf Proces Syst (NIPS) – volume: 7 start-page: 186 year: 1967 ident: ref63 article-title: The data model concept in statistical mapping publication-title: International Yearbook of Cartography – ident: ref2 doi: 10.1111/j.1435-5597.1994.tb01760.x – ident: ref1 doi: 10.1007/978-3-7908-1937-3_1 – ident: ref40 doi: 10.2307/2084520 – ident: ref17 doi: 10.1080/13658816.2015.1137298 – ident: ref43 doi: 10.1198/004017005000000283 – ident: ref55 doi: 10.1109/TPAMI.2007.250598 – ident: ref42 doi: 10.1016/S0191-2615(00)00009-6 – ident: ref58 doi: 10.3390/ijgi6020038 – start-page: 2071 year: 2016 ident: ref54 article-title: Complex embeddings for simple link prediction publication-title: Proc 33rd Int Conf Mach Learn (ICML) – ident: ref12 doi: 10.1080/13658816.2014.999244 – ident: ref23 doi: 10.1016/j.compenvurbsys.2009.11.001 – ident: ref3 doi: 10.1007/s12061-018-9264-8 – ident: ref46 doi: 10.1111/j.1467-9671.2011.01273.x – ident: ref20 doi: 10.1038/nature10856 – ident: ref67 doi: 10.1023/A:1020149315435 – ident: ref56 doi: 10.1109/TKDE.2018.2807452 – ident: ref19 doi: 10.1007/s10110-003-0189-4 – ident: ref36 doi: 10.1126/science.1248676 – ident: ref9 doi: 10.1111/j.1467-9671.2012.01344.x – ident: ref26 doi: 10.1111/j.1467-9787.1994.tb00880.x – ident: ref33 doi: 10.1080/24694452.2019.1694403 – ident: ref44 doi: 10.1016/j.proeng.2017.01.071 – ident: ref8 doi: 10.2190/VAKC-3GRF-3XUG-WY4W – ident: ref5 doi: 10.1109/TITS.2018.2815678 – ident: ref37 doi: 10.1016/j.jairtraman.2007.02.001 – ident: ref69 doi: 10.1145/3292500.3330925 – ident: ref50 doi: 10.1016/j.apgeog.2017.07.001 – ident: ref11 doi: 10.1111/tgis.12042 – ident: ref64 doi: 10.1016/j.chaos.2015.05.022 – ident: ref38 doi: 10.1016/S0191-2615(99)00014-4 – year: 1984 ident: ref22 publication-title: Gravity and Spatial Interaction Models – ident: ref60 doi: 10.1007/978-3-642-59787-9_17 – ident: ref62 doi: 10.1371/journal.pone.0045985 – volume: 71 start-page: 425 year: 1981 ident: ref51 article-title: Spatial structure and distance-decay parameters publication-title: Ann Assoc Amer Geographers doi: 10.1111/j.1467-8306.1981.tb01367.x – ident: ref66 doi: 10.1080/00330124.2012.679445 – ident: ref45 doi: 10.1016/j.trb.2008.07.001 – ident: ref68 doi: 10.1080/24694452.2016.1191990 – ident: ref47 doi: 10.1080/13658816.2019.1697879 – ident: ref32 doi: 10.1016/j.isprsjprs.2019.02.010 – ident: ref35 doi: 10.1016/j.physrep.2018.01.001 – ident: ref7 doi: 10.1080/00045608.2015.1018773 |
| SSID | ssj0014511 |
| Score | 2.6239378 |
| Snippet | Due to the limitation of data collection techniques and privacy issues, the problem of missing spatial origin-destination flows frequently occurs. Data... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 7474 |
| SubjectTerms | Artificial neural networks Biological system modeling Convolution Data collection data imputation Data models graph convolution graph embedding Graph neural networks Gravity Neural networks Origin-destination flow Predictive models Sampling methods Spatial databases spatial interaction network Structured data Training |
| Title | Spatial Origin-Destination Flow Imputation Using Graph Convolutional Networks |
| URI | https://ieeexplore.ieee.org/document/9130943 https://www.proquest.com/docview/2602790461 |
| Volume | 22 |
| WOSCitedRecordID | wos000722718400016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-0016 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014511 issn: 1524-9050 databaseCode: RIE dateStart: 20000101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFH7M4UEP_pridEoPnsS4rGma5ijD6UCn4JTdSpK-wmBssl_--yZpNwaK4C2lCZT3krx-eS_fB3AlOM9CrQyhKpYkyrKEaGwpoqXKuc5t0xPPfzyJXi8ZDORrBW7Wd2EQ0Ref4a1r-lx-NjELd1TWlHbDlRHbgi0hRHFXa50xcDxbnhs1jIikfJXBbFHZ7Hf7bxYJhhagOukyd1l2IwZ5UZUfO7EPL539_33YAeyVv5HBXeH3Q6jg-Ah2N8gFa_Ds1Ibt7ApevPYVcQhzWJz9BZ3R5CvoOj2H4tkXDgQPjrw6aE_Gy3I-2sG9okx8dgzvnft--5GU4gnEMC7nBHOLe7lGlBgyxTGkQjCtcpTMghSTJBhrC1_iFiY5U8qu6xi5faVipQ2LMnYC1fFkjKcQMCF1nmvBhYtlMdWUh0lmDFUi0ijyOtCVOVNTMos7gYtR6hEGlanzQOo8kJYeqMP1eshnQavxV-eaM_m6Y2ntOjRWPkvLhTdLLTwLhXQs8me_jzqHndCVpfiKlAZU59MFXsC2Wc6Hs-mln1Pf7CrKHQ |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fS8MwED7mFNQHf4vzZx98EqNZ0jTNo4jT4ZyCU3wrSXoFYWyyTf33TdJuCIrgW0oTKHdJrl_u8n0Ax1KInBltCdWJInGep8RgUxOjdCFM4ZqBeP65I7vd9OVFPdTgdHYXBhFD8Rme-WbI5edD--6Pys6V23BVzOdgXsQxa5a3tWY5A8-0FdhRWUwUFdMcZpOq81679-iwIHMQ1YuX-euy36JQkFX5sReHANNa_d-nrcFK9SMZXZSeX4caDjZg-Ru94Cbceb1hN7-i-6B-RTzGfC1P_6JWf_gZtb2iQ_kcSgeia09fHV0OBx_VjHSDu2Wh-HgLnlpXvcsbUsknEMuFmhAsHPIVBlEh41ogo1JyowtU3MEUm6aYGAdgkiamBdfarewEhXulE20sj3O-DfXBcIA7EHGpTFEYKaSPZgk1VLA0t5ZqGRuURQPo1JyZrbjFvcRFPwsYg6rMeyDzHsgqDzTgZDbkrSTW-Kvzpjf5rGNl7QbsT32WVUtvnDmAxqTyPPK7v486gsWb3l0n67S7t3uwxHyRSqhP2Yf6ZPSOB7BgPyav49FhmF9fmufNZA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spatial+Origin-Destination+Flow+Imputation+Using+Graph+Convolutional+Networks&rft.jtitle=IEEE+transactions+on+intelligent+transportation+systems&rft.au=Yao%2C+Xin&rft.au=Gao%2C+Yong&rft.au=Zhu%2C+Di&rft.au=Manley%2C+Ed&rft.date=2021-12-01&rft.issn=1524-9050&rft.eissn=1558-0016&rft.volume=22&rft.issue=12&rft.spage=7474&rft.epage=7484&rft_id=info:doi/10.1109%2FTITS.2020.3003310&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TITS_2020_3003310 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1524-9050&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1524-9050&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1524-9050&client=summon |