Spatial Origin-Destination Flow Imputation Using Graph Convolutional Networks

Due to the limitation of data collection techniques and privacy issues, the problem of missing spatial origin-destination flows frequently occurs. Data imputation provides great support for the acquisition of complete flow data, which enables us to better understand regional connections and mobility...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on intelligent transportation systems Ročník 22; číslo 12; s. 7474 - 7484
Hlavní autoři: Yao, Xin, Gao, Yong, Zhu, Di, Manley, Ed, Wang, Jiaoe, Liu, Yu
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.12.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1524-9050, 1558-0016
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Due to the limitation of data collection techniques and privacy issues, the problem of missing spatial origin-destination flows frequently occurs. Data imputation provides great support for the acquisition of complete flow data, which enables us to better understand regional connections and mobility patterns. However, existing models or approaches neglect the network structure of spatial flows, thus resulting in inappropriate estimates and a low performance. The development of graph neural networks offers a powerful tool to deal with graph-structured data. In this article, we proposed a spatial interaction graph convolutional network model, which combines graph convolution and a mapping function to predict flow data from the perspective of network learning. This model utilizes geographical unit embedding in local spatial networks to improve prediction accuracy. A negative sampling technique is adopted to reduce misestimation. Experiments on Beijing taxi trip data verified the usefulness of our model in spatial flow prediction. We also demonstrated that a biased training sample had a negative impact on the model's performance. More attributes of geographical units, a more proper negative sampling rate and a larger training set can increase the prediction accuracy of flow data.
AbstractList Due to the limitation of data collection techniques and privacy issues, the problem of missing spatial origin-destination flows frequently occurs. Data imputation provides great support for the acquisition of complete flow data, which enables us to better understand regional connections and mobility patterns. However, existing models or approaches neglect the network structure of spatial flows, thus resulting in inappropriate estimates and a low performance. The development of graph neural networks offers a powerful tool to deal with graph-structured data. In this article, we proposed a spatial interaction graph convolutional network model, which combines graph convolution and a mapping function to predict flow data from the perspective of network learning. This model utilizes geographical unit embedding in local spatial networks to improve prediction accuracy. A negative sampling technique is adopted to reduce misestimation. Experiments on Beijing taxi trip data verified the usefulness of our model in spatial flow prediction. We also demonstrated that a biased training sample had a negative impact on the model's performance. More attributes of geographical units, a more proper negative sampling rate and a larger training set can increase the prediction accuracy of flow data.
Author Yao, Xin
Gao, Yong
Liu, Yu
Zhu, Di
Manley, Ed
Wang, Jiaoe
Author_xml – sequence: 1
  givenname: Xin
  orcidid: 0000-0002-0109-2643
  surname: Yao
  fullname: Yao, Xin
  email: yaoxin@pku.edu.cn
  organization: Institute of Remote Sensing and Geographical Information Systems, School of Earth and Space Sciences, Peking University, Beijing, China
– sequence: 2
  givenname: Yong
  orcidid: 0000-0003-1562-6228
  surname: Gao
  fullname: Gao, Yong
  email: gaoyong@pku.edu.cn
  organization: Institute of Remote Sensing and Geographical Information Systems, School of Earth and Space Sciences, Peking University, Beijing, China
– sequence: 3
  givenname: Di
  orcidid: 0000-0002-3237-6032
  surname: Zhu
  fullname: Zhu, Di
  email: patrick.zhu@pku.edu.cn
  organization: Institute of Remote Sensing and Geographical Information Systems, School of Earth and Space Sciences, Peking University, Beijing, China
– sequence: 4
  givenname: Ed
  orcidid: 0000-0002-8904-0513
  surname: Manley
  fullname: Manley, Ed
  email: e.j.manley@leeds.ac.uk
  organization: School of Geography, University of Leeds, Leeds, U.K
– sequence: 5
  givenname: Jiaoe
  surname: Wang
  fullname: Wang, Jiaoe
  email: wangje@igsnrr.ac.cn
  organization: China Academy of Sciences, Institute of Geographic Sciences and Natural Resources Research, Beijing, China
– sequence: 6
  givenname: Yu
  orcidid: 0000-0002-0016-2902
  surname: Liu
  fullname: Liu, Yu
  email: liuyu@urban.pku.edu.cn
  organization: Institute of Remote Sensing and Geographical Information Systems, School of Earth and Space Sciences, Peking University, Beijing, China
BookMark eNp9kDFPwzAQhS0EEm3hByCWSMwpZztx4xEVWioVOrSdIydciksaBzuh4t_jKBUDA5PP7-47P78hOa9MhYTcUBhTCvJ-s9isxwwYjDkA5xTOyIDGcRICUHHe1SwKJcRwSYbO7b0axZQOyMu6Vo1WZbCyeqer8BFdoysvmSqYleYYLA512_T3rdPVLphbVb8HU1N9mbLtdA-_YnM09sNdkYtClQ6vT-eIbGdPm-lzuFzNF9OHZZjzWDYhFsJbyRAlMq5iZDCZ8EwVKHkcJXmSoMhACkExKbhSnDGBsW8pobKcR298RO76vbU1n623nO5Na70TlzIBbCIhEtRP0X4qt8Y5i0VaW31Q9julkHappV1qaZdaekrNM5M_TK777zdW6fJf8rYnNSL-viQpBxlx_gMscHxg
CODEN ITISFG
CitedBy_id crossref_primary_10_1109_JSEN_2024_3354330
crossref_primary_10_1080_17538947_2025_2523491
crossref_primary_10_3390_rs14153579
crossref_primary_10_1016_j_tre_2025_104075
crossref_primary_10_1007_s42001_025_00414_7
crossref_primary_10_1016_j_is_2024_102457
crossref_primary_10_1049_itr2_12186
crossref_primary_10_1109_TITS_2024_3467094
crossref_primary_10_1016_j_cities_2024_105047
crossref_primary_10_1007_s10707_022_00467_0
crossref_primary_10_1016_j_neucom_2023_126765
crossref_primary_10_3390_su14052645
crossref_primary_10_1016_j_inffus_2023_102149
crossref_primary_10_1109_TPWRS_2021_3093521
crossref_primary_10_1016_j_knosys_2022_110188
crossref_primary_10_1109_TITS_2024_3450846
crossref_primary_10_1145_3653070
crossref_primary_10_1080_23249935_2023_2239377
crossref_primary_10_1007_s13177_024_00456_7
crossref_primary_10_1016_j_jag_2023_103238
crossref_primary_10_1016_j_energy_2022_125592
crossref_primary_10_1016_j_physa_2025_130791
crossref_primary_10_3390_rs14041016
crossref_primary_10_7498_aps_74_20250314
crossref_primary_10_1016_j_cities_2025_105901
crossref_primary_10_1111_mice_13458
crossref_primary_10_1016_j_aap_2023_107340
crossref_primary_10_1109_TMC_2024_3480983
crossref_primary_10_1016_j_tre_2023_103320
crossref_primary_10_1371_journal_pone_0331170
crossref_primary_10_1109_TITS_2025_3527019
crossref_primary_10_3390_ijgi14040172
crossref_primary_10_1016_j_neucom_2024_129165
crossref_primary_10_1016_j_scs_2024_105777
crossref_primary_10_1109_JAS_2024_124611
crossref_primary_10_1016_j_scs_2023_104834
crossref_primary_10_1016_j_eswa_2024_125534
crossref_primary_10_1016_j_neunet_2025_107682
crossref_primary_10_1049_itr2_12319
crossref_primary_10_1111_gean_12278
crossref_primary_10_1080_10106049_2024_2331223
crossref_primary_10_1111_mice_13505
crossref_primary_10_3390_ijgi14050182
crossref_primary_10_1142_S0129183125501232
crossref_primary_10_1145_3485125
crossref_primary_10_1016_j_inffus_2024_102294
crossref_primary_10_1080_13658816_2025_2536512
crossref_primary_10_1007_s43762_025_00161_5
crossref_primary_10_1016_j_scs_2024_106015
crossref_primary_10_1111_mice_13398
crossref_primary_10_1016_j_jag_2023_103610
crossref_primary_10_1016_j_jag_2024_104328
crossref_primary_10_3390_s23104803
crossref_primary_10_1140_epjds_s13688_022_00335_9
crossref_primary_10_1016_j_kscej_2025_100381
crossref_primary_10_1080_13658816_2024_2321229
crossref_primary_10_1016_j_jag_2024_104163
crossref_primary_10_1080_13658816_2025_2524394
crossref_primary_10_1080_13658816_2025_2508840
crossref_primary_10_1016_j_jtrangeo_2025_104270
crossref_primary_10_1016_j_jag_2022_102936
crossref_primary_10_1109_ACCESS_2023_3264216
crossref_primary_10_3390_app12157608
Cites_doi 10.1038/s41467-019-11841-2
10.1016/j.jtrangeo.2003.12.003
10.1609/aaai.v33i01.33013656
10.24963/ijcai.2018/505
10.1145/3274895.3274896
10.1038/srep01376
10.1016/0966-6923(95)00013-S
10.1038/nature14539
10.1016/j.tourman.2012.10.009
10.1016/j.jtrangeo.2014.02.002
10.1016/0041-1647(67)90035-4
10.1080/13658816.2015.1086923
10.1007/978-3-642-77500-0_10
10.1109/MPRV.2011.41
10.1111/j.1538-4632.1971.tb00364.x
10.1016/j.jtrangeo.2011.12.002
10.1007/978-3-319-93417-4_38
10.1080/13658816.2017.1413192
10.1073/pnas.1018962108
10.1109/TITS.2015.2480157
10.1007/s10109-012-0166-z
10.1016/j.compenvurbsys.2015.02.005
10.1111/j.1435-5597.1994.tb01760.x
10.1007/978-3-7908-1937-3_1
10.2307/2084520
10.1080/13658816.2015.1137298
10.1198/004017005000000283
10.1109/TPAMI.2007.250598
10.1016/S0191-2615(00)00009-6
10.3390/ijgi6020038
10.1080/13658816.2014.999244
10.1016/j.compenvurbsys.2009.11.001
10.1007/s12061-018-9264-8
10.1111/j.1467-9671.2011.01273.x
10.1038/nature10856
10.1023/A:1020149315435
10.1109/TKDE.2018.2807452
10.1007/s10110-003-0189-4
10.1126/science.1248676
10.1111/j.1467-9671.2012.01344.x
10.1111/j.1467-9787.1994.tb00880.x
10.1080/24694452.2019.1694403
10.1016/j.proeng.2017.01.071
10.2190/VAKC-3GRF-3XUG-WY4W
10.1109/TITS.2018.2815678
10.1016/j.jairtraman.2007.02.001
10.1145/3292500.3330925
10.1016/j.apgeog.2017.07.001
10.1111/tgis.12042
10.1016/j.chaos.2015.05.022
10.1016/S0191-2615(99)00014-4
10.1007/978-3-642-59787-9_17
10.1371/journal.pone.0045985
10.1111/j.1467-8306.1981.tb01367.x
10.1080/00330124.2012.679445
10.1016/j.trb.2008.07.001
10.1080/24694452.2016.1191990
10.1080/13658816.2019.1697879
10.1016/j.isprsjprs.2019.02.010
10.1016/j.physrep.2018.01.001
10.1080/00045608.2015.1018773
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1109/TITS.2020.3003310
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library (IEL) (UW System Shared)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Civil Engineering Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-0016
EndPage 7484
ExternalDocumentID 10_1109_TITS_2020_3003310
9130943
Genre orig-research
GrantInformation_xml – fundername: Smart Guangzhou Spatio-Temporal Information Cloud Platform Construction
  grantid: GZIT2016-A5-147
– fundername: National Natural Science Foundation of China
  grantid: 41971331; 41830645; 41625003; 41771425
  funderid: 10.13039/501100001809
– fundername: National Key Research and Development Program of China
  grantid: 2017YFB0503602
  funderid: 10.13039/501100012166
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
ZY4
AAYXX
CITATION
7SC
7SP
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c359t-ef6905bee9e23a5e20773bafe93548c88e6b09661e8f3aa3226e5354a6abc34d3
IEDL.DBID RIE
ISICitedReferencesCount 87
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000722718400016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1524-9050
IngestDate Sat Oct 04 23:59:37 EDT 2025
Sat Nov 29 06:34:55 EST 2025
Tue Nov 18 21:57:15 EST 2025
Wed Aug 27 02:26:24 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c359t-ef6905bee9e23a5e20773bafe93548c88e6b09661e8f3aa3226e5354a6abc34d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1562-6228
0000-0002-0109-2643
0000-0002-3237-6032
0000-0002-0016-2902
0000-0002-8904-0513
PQID 2602790461
PQPubID 75735
PageCount 11
ParticipantIDs crossref_primary_10_1109_TITS_2020_3003310
crossref_citationtrail_10_1109_TITS_2020_3003310
proquest_journals_2602790461
ieee_primary_9130943
PublicationCentury 2000
PublicationDate 2021-12-01
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-12-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on intelligent transportation systems
PublicationTitleAbbrev TITS
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref56
ref12
ref59
ref15
ref58
ref14
ref52
ref55
ref11
li (ref61) 2018
ref10
ref17
ref16
ref19
ref18
defferrard (ref29) 2016
jenks (ref63) 1967; 7
ref50
ref46
ref45
ref48
ref47
trouillon (ref54) 2016
ref42
ref41
ref44
ref43
haynes (ref22) 1984
ref49
ref8
ref7
ref9
ref4
yang (ref57) 2015
ref3
ref6
ref5
ref40
lecun (ref24) 2015; 521
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
kotnis (ref53) 2017
ref68
ref67
ref23
ref26
ref69
ref25
ref64
ref20
ref66
ref65
ref21
fotheringham (ref51) 1981; 71
kipf (ref28) 2017
ref27
ref60
ref62
References_xml – ident: ref59
  doi: 10.1038/s41467-019-11841-2
– ident: ref39
  doi: 10.1016/j.jtrangeo.2003.12.003
– ident: ref48
  doi: 10.1609/aaai.v33i01.33013656
– ident: ref30
  doi: 10.24963/ijcai.2018/505
– ident: ref31
  doi: 10.1145/3274895.3274896
– ident: ref18
  doi: 10.1038/srep01376
– ident: ref27
  doi: 10.1016/0966-6923(95)00013-S
– volume: 521
  start-page: 436
  year: 2015
  ident: ref24
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– ident: ref4
  doi: 10.1016/j.tourman.2012.10.009
– year: 2017
  ident: ref53
  article-title: Analysis of the impact of negative sampling on link prediction in knowledge graphs
  publication-title: arXiv 1708 06816
– ident: ref14
  doi: 10.1016/j.jtrangeo.2014.02.002
– ident: ref41
  doi: 10.1016/0041-1647(67)90035-4
– start-page: 1
  year: 2015
  ident: ref57
  article-title: Embedding entities and relations for learning and inference in knowledge bases
  publication-title: Proc Conf Track 3rd Int Conf Learn Represent (ICLR)
– ident: ref15
  doi: 10.1080/13658816.2015.1086923
– start-page: 3538
  year: 2018
  ident: ref61
  article-title: Deeper insights into graph convolutional networks for semi-supervised learning
  publication-title: Proc 32nd AAAI Conf Artif Intell (AAAI)
– ident: ref25
  doi: 10.1007/978-3-642-77500-0_10
– ident: ref16
  doi: 10.1109/MPRV.2011.41
– ident: ref52
  doi: 10.1111/j.1538-4632.1971.tb00364.x
– ident: ref13
  doi: 10.1016/j.jtrangeo.2011.12.002
– ident: ref34
  doi: 10.1007/978-3-319-93417-4_38
– ident: ref21
  doi: 10.1080/13658816.2017.1413192
– ident: ref10
  doi: 10.1073/pnas.1018962108
– ident: ref6
  doi: 10.1109/TITS.2015.2480157
– ident: ref65
  doi: 10.1007/s10109-012-0166-z
– ident: ref49
  doi: 10.1016/j.compenvurbsys.2015.02.005
– start-page: 1
  year: 2017
  ident: ref28
  article-title: Semi-supervised classification with graph convolutional networks
  publication-title: Proc Conf Track 5th Int Conf Learn Represent (ICLR)
– start-page: 3844
  year: 2016
  ident: ref29
  article-title: Convolutional neural networks on graphs with fast localized spectral filtering
  publication-title: Proc 30th Conf Neural Inf Proces Syst (NIPS)
– volume: 7
  start-page: 186
  year: 1967
  ident: ref63
  article-title: The data model concept in statistical mapping
  publication-title: International Yearbook of Cartography
– ident: ref2
  doi: 10.1111/j.1435-5597.1994.tb01760.x
– ident: ref1
  doi: 10.1007/978-3-7908-1937-3_1
– ident: ref40
  doi: 10.2307/2084520
– ident: ref17
  doi: 10.1080/13658816.2015.1137298
– ident: ref43
  doi: 10.1198/004017005000000283
– ident: ref55
  doi: 10.1109/TPAMI.2007.250598
– ident: ref42
  doi: 10.1016/S0191-2615(00)00009-6
– ident: ref58
  doi: 10.3390/ijgi6020038
– start-page: 2071
  year: 2016
  ident: ref54
  article-title: Complex embeddings for simple link prediction
  publication-title: Proc 33rd Int Conf Mach Learn (ICML)
– ident: ref12
  doi: 10.1080/13658816.2014.999244
– ident: ref23
  doi: 10.1016/j.compenvurbsys.2009.11.001
– ident: ref3
  doi: 10.1007/s12061-018-9264-8
– ident: ref46
  doi: 10.1111/j.1467-9671.2011.01273.x
– ident: ref20
  doi: 10.1038/nature10856
– ident: ref67
  doi: 10.1023/A:1020149315435
– ident: ref56
  doi: 10.1109/TKDE.2018.2807452
– ident: ref19
  doi: 10.1007/s10110-003-0189-4
– ident: ref36
  doi: 10.1126/science.1248676
– ident: ref9
  doi: 10.1111/j.1467-9671.2012.01344.x
– ident: ref26
  doi: 10.1111/j.1467-9787.1994.tb00880.x
– ident: ref33
  doi: 10.1080/24694452.2019.1694403
– ident: ref44
  doi: 10.1016/j.proeng.2017.01.071
– ident: ref8
  doi: 10.2190/VAKC-3GRF-3XUG-WY4W
– ident: ref5
  doi: 10.1109/TITS.2018.2815678
– ident: ref37
  doi: 10.1016/j.jairtraman.2007.02.001
– ident: ref69
  doi: 10.1145/3292500.3330925
– ident: ref50
  doi: 10.1016/j.apgeog.2017.07.001
– ident: ref11
  doi: 10.1111/tgis.12042
– ident: ref64
  doi: 10.1016/j.chaos.2015.05.022
– ident: ref38
  doi: 10.1016/S0191-2615(99)00014-4
– year: 1984
  ident: ref22
  publication-title: Gravity and Spatial Interaction Models
– ident: ref60
  doi: 10.1007/978-3-642-59787-9_17
– ident: ref62
  doi: 10.1371/journal.pone.0045985
– volume: 71
  start-page: 425
  year: 1981
  ident: ref51
  article-title: Spatial structure and distance-decay parameters
  publication-title: Ann Assoc Amer Geographers
  doi: 10.1111/j.1467-8306.1981.tb01367.x
– ident: ref66
  doi: 10.1080/00330124.2012.679445
– ident: ref45
  doi: 10.1016/j.trb.2008.07.001
– ident: ref68
  doi: 10.1080/24694452.2016.1191990
– ident: ref47
  doi: 10.1080/13658816.2019.1697879
– ident: ref32
  doi: 10.1016/j.isprsjprs.2019.02.010
– ident: ref35
  doi: 10.1016/j.physrep.2018.01.001
– ident: ref7
  doi: 10.1080/00045608.2015.1018773
SSID ssj0014511
Score 2.6239378
Snippet Due to the limitation of data collection techniques and privacy issues, the problem of missing spatial origin-destination flows frequently occurs. Data...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 7474
SubjectTerms Artificial neural networks
Biological system modeling
Convolution
Data collection
data imputation
Data models
graph convolution
graph embedding
Graph neural networks
Gravity
Neural networks
Origin-destination flow
Predictive models
Sampling methods
Spatial databases
spatial interaction network
Structured data
Training
Title Spatial Origin-Destination Flow Imputation Using Graph Convolutional Networks
URI https://ieeexplore.ieee.org/document/9130943
https://www.proquest.com/docview/2602790461
Volume 22
WOSCitedRecordID wos000722718400016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-0016
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014511
  issn: 1524-9050
  databaseCode: RIE
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFD7M4YM-eJvidEoffBLj0qSX5FGG04FOwSl7K2l7CoPRym7-fZO0KwNF8K2lCZSc5CRfzjnfB3AVaK_nJn5K9FmeEg99QURAFRGZUjFLGS_vOz6ewuFQjMfytQE3dS0MItrkM7w1jzaWnxbJ0lyVdaV2uNLjW7AVhmFZq1VHDAzPluVGZR6R1F9HMF0qu6PB6E0jQaYBqpEuM8WyG3uQFVX54Ynt9tLf_9-PHcBedYx07kq7H0ID8yPY3SAXbMGzURvWs8t5sdpXxCDMSXn35_SnxZczMHoO5btNHHAeDHm10yvyVTUfdedhmSY-P4b3_v2o90gq8QSScF8uCGYa9_oxokTGlY-MhiGPVYaSa5CSCIFBrOFL4KLIuFJ6XQfo608qUHHCvZSfQDMvcjwFRwWcYpBRpjzhubFQjBndXGShKxWjvA10PZxRUjGLG4GLaWQRBpWRsUBkLBBVFmjDdd3ls6TV-Ktxywx53bAa7TZ01jaLqoU3jzQ8Y6E0LPJnv_c6hx1m0lJsRkoHmovZEi9gO1ktJvPZpZ1T30eLx8k
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFD7MKagP3qY4ndoHn8S4NOkleZTh3HCbglP2VtL2FAZjk938-yZpNwRF8K2lCZSc5CRfzjnfB3AdaK_nJn5K9FmeEg99QURAFRGZUjFLGc_vO947Ya8nBgP5UoLbdS0MItrkM7wzjzaWn06Shbkqq0vtcKXHN2DT9zzm5tVa65iBYdqy7KjMI5L6qximS2W93-6_aizINEQ14mWmXPbbLmRlVX74YrvBNPf_92sHsFccJJ373PKHUMLxEex-oxesQNfoDev55Txb9StiMOYwv_1zmqPJp9M2ig75u00dcB4NfbXTmIyXxYzUnXt5ovjsGN6aD_1GixTyCSThvpwTzDTy9WNEiYwrHxkNQx6rDCXXMCURAoNYA5jARZFxpfTKDtDXn1Sg4oR7KT-B8ngyxlNwVMApBhllyhOeGwvFmFHORRa6UjHKq0BXwxklBbe4kbgYRRZjUBkZC0TGAlFhgSrcrLt85MQafzWumCFfNyxGuwq1lc2iYunNIg3QWCgNj_zZ772uYLvV73aiTrv3dA47zCSp2PyUGpTn0wVewFaynA9n00s7v74A113LEA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spatial+Origin-Destination+Flow+Imputation+Using+Graph+Convolutional+Networks&rft.jtitle=IEEE+transactions+on+intelligent+transportation+systems&rft.au=Yao%2C+Xin&rft.au=Gao%2C+Yong&rft.au=Zhu%2C+Di&rft.au=Manley%2C+Ed&rft.date=2021-12-01&rft.issn=1524-9050&rft.eissn=1558-0016&rft.volume=22&rft.issue=12&rft.spage=7474&rft.epage=7484&rft_id=info:doi/10.1109%2FTITS.2020.3003310&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TITS_2020_3003310
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1524-9050&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1524-9050&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1524-9050&client=summon