A general and efficient divide-and-conquer algorithm framework for multi-core clusters

Divide-and-conquer is one of the most important patterns of parallelism, being applicable to a large variety of problems. In addition, the most powerful parallel systems available nowadays are computer clusters composed of distributed-memory nodes that contain an increasing number of cores that shar...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Cluster computing Ročník 20; číslo 3; s. 2605 - 2626
Hlavní autori: González, Carlos H., Fraguela, Basilio B.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York Springer US 01.09.2017
Springer Nature B.V
Predmet:
ISSN:1386-7857, 1573-7543
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Divide-and-conquer is one of the most important patterns of parallelism, being applicable to a large variety of problems. In addition, the most powerful parallel systems available nowadays are computer clusters composed of distributed-memory nodes that contain an increasing number of cores that share a common memory. The optimal exploitation of these systems often requires resorting to a hybrid model that mimics the underlying hardware by combining a distributed and a shared memory parallel programming model. This results in longer development times and increased maintenance costs. In this paper we present a very general skeleton library that allows to parallelize any divide-and-conquer problem in hybrid distributed-shared memory systems with little effort while providing much flexibility and good performance. Our proposal combines a message-passing paradigm at the process level and a threaded model inside each process, hiding the related complexity from the user. The evaluation shows that this skeleton provides performance comparable, and often better than that of manually optimized codes while requiring considerably less effort when parallelizing applications on multi-core clusters.
AbstractList Divide-and-conquer is one of the most important patterns of parallelism, being applicable to a large variety of problems. In addition, the most powerful parallel systems available nowadays are computer clusters composed of distributed-memory nodes that contain an increasing number of cores that share a common memory. The optimal exploitation of these systems often requires resorting to a hybrid model that mimics the underlying hardware by combining a distributed and a shared memory parallel programming model. This results in longer development times and increased maintenance costs. In this paper we present a very general skeleton library that allows to parallelize any divide-and-conquer problem in hybrid distributed-shared memory systems with little effort while providing much flexibility and good performance. Our proposal combines a message-passing paradigm at the process level and a threaded model inside each process, hiding the related complexity from the user. The evaluation shows that this skeleton provides performance comparable, and often better than that of manually optimized codes while requiring considerably less effort when parallelizing applications on multi-core clusters.
Author Fraguela, Basilio B.
González, Carlos H.
Author_xml – sequence: 1
  givenname: Carlos H.
  surname: González
  fullname: González, Carlos H.
  organization: Universidade da Coruña
– sequence: 2
  givenname: Basilio B.
  orcidid: 0000-0002-3438-5960
  surname: Fraguela
  fullname: Fraguela, Basilio B.
  email: basilio.fraguela@udc.es
  organization: Universidade da Coruña
BookMark eNp9kEtLQzEQhYMoWB8_wF3AdTS59-Zxl6X4goIbdRti7qSm3iY1SZX-eyMVBEFXM8ycb-ZwjtB-iAEQOmP0glEqLzOjXAlCmSRUCkG2e2jCuGyJ5F27X_u2bqXi8hAd5byklPay6SfoaYoXECCZEZswYHDOWw-h4MG_-wFIHRIbw9sGEjbjIiZfXlbYJbOCj5hesYsJrzZj8VWVANtxkwukfIIOnBkznH7XY_R4ffUwuyXz-5u72XRObMv7QsCA4qxTbBBOKNe0_Lk3IIFa0wnZGc459Mo4-yy5UZZLxlU3yMY53lqqhvYYne_urlOsHnPRy7hJob7UTc9Uw4UQtKrkTmVTzDmB09YXU3wMJRk_akb1V4h6F6KuIeqvEPW2kuwXuU5-ZdL2X6bZMblqwwLSj6e_oU_0m4fl
CitedBy_id crossref_primary_10_1007_s11227_021_04259_5
crossref_primary_10_1007_s10766_021_00709_y
crossref_primary_10_1007_s10586_017_1310_9
crossref_primary_10_3390_math10213925
crossref_primary_10_1007_s10586_021_03261_z
Cites_doi 10.1145/1709093.1709096
10.1145/201059.201065
10.1007/s10766-010-0140-7
10.1038/324446a0
10.1145/1809961.1809975
10.1109/HPCC.2010.24
10.1006/jpdc.1996.0107
10.1002/cpe.2831
10.1007/s10766-013-0268-3
10.1016/S0167-739X(02)00172-3
10.1002/cpe.3511
10.1145/3002125.3002128
10.1007/978-3-642-03770-2_24
10.1016/j.parco.2013.04.012
10.1007/3-540-45706-2_86
10.1109/SFFCS.1999.814600
10.1109/SBAC-PAD.2013.28
10.1145/1055531.1055532
10.1109/TC.1983.1676280
10.1145/1278177.1278183
10.1109/TSE.1976.233837
10.1109/ICPP.2009.18
10.1145/5666.5673
10.1145/1327452.1327492
10.1137/120876605
10.1109/PDP.2015.78
10.1016/j.parco.2006.06.001
10.1016/j.jocs.2015.05.002
10.1109/ISPASS.2009.4919639
10.1109/HPCC.2010.23
10.1109/IPDPS.2015.38
10.1109/PDP.2010.26
10.1109/PDP.2015.81
10.1016/j.parco.2003.12.002
ContentType Journal Article
Copyright Springer Science+Business Media New York 2017
Springer Science+Business Media New York 2017.
Copyright_xml – notice: Springer Science+Business Media New York 2017
– notice: Springer Science+Business Media New York 2017.
DBID AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
DOI 10.1007/s10586-017-0766-y
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
ProQuest One
ProQuest Central Korea
ProQuest Central Student
SciTech Collection (ProQuest)
ProQuest Computer Science Collection
Computer Science Database ProQuest
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Advanced Technologies & Aerospace Collection

Database_xml – sequence: 1
  dbid: P5Z
  name: Advanced Technologies & Aerospace Database
  url: https://search.proquest.com/hightechjournals
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-7543
EndPage 2626
ExternalDocumentID 10_1007_s10586_017_0766_y
GrantInformation_xml – fundername: Xunta de Galicia
  grantid: GRC2013/055
– fundername: Ministerio de Economía y Competitividad
  grantid: TIN2016-75845-P; TIN2013-42148-P
  funderid: http://dx.doi.org/10.13039/501100003329
GroupedDBID -59
-5G
-BR
-EM
-Y2
-~C
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
203
29B
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K7-
KDC
KOV
LAK
LLZTM
M4Y
MA-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
OVD
P9O
PF0
PT4
PT5
QOS
R89
R9I
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S27
S3B
SAP
SCO
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7X
Z7Z
Z81
Z83
Z88
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABRTQ
ADHKG
ADKFA
AFDZB
AFFHD
AFOHR
AGQPQ
AHPBZ
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
P62
PKEHL
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c359t-eae851481d6f68f235b9ae7e0ca4674a555e98afcb75a8c571584d72ff53c08d3
IEDL.DBID RSV
ISICitedReferencesCount 7
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000407928800053&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1386-7857
IngestDate Wed Nov 26 13:41:27 EST 2025
Sat Nov 29 05:40:07 EST 2025
Tue Nov 18 22:42:28 EST 2025
Fri Feb 21 02:36:51 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Divide-and-conquer
High performance computing
Hybrid parallelism
Algorithmic skeletons
Template metaprogramming
Multi-core clusters
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c359t-eae851481d6f68f235b9ae7e0ca4674a555e98afcb75a8c571584d72ff53c08d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3438-5960
OpenAccessLink http://hdl.handle.net/2183/28971
PQID 2918256660
PQPubID 2043865
PageCount 22
ParticipantIDs proquest_journals_2918256660
crossref_citationtrail_10_1007_s10586_017_0766_y
crossref_primary_10_1007_s10586_017_0766_y
springer_journals_10_1007_s10586_017_0766_y
PublicationCentury 2000
PublicationDate 20170900
2017-9-00
20170901
PublicationDateYYYYMMDD 2017-09-01
PublicationDate_xml – month: 9
  year: 2017
  text: 20170900
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationSubtitle The Journal of Networks, Software Tools and Applications
PublicationTitle Cluster computing
PublicationTitleAbbrev Cluster Comput
PublicationYear 2017
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References FalcouJSérotJChateauTLaprestéJ-TQuaff: efficient C++ design for parallel skeletonsParallel Comput.2006327–860461510.1016/j.parco.2006.06.001
Danelutto, M., De Matteis, T., Mencagli, G., Torquati, M.: A divide-and-conquer parallel pattern implementation for multicores. In Proceedings 3rd International Workshop on Software Engineering for Parallel Systems, SEPS 2016, pp. 10–19. New York, NY (2016). ACM
RogersACarlisleM CReppyJ HHendrenL JSupporting dynamic data structures on distributed-memory machinesACM Trans. Program. Lang. Syst.199517223326310.1145/201059.201065
Frigo, M., Leiserson, C.E., Prokop, H., Ramachandran, S.: Cache-oblivious algorithms. In Proceeding of 40th Annual Symposium on Foundations of Computer Science, FOCS ’99, pp. 285–297. Washington, DC, USA. IEEE Computer Society (1999)
TejedorEFarrerasMGroveDBadiaRMAlmasiGLabartaJA high-productivity task-based programming model for clustersConcurr. Comput. Pract. Exp.201224182421244810.1002/cpe.2831
Lima, J.V.F., Broquedis, F., Gautier, T., Raffin, B.: Preliminary experiments with xKaapi on Intel Xeon Phi coprocessor. In Proceedings of 25th International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD 2013), pp. 105–112. Los Alamitos, CA (2013)
AhoAVHopcroftJEUllmanJDThe Design and Analysis of Computer Algorithms1974Reading, MAAddison-Wesley0326.68005
Teijeiro, C., Taboada, G.L., Touriño, J., Fraguela, B.B., Doallo, R., Mallón, D.A., Gómez, A., Mouriño, J.C., Wibecan, B.: Evaluation of UPC programmability using classroom studies. In Proceedings of Third Conference on Partitioned Global Address Space Programing Models, PGAS ’09, pp. 10:1–10:7, New York, NY (2009)
Zhang, Y., Duchi, J.C., Wainwright, M.J.: Divide and conquer kernel ridge regression. In 26th Annual Conference on Learning Theory (COLT 2013), pp. 592–617 (2013)
González, C.H., Fraguela, B.B.: A generic algorithm template for divide-and-conquer in multicore systems. In Proceedings of 12th IEEE International Conference on High Performance Computing and Communications, (HPCC 2010), pp. 79–88. Los Alamitos, CA (2010)
National Aeronautics and Space Administration. NAS Parallel Benchmarks. http://www.nas.nasa.gov/Software/NPB/ (2010). Accessed 10 Dec 2016
AldinucciMDaneluttoMTetiPAn advanced environment supporting structured parallel programming in JavaFuture Gener. Comput. Syst.200319561162610.1016/S0167-739X(02)00172-3
HorowitzEZoratADivide-and-conquer for parallel processingIEEE Trans. Comput.198332658258510.1109/TC.1983.16762800513.68029
Karasawa, Y., Iwasaki, H.: A parallel skeleton library for multi-core clusters. In Proceedings of 2009 International Conference on Parallel Processing (ICPP’09), pp. 84–91. Los Alamitos, CA (2009)
BarnesJHutPA hierarchical O (N log N) force-calculation algorithmNature1986324444655910.1038/324446a0
Yelick, K., Bonachea, D., Chen, W.-Y., Colella, P., Datta, K., Duell, J., Graham, S.L., Hargrove, P., Hilfinger, P., Husbands, P., Iancu, C., Kamil, A., Nishtala, R., Su, J., Welcome, M., Wen, T.: Productivity and performance using partitioned global address space languages. In Proceedings of 2007 International Workshop on Parallel Symbolic Computation, PASCO ’07, pp. 24–32. New York, NY (2007)
ReindersJIntel Threading Building Blocks: Outfitting C++ for Multi-core Processor Parallelism2007Sebastopol, CAO’Reilly
DeanJGhemawatSMapreduce: simplified data processing on large clustersCommun. ACM200851110711310.1145/1327452.1327492
MattsonTSandersBMassingillBPatterns for Parallel Programming2004Boston, MAAddison-Wesley Professional1002.68586
HalsteadMHElements of Software Science1977New York, NYElsevier0381.68007
White, T: Hadoop: The Definitive Guide. O’Reilly Media, Inc., 1st edition (2009)
ColeMBringing skeletons out of the closet: a pragmatic manifesto for skeletal parallel programmingParallel Comput.200430338940610.1016/j.parco.2003.12.002
Ciechanowicz, P., Kuchen, H.: Enhancing Muesli’s data parallel skeletons for multi-core computer architectures. In 12th IEEE International Conference on High Performance Computing and Communications, (HPCC 2010), pp. 108–113. Los Alamitos, CA (2010)
FlemingPJWallaceJJHow not to lie with statistics: the correct way to summarize benchmark resultsCommun. ACM198629321822110.1145/5666.5673
Zaharia, M., Chowdhury, M., Franklin, M.J., Shenker, S., Stoica, I.: Spark: Cluster computing with working sets. In Proceedings of 2nd USENIX Conference on Hot Topics in Cloud Computing, HotCloud’10, pp. 10–10, Berkeley, CA. USENIX Association (2010)
NakatsukasaYHighamN JStable and efficient spectral divide and conquer algorithms for the symmetric eigenvalue decomposition and the SVDSIAM J. Sci. Comput.2013353A1325A1349305459410.1137/1208766051326.65049
TangGYangWLiKYeYXiaoGLiKAn iteration-based hybrid parallel algorithm for tridiagonal systems of equations on multi-core architecturesConcurr. Comput. Pract. Exp.201527175076509510.1002/cpe.3511
KawakatsuTKinoshitaATakasuAAdachiJDivide-and-Conquer Parallelism for Learning Mixture Models2016BerlinSpringer2347
BlumofeRDJoergCFKuszmaulBCLeisersonCERandallKHZhouYCilk: an efficient multithreaded runtime systemJ Parallel Distrib. Comput.1996371556910.1006/jpdc.1996.0107
Denis, A.: pioman: A pthread-based multithreaded communication engine. In Proceedings of 23rd Euromicro International Conference on Parallel, Distributed and Network-Based Processing (PDP 2015), pp. 155–162. Los Alamitos, CA (2015)
Intel®\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textregistered $$\end{document}. CilkTM\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{\text{TM}}$$\end{document} Plus. https://www.cilkplus.org (2016). Accessed 10 Dec 2016
GonzálezCHFraguelaBBAn algorithm template for domain-based parallel irregular algorithmsInt. J. Parallel Program.201442694896710.1007/s10766-013-0268-3
Leyton, M., Piquer, J. M.: Skandium: Multi-core programming with algorithmic skeletons. In Proceedings of 18th Euromicro Conference on Parallel, Distributed and Network-based Processing (PDP 2010), pp. 289–296. Los Alamitos, CA (2010)
Bientinesi, P., Gunnels, J.A., Myers, M.E., Quintana- Ortí, E.S., van de Geijn, R.A.: The science of deriving dense linear algebra algorithms. ACM Trans. Math. Softw. 31(1), 1–26 (2005)
GonzálezCHFraguelaBBA framework for argument-based task synchronization with automatic detection of dependenciesParallel Comput.201339947548910.1016/j.parco.2013.04.012
Hijma, P., Jacobs, C.J.H., van Nieuwpoort, R.V., Bal, H.E.: Cashmere: Heterogeneous many-core computing. In 29th IEEE International Parallel and Distributed Processing Symposium (IPDPS 2015), pp. 135–145 (2015)
Boost.org. Boost C++ libraries. http://boost.org (2016). Accessed 10 Dec 2016
GorlatchSColeMParallel skeletonsEncyclopedia of Parallel Computing2011New YorkSpringer14171422
Kuchen, H.: A skeleton library. Euro-Par 2002 Parallel Processing. Volume 2400 of Lecture Notes in Computer Science, pp. 620–629. Springer, Berlin (2002)
McCabeTJA complexity measureIEEE Trans. Softw. Eng.1976230832044590410.1109/TSE.1976.2338370352.68066
ZangWZhangPZhouCGuoLLocating multiple sources in social networks under the SIR model: a divide-and-conquer approachJ. Comput. Sci.201510278287339543110.1016/j.jocs.2015.05.002
Van NieuwpoortRVWrzesińskaGJacobsCJHBalHESatin: A high-level and efficient grid programming modelACM Trans. Program. Lang. Syst.20103239
ColeMAlgorithmic Skeletons: Structured Management of Parallel Computation1989Cambridge, MAMIT Press0681.68041
Walter, J., Koch, M.: Boost basic linear algebra library (uBLAS). http://www.boost.org/libs/numeric/ublas/ (2002). Accessed 7 Dec 2016
OlivierSLPrinsJFComparison of OpenMP 3.0 and other task parallel frameworks on unbalanced task graphsInt. J. Parallel Program.2010385–634136010.1007/s10766-010-0140-71211.68076
Mallón, D.A., Taboada, G.L., Teijeiro, C., Touriño, J., Fraguela, B.B., Gómez-Tato, A., Doallo, R., Carlos Mouriño, J.: Performance evaluation of MPI, UPC and OpenMP on multicore architectures. In Recent Advances in Parallel Virtual Machine and Message Passing Interface, 16th European PVM/MPI Users’ Group Meeting, pp. 174–184. Springer, Berlin (2009)
Kulkarni, M., Burtscher, M., Cascaval, C., Pingali, K.: Lonestar: A suite of parallel irregular programs. In 2009 IEEE International Symposium on Performance Analysis of Systems and Software, pp. 65–76 (2009)
Tousimojarad, A., Vanderbauwhede, W.: Number of tasks, not threads, is key. In Proceedings of 23rd Euromicro International Conference on Parallel, Distributed and Network-Based Processing (PDP 2015), pp. 128–136. Los Alamitos, CA (2015)
Gregor, D., Troyer, M.: Boost.MPI. http://boost.cowic.de/rc/pdf/mpi.pdf (2007)
766_CR20
766_CR22
766_CR24
MH Halstead (766_CR21) 1977
766_CR25
766_CR28
S Gorlatch (766_CR19) 2011
766_CR27
J Dean (766_CR11) 2008; 51
766_CR29
M Cole (766_CR8) 1989
RV Nieuwpoort Van (766_CR43) 2010; 32
RD Blumofe (766_CR5) 1996; 37
CH González (766_CR17) 2013; 39
AV Aho (766_CR1) 1974
SL Olivier (766_CR36) 2010; 38
G Tang (766_CR39) 2015; 27
W Zang (766_CR48) 2015; 10
J Barnes (766_CR3) 1986; 324
766_CR10
766_CR12
M Cole (766_CR9) 2004; 30
766_CR15
M Aldinucci (766_CR2) 2003; 19
TJ McCabe (766_CR33) 1976; 2
J Falcou (766_CR13) 2006; 32
766_CR16
J Reinders (766_CR37) 2007
A Rogers (766_CR38) 1995; 17
PJ Fleming (766_CR14) 1986; 29
766_CR40
766_CR42
766_CR44
E Tejedor (766_CR41) 2012; 24
766_CR46
766_CR45
766_CR47
766_CR49
766_CR4
Y Nakatsukasa (766_CR34) 2013; 35
766_CR6
766_CR7
766_CR31
766_CR30
766_CR35
T Kawakatsu (766_CR26) 2016
CH González (766_CR18) 2014; 42
T Mattson (766_CR32) 2004
E Horowitz (766_CR23) 1983; 32
References_xml – reference: Lima, J.V.F., Broquedis, F., Gautier, T., Raffin, B.: Preliminary experiments with xKaapi on Intel Xeon Phi coprocessor. In Proceedings of 25th International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD 2013), pp. 105–112. Los Alamitos, CA (2013)
– reference: Denis, A.: pioman: A pthread-based multithreaded communication engine. In Proceedings of 23rd Euromicro International Conference on Parallel, Distributed and Network-Based Processing (PDP 2015), pp. 155–162. Los Alamitos, CA (2015)
– reference: TejedorEFarrerasMGroveDBadiaRMAlmasiGLabartaJA high-productivity task-based programming model for clustersConcurr. Comput. Pract. Exp.201224182421244810.1002/cpe.2831
– reference: Gregor, D., Troyer, M.: Boost.MPI. http://boost.cowic.de/rc/pdf/mpi.pdf (2007)
– reference: Tousimojarad, A., Vanderbauwhede, W.: Number of tasks, not threads, is key. In Proceedings of 23rd Euromicro International Conference on Parallel, Distributed and Network-Based Processing (PDP 2015), pp. 128–136. Los Alamitos, CA (2015)
– reference: GonzálezCHFraguelaBBAn algorithm template for domain-based parallel irregular algorithmsInt. J. Parallel Program.201442694896710.1007/s10766-013-0268-3
– reference: Ciechanowicz, P., Kuchen, H.: Enhancing Muesli’s data parallel skeletons for multi-core computer architectures. In 12th IEEE International Conference on High Performance Computing and Communications, (HPCC 2010), pp. 108–113. Los Alamitos, CA (2010)
– reference: FalcouJSérotJChateauTLaprestéJ-TQuaff: efficient C++ design for parallel skeletonsParallel Comput.2006327–860461510.1016/j.parco.2006.06.001
– reference: BarnesJHutPA hierarchical O (N log N) force-calculation algorithmNature1986324444655910.1038/324446a0
– reference: HorowitzEZoratADivide-and-conquer for parallel processingIEEE Trans. Comput.198332658258510.1109/TC.1983.16762800513.68029
– reference: GonzálezCHFraguelaBBA framework for argument-based task synchronization with automatic detection of dependenciesParallel Comput.201339947548910.1016/j.parco.2013.04.012
– reference: ColeMAlgorithmic Skeletons: Structured Management of Parallel Computation1989Cambridge, MAMIT Press0681.68041
– reference: FlemingPJWallaceJJHow not to lie with statistics: the correct way to summarize benchmark resultsCommun. ACM198629321822110.1145/5666.5673
– reference: González, C.H., Fraguela, B.B.: A generic algorithm template for divide-and-conquer in multicore systems. In Proceedings of 12th IEEE International Conference on High Performance Computing and Communications, (HPCC 2010), pp. 79–88. Los Alamitos, CA (2010)
– reference: Mallón, D.A., Taboada, G.L., Teijeiro, C., Touriño, J., Fraguela, B.B., Gómez-Tato, A., Doallo, R., Carlos Mouriño, J.: Performance evaluation of MPI, UPC and OpenMP on multicore architectures. In Recent Advances in Parallel Virtual Machine and Message Passing Interface, 16th European PVM/MPI Users’ Group Meeting, pp. 174–184. Springer, Berlin (2009)
– reference: Leyton, M., Piquer, J. M.: Skandium: Multi-core programming with algorithmic skeletons. In Proceedings of 18th Euromicro Conference on Parallel, Distributed and Network-based Processing (PDP 2010), pp. 289–296. Los Alamitos, CA (2010)
– reference: TangGYangWLiKYeYXiaoGLiKAn iteration-based hybrid parallel algorithm for tridiagonal systems of equations on multi-core architecturesConcurr. Comput. Pract. Exp.201527175076509510.1002/cpe.3511
– reference: Kulkarni, M., Burtscher, M., Cascaval, C., Pingali, K.: Lonestar: A suite of parallel irregular programs. In 2009 IEEE International Symposium on Performance Analysis of Systems and Software, pp. 65–76 (2009)
– reference: Karasawa, Y., Iwasaki, H.: A parallel skeleton library for multi-core clusters. In Proceedings of 2009 International Conference on Parallel Processing (ICPP’09), pp. 84–91. Los Alamitos, CA (2009)
– reference: Frigo, M., Leiserson, C.E., Prokop, H., Ramachandran, S.: Cache-oblivious algorithms. In Proceeding of 40th Annual Symposium on Foundations of Computer Science, FOCS ’99, pp. 285–297. Washington, DC, USA. IEEE Computer Society (1999)
– reference: Boost.org. Boost C++ libraries. http://boost.org (2016). Accessed 10 Dec 2016
– reference: AldinucciMDaneluttoMTetiPAn advanced environment supporting structured parallel programming in JavaFuture Gener. Comput. Syst.200319561162610.1016/S0167-739X(02)00172-3
– reference: National Aeronautics and Space Administration. NAS Parallel Benchmarks. http://www.nas.nasa.gov/Software/NPB/ (2010). Accessed 10 Dec 2016
– reference: RogersACarlisleM CReppyJ HHendrenL JSupporting dynamic data structures on distributed-memory machinesACM Trans. Program. Lang. Syst.199517223326310.1145/201059.201065
– reference: KawakatsuTKinoshitaATakasuAAdachiJDivide-and-Conquer Parallelism for Learning Mixture Models2016BerlinSpringer2347
– reference: Walter, J., Koch, M.: Boost basic linear algebra library (uBLAS). http://www.boost.org/libs/numeric/ublas/ (2002). Accessed 7 Dec 2016
– reference: Intel®\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textregistered $$\end{document}. CilkTM\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{\text{TM}}$$\end{document} Plus. https://www.cilkplus.org (2016). Accessed 10 Dec 2016
– reference: Zhang, Y., Duchi, J.C., Wainwright, M.J.: Divide and conquer kernel ridge regression. In 26th Annual Conference on Learning Theory (COLT 2013), pp. 592–617 (2013)
– reference: ZangWZhangPZhouCGuoLLocating multiple sources in social networks under the SIR model: a divide-and-conquer approachJ. Comput. Sci.201510278287339543110.1016/j.jocs.2015.05.002
– reference: Yelick, K., Bonachea, D., Chen, W.-Y., Colella, P., Datta, K., Duell, J., Graham, S.L., Hargrove, P., Hilfinger, P., Husbands, P., Iancu, C., Kamil, A., Nishtala, R., Su, J., Welcome, M., Wen, T.: Productivity and performance using partitioned global address space languages. In Proceedings of 2007 International Workshop on Parallel Symbolic Computation, PASCO ’07, pp. 24–32. New York, NY (2007)
– reference: McCabeTJA complexity measureIEEE Trans. Softw. Eng.1976230832044590410.1109/TSE.1976.2338370352.68066
– reference: ReindersJIntel Threading Building Blocks: Outfitting C++ for Multi-core Processor Parallelism2007Sebastopol, CAO’Reilly
– reference: NakatsukasaYHighamN JStable and efficient spectral divide and conquer algorithms for the symmetric eigenvalue decomposition and the SVDSIAM J. Sci. Comput.2013353A1325A1349305459410.1137/1208766051326.65049
– reference: Hijma, P., Jacobs, C.J.H., van Nieuwpoort, R.V., Bal, H.E.: Cashmere: Heterogeneous many-core computing. In 29th IEEE International Parallel and Distributed Processing Symposium (IPDPS 2015), pp. 135–145 (2015)
– reference: AhoAVHopcroftJEUllmanJDThe Design and Analysis of Computer Algorithms1974Reading, MAAddison-Wesley0326.68005
– reference: MattsonTSandersBMassingillBPatterns for Parallel Programming2004Boston, MAAddison-Wesley Professional1002.68586
– reference: BlumofeRDJoergCFKuszmaulBCLeisersonCERandallKHZhouYCilk: an efficient multithreaded runtime systemJ Parallel Distrib. Comput.1996371556910.1006/jpdc.1996.0107
– reference: DeanJGhemawatSMapreduce: simplified data processing on large clustersCommun. ACM200851110711310.1145/1327452.1327492
– reference: Kuchen, H.: A skeleton library. Euro-Par 2002 Parallel Processing. Volume 2400 of Lecture Notes in Computer Science, pp. 620–629. Springer, Berlin (2002)
– reference: Van NieuwpoortRVWrzesińskaGJacobsCJHBalHESatin: A high-level and efficient grid programming modelACM Trans. Program. Lang. Syst.20103239
– reference: Teijeiro, C., Taboada, G.L., Touriño, J., Fraguela, B.B., Doallo, R., Mallón, D.A., Gómez, A., Mouriño, J.C., Wibecan, B.: Evaluation of UPC programmability using classroom studies. In Proceedings of Third Conference on Partitioned Global Address Space Programing Models, PGAS ’09, pp. 10:1–10:7, New York, NY (2009)
– reference: White, T: Hadoop: The Definitive Guide. O’Reilly Media, Inc., 1st edition (2009)
– reference: Bientinesi, P., Gunnels, J.A., Myers, M.E., Quintana- Ortí, E.S., van de Geijn, R.A.: The science of deriving dense linear algebra algorithms. ACM Trans. Math. Softw. 31(1), 1–26 (2005)
– reference: HalsteadMHElements of Software Science1977New York, NYElsevier0381.68007
– reference: Danelutto, M., De Matteis, T., Mencagli, G., Torquati, M.: A divide-and-conquer parallel pattern implementation for multicores. In Proceedings 3rd International Workshop on Software Engineering for Parallel Systems, SEPS 2016, pp. 10–19. New York, NY (2016). ACM
– reference: ColeMBringing skeletons out of the closet: a pragmatic manifesto for skeletal parallel programmingParallel Comput.200430338940610.1016/j.parco.2003.12.002
– reference: OlivierSLPrinsJFComparison of OpenMP 3.0 and other task parallel frameworks on unbalanced task graphsInt. J. Parallel Program.2010385–634136010.1007/s10766-010-0140-71211.68076
– reference: GorlatchSColeMParallel skeletonsEncyclopedia of Parallel Computing2011New YorkSpringer14171422
– reference: Zaharia, M., Chowdhury, M., Franklin, M.J., Shenker, S., Stoica, I.: Spark: Cluster computing with working sets. In Proceedings of 2nd USENIX Conference on Hot Topics in Cloud Computing, HotCloud’10, pp. 10–10, Berkeley, CA. USENIX Association (2010)
– volume: 32
  start-page: 9
  issue: 3
  year: 2010
  ident: 766_CR43
  publication-title: ACM Trans. Program. Lang. Syst.
  doi: 10.1145/1709093.1709096
– volume: 17
  start-page: 233
  issue: 2
  year: 1995
  ident: 766_CR38
  publication-title: ACM Trans. Program. Lang. Syst.
  doi: 10.1145/201059.201065
– volume-title: Patterns for Parallel Programming
  year: 2004
  ident: 766_CR32
– volume: 38
  start-page: 341
  issue: 5–6
  year: 2010
  ident: 766_CR36
  publication-title: Int. J. Parallel Program.
  doi: 10.1007/s10766-010-0140-7
– volume: 324
  start-page: 446
  issue: 4
  year: 1986
  ident: 766_CR3
  publication-title: Nature
  doi: 10.1038/324446a0
– ident: 766_CR40
  doi: 10.1145/1809961.1809975
– volume-title: Elements of Software Science
  year: 1977
  ident: 766_CR21
– ident: 766_CR16
  doi: 10.1109/HPCC.2010.24
– ident: 766_CR6
– start-page: 23
  volume-title: Divide-and-Conquer Parallelism for Learning Mixture Models
  year: 2016
  ident: 766_CR26
– volume-title: The Design and Analysis of Computer Algorithms
  year: 1974
  ident: 766_CR1
– volume: 37
  start-page: 55
  issue: 1
  year: 1996
  ident: 766_CR5
  publication-title: J Parallel Distrib. Comput.
  doi: 10.1006/jpdc.1996.0107
– ident: 766_CR44
– volume: 24
  start-page: 2421
  issue: 18
  year: 2012
  ident: 766_CR41
  publication-title: Concurr. Comput. Pract. Exp.
  doi: 10.1002/cpe.2831
– volume-title: Algorithmic Skeletons: Structured Management of Parallel Computation
  year: 1989
  ident: 766_CR8
– volume: 42
  start-page: 948
  issue: 6
  year: 2014
  ident: 766_CR18
  publication-title: Int. J. Parallel Program.
  doi: 10.1007/s10766-013-0268-3
– volume: 19
  start-page: 611
  issue: 5
  year: 2003
  ident: 766_CR2
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/S0167-739X(02)00172-3
– volume: 27
  start-page: 5076
  issue: 17
  year: 2015
  ident: 766_CR39
  publication-title: Concurr. Comput. Pract. Exp.
  doi: 10.1002/cpe.3511
– ident: 766_CR10
  doi: 10.1145/3002125.3002128
– ident: 766_CR31
  doi: 10.1007/978-3-642-03770-2_24
– ident: 766_CR47
– volume: 39
  start-page: 475
  issue: 9
  year: 2013
  ident: 766_CR17
  publication-title: Parallel Comput.
  doi: 10.1016/j.parco.2013.04.012
– ident: 766_CR27
  doi: 10.1007/3-540-45706-2_86
– ident: 766_CR15
  doi: 10.1109/SFFCS.1999.814600
– ident: 766_CR30
  doi: 10.1109/SBAC-PAD.2013.28
– ident: 766_CR4
  doi: 10.1145/1055531.1055532
– volume: 32
  start-page: 582
  issue: 6
  year: 1983
  ident: 766_CR23
  publication-title: IEEE Trans. Comput.
  doi: 10.1109/TC.1983.1676280
– ident: 766_CR46
  doi: 10.1145/1278177.1278183
– volume: 2
  start-page: 308
  year: 1976
  ident: 766_CR33
  publication-title: IEEE Trans. Softw. Eng.
  doi: 10.1109/TSE.1976.233837
– ident: 766_CR25
  doi: 10.1109/ICPP.2009.18
– volume: 29
  start-page: 218
  issue: 3
  year: 1986
  ident: 766_CR14
  publication-title: Commun. ACM
  doi: 10.1145/5666.5673
– ident: 766_CR24
– volume-title: Intel Threading Building Blocks: Outfitting C++ for Multi-core Processor Parallelism
  year: 2007
  ident: 766_CR37
– volume: 51
  start-page: 107
  issue: 1
  year: 2008
  ident: 766_CR11
  publication-title: Commun. ACM
  doi: 10.1145/1327452.1327492
– volume: 35
  start-page: A1325
  issue: 3
  year: 2013
  ident: 766_CR34
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/120876605
– ident: 766_CR12
  doi: 10.1109/PDP.2015.78
– volume: 32
  start-page: 604
  issue: 7–8
  year: 2006
  ident: 766_CR13
  publication-title: Parallel Comput.
  doi: 10.1016/j.parco.2006.06.001
– ident: 766_CR35
– volume: 10
  start-page: 278
  year: 2015
  ident: 766_CR48
  publication-title: J. Comput. Sci.
  doi: 10.1016/j.jocs.2015.05.002
– ident: 766_CR28
  doi: 10.1109/ISPASS.2009.4919639
– ident: 766_CR20
– ident: 766_CR7
  doi: 10.1109/HPCC.2010.23
– ident: 766_CR22
  doi: 10.1109/IPDPS.2015.38
– ident: 766_CR29
  doi: 10.1109/PDP.2010.26
– ident: 766_CR45
– start-page: 1417
  volume-title: Encyclopedia of Parallel Computing
  year: 2011
  ident: 766_CR19
– ident: 766_CR42
  doi: 10.1109/PDP.2015.81
– ident: 766_CR49
– volume: 30
  start-page: 389
  issue: 3
  year: 2004
  ident: 766_CR9
  publication-title: Parallel Comput.
  doi: 10.1016/j.parco.2003.12.002
SSID ssj0009729
Score 2.1186073
Snippet Divide-and-conquer is one of the most important patterns of parallelism, being applicable to a large variety of problems. In addition, the most powerful...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2605
SubjectTerms Algorithms
Clusters
Computer Communication Networks
Computer Science
Distributed memory
Hybrid systems
Libraries
Maintenance costs
Message passing
Operating Systems
Parallel programming
Polymorphism
Processor Architectures
Software
SummonAdditionalLinks – databaseName: Advanced Technologies & Aerospace Database
  dbid: P5Z
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELagMLBQnqJQkAcmkEWa1I9MqEJUTFUHQBVL5PhRkEpamhap_56zkxCBRBfWPBwrZ_s-352_D6FLgLBhGHciosF9kC74HJIqI0nUTVk3sBo8ZurFJvhgIEajeFgG3PKyrLJaE_1CrafKxchvoEHYzADYDm5nH8SpRrnsaimhsYm2HEuCk24Y0peadJd7lbJOJBjhgvIqq1kcnaPC7aVdoI4xsvrpl2qw-Ss_6t1Ov_nfDu-h3RJw4l4xQvbRhskOULMSc8Dl3D5Ezz08Liioscw0Np5aAjwS9ge2DIGLBPbO0IM5lpMxfGnx-o5tVduFAfxiX51IHDEmVpOlo2DIj9BT__7x7oGUogtERTReECMNgDAwmmaWCRtGNI2l4SZQ0gmTSEqpiYW0KuVUCkV5ByCM5qG1NFKB0NExamTTzJwg3NEx4CsVMcZVVzMtrSvQstTlk0MTihYKql-eqJKR3AljTJKaS9lZKQErJc5KyaqFrr5fmRV0HOsebleWScqZmSe1WVrourJtffvPxk7XN3aGdkI_mFz1WRs1FvOlOUfb6nPxls8v_LD8Asnp6FQ
  priority: 102
  providerName: ProQuest
Title A general and efficient divide-and-conquer algorithm framework for multi-core clusters
URI https://link.springer.com/article/10.1007/s10586-017-0766-y
https://www.proquest.com/docview/2918256660
Volume 20
WOSCitedRecordID wos000407928800053&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1573-7543
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0009729
  issn: 1386-7857
  databaseCode: P5Z
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1573-7543
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0009729
  issn: 1386-7857
  databaseCode: K7-
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1573-7543
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0009729
  issn: 1386-7857
  databaseCode: BENPR
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-7543
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009729
  issn: 1386-7857
  databaseCode: RSV
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB60evBifWK1lj14UhbSpJvdHKsoglCKj1K8hM0-VKitNFXw3zu7TYyKCnrJIZksy8xuZiYz-30ABxjChmHSjqhG90E76HNopoykUSeLO4HV6DEzTzbBez0xHCb94hx3Xna7lyVJ_6X-cNiNCZf9ul9rcUxfF2EJvZ1wfA2XV4MKaZd7arJ2hMJcMF6WMr8b4rMzqiLML0VR72vO6v-a5RqsFqEl6c7XwjosmPEG1EvaBlLs4k0YdMndHGyayLEmxoNIoO8h_miWoXiTYpaMk5wSObqbTB9m94_Ell1cBMNc4vsQqYPAJGr07MAW8i24OTu9PjmnBb0CVRFLZtRIg-EWmkfHNhY2jFiWSMNNoKSjIJGMMZMIaVXGmRSK8TYGK5qH1rJIBUJH21AbT8ZmB0hbJxhJqSiOueroWEvrWrEsc5Xj0ISiAUGp51QV2OOOAmOUVqjJTm8p6i11ektfG3D4_srTHHjjN-Fmaby02IN5iksQ019Mz4IGHJXGqh7_ONjun6T3YCX01nZtZ02ozabPZh-W1cvsIZ-2YOn4tNe_bMHiBad47bPbll-ub_Jd4e0
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VgkQvlKdYKOADXEAWWTt-5IBQBVSttqw4FNRbcPwoSNts2d2C9k_xGxk7MRFI9NYD1zxGcfzZM_aMvw_gKYawjFVjTh26D1qiz6GN9YbyspFlERx6zCaJTajpVB8fVx824Gc-CxPLKvOcmCZqN7dxj_wlGsTFDAbbxeuzbzSqRsXsapbQ6GAx8esfuGRbvjp4i_37jLG9d0dv9mmvKkAtF9WKeuMxysCvcjJIHRgXTWW88oU1UXnDCCF8pU2wjRJGW6HG6KOdYiEIbgvtONq9AldLrlUcVxNFB5JflVTRxlxLqrRQOYvaHdUTOq7d48aglHT9px8cgtu_8rHJze1t_28_6Cbc6ANqstuNgFuw4dvbsJ3FKkg_d92BT7vkpKPYJqZ1xCfqDPS4JB1I8xQvUjtvscULYmYn2LLVl1MScu0aweCepOpLGok_iZ2dR4qJ5V34eCmtuweb7bz194GMXYXxo-VSKls66UyIBWhBxHw580yPoMhdXNuecT0Kf8zqgSs6oqJGVNQRFfV6BM9_v3LW0Y1c9PBORkLdzzzLeoDBCF5kLA23_2nswcXGnsD1_aP3h_XhwXTyELZYAnKstNuBzdXi3D-Ca_b76uty8TgNCQKfLxtivwBODUWi
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB50FfHiW1yfOXhSgn2laY-iLoqyCD7wVtI8VmGtS7cr7L930m2tigritU2TMJMwM52Z7wPYRxfW82LXpwrNBw3Q5tBUakH9IA0Dxyi0mGlJNsG73ejhIb6ueE6HdbV7nZKc9DRYlKasOBooc_Sh8Y1FNhK2v9nCkI6nYSawdfQ2XL-5b1B3eUlT5vo4mEeM12nN76b4bJgab_NLgrS0O53Ff-94CRYql5McT87IMkzpbAUWazoHUt3uVbg_Jr0JCDURmSK6BJfAFUjZsqUpPqS4KG44J6Lfe8mfisdnYurqLoLuLynrE6mFxiSyP7IgDMM1uOuc3Z6c04p2gUqfxQXVQqMbhmpToQkj4_ksjYXm2pHCUpMIxpiOI2FkypmIJOMuOjGKe8YwXzqR8tehlb1kegOIq2L0sKQfhlwGKlTC2BItw2xG2dNe1AanlnkiK0xyS43RTxo0ZSu3BOWWWLkl4zYcvH8ymABy_DZ4u1ZkUt3NYYJHE8NiDNucNhzWimte_zjZ5p9G78Hc9WknubroXm7BvFcq3lambUOryEd6B2bla_E0zHfLE_sGQ8rqSw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+general+and+efficient+divide-and-conquer+algorithm+framework+for+multi-core+clusters&rft.jtitle=Cluster+computing&rft.au=Gonz%C3%A1lez%2C+Carlos+H.&rft.au=Fraguela%2C+Basilio+B.&rft.date=2017-09-01&rft.issn=1386-7857&rft.eissn=1573-7543&rft.volume=20&rft.issue=3&rft.spage=2605&rft.epage=2626&rft_id=info:doi/10.1007%2Fs10586-017-0766-y&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10586_017_0766_y
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1386-7857&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1386-7857&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1386-7857&client=summon