Lower Bounds and PIT for Non-commutative Arithmetic Circuits with Restricted Parse Trees

We investigate the power of Non-commutative Arithmetic Circuits , which compute polynomials over the free non-commutative polynomial ring F ⟨ x 1 , … , x N ⟩ , where variables do not commute. We consider circuits that are restricted in the ways in which they can compute monomials: this can be seen a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational complexity Jg. 28; H. 3; S. 471 - 542
Hauptverfasser: Lagarde, Guillaume, Limaye, Nutan, Srinivasan, Srikanth
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Cham Springer International Publishing 01.09.2019
Springer Nature B.V
Schlagworte:
ISSN:1016-3328, 1420-8954
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract We investigate the power of Non-commutative Arithmetic Circuits , which compute polynomials over the free non-commutative polynomial ring F ⟨ x 1 , … , x N ⟩ , where variables do not commute. We consider circuits that are restricted in the ways in which they can compute monomials: this can be seen as restricting the families of parse trees that appear in the circuit. Such restrictions capture essentially all non-commutative circuit models for which lower bounds are known. We prove several results about such circuits. We show exponential lower bounds for circuits with up to an exponential number of parse trees, strengthening the work of Lagarde et al . [Electronic Colloquium on Comput Complexity (ECCC) vol 23, no 94, 2016 ], who prove such a result for Unique Parse Tree (UPT) circuits which have a single parse tree. The polynomial we prove a lower bound for is in fact computable by a polynomial-sized non-commutative circuit. We show exponential lower bounds for circuits whose parse trees are rotations of a single tree. This simultaneously generalizes recent lower bounds of Limaye et al . (Theory Comput 12(1):1–38, 2016 ) and the above lower bounds of Lagarde et al . ( 2016 ), which are known to be incomparable. Here too, the hard polynomial is computable by a polynomial-sized non-commutative circuit. We make progress on a question of Nisan (STOC, pp 410–418, 1991 ) regarding separating the power of Algebraic Branching Programs (ABPs) and Formulas in the non-commutative setting by showing a tight lower bound of n Ω ( log d ) for any UPT formula computing the product of d n × n matrices. When d ≤ log n , we can also prove superpolynomial lower bounds for formulas with up to 2 o ( d ) many parse trees (for computing the same polynomial). Improving this bound to allow for 2 o ( d ) trees would give an unconditional separation between ABPs and Formulas. We give deterministic whitebox PIT algorithms for UPT circuits over any field, strengthening a result of Lagarde et al . ( 2016 ), and also for sums of a constant number of UPT circuits with different parse trees.
AbstractList We investigate the power of Non-commutative Arithmetic Circuits, which compute polynomials over the free non-commutative polynomial ring F⟨x1,…,xN⟩, where variables do not commute. We consider circuits that are restricted in the ways in which they can compute monomials: this can be seen as restricting the families of parse trees that appear in the circuit. Such restrictions capture essentially all non-commutative circuit models for which lower bounds are known. We prove several results about such circuits.1.We show exponential lower bounds for circuits with up to an exponential number of parse trees, strengthening the work of Lagarde et al. [Electronic Colloquium on Comput Complexity (ECCC) vol 23, no 94, 2016], who prove such a result for Unique Parse Tree (UPT) circuits which have a single parse tree. The polynomial we prove a lower bound for is in fact computable by a polynomial-sized non-commutative circuit.2.We show exponential lower bounds for circuits whose parse trees are rotations of a single tree. This simultaneously generalizes recent lower bounds of Limaye et al. (Theory Comput 12(1):1–38, 2016) and the above lower bounds of Lagarde et al. (2016), which are known to be incomparable. Here too, the hard polynomial is computable by a polynomial-sized non-commutative circuit.3.We make progress on a question of Nisan (STOC, pp 410–418, 1991) regarding separating the power of Algebraic Branching Programs (ABPs) and Formulas in the non-commutative setting by showing a tight lower bound of nΩ(logd) for any UPT formula computing the product of dn×n matrices.When d≤logn, we can also prove superpolynomial lower bounds for formulas with up to 2o(d) many parse trees (for computing the same polynomial). Improving this bound to allow for 2o(d) trees would give an unconditional separation between ABPs and Formulas.4.We give deterministic whitebox PIT algorithms for UPT circuits over any field, strengthening a result of Lagarde et al. (2016), and also for sums of a constant number of UPT circuits with different parse trees.
We investigate the power of Non-commutative Arithmetic Circuits , which compute polynomials over the free non-commutative polynomial ring F ⟨ x 1 , … , x N ⟩ , where variables do not commute. We consider circuits that are restricted in the ways in which they can compute monomials: this can be seen as restricting the families of parse trees that appear in the circuit. Such restrictions capture essentially all non-commutative circuit models for which lower bounds are known. We prove several results about such circuits. We show exponential lower bounds for circuits with up to an exponential number of parse trees, strengthening the work of Lagarde et al . [Electronic Colloquium on Comput Complexity (ECCC) vol 23, no 94, 2016 ], who prove such a result for Unique Parse Tree (UPT) circuits which have a single parse tree. The polynomial we prove a lower bound for is in fact computable by a polynomial-sized non-commutative circuit. We show exponential lower bounds for circuits whose parse trees are rotations of a single tree. This simultaneously generalizes recent lower bounds of Limaye et al . (Theory Comput 12(1):1–38, 2016 ) and the above lower bounds of Lagarde et al . ( 2016 ), which are known to be incomparable. Here too, the hard polynomial is computable by a polynomial-sized non-commutative circuit. We make progress on a question of Nisan (STOC, pp 410–418, 1991 ) regarding separating the power of Algebraic Branching Programs (ABPs) and Formulas in the non-commutative setting by showing a tight lower bound of n Ω ( log d ) for any UPT formula computing the product of d n × n matrices. When d ≤ log n , we can also prove superpolynomial lower bounds for formulas with up to 2 o ( d ) many parse trees (for computing the same polynomial). Improving this bound to allow for 2 o ( d ) trees would give an unconditional separation between ABPs and Formulas. We give deterministic whitebox PIT algorithms for UPT circuits over any field, strengthening a result of Lagarde et al . ( 2016 ), and also for sums of a constant number of UPT circuits with different parse trees.
Author Limaye, Nutan
Srinivasan, Srikanth
Lagarde, Guillaume
Author_xml – sequence: 1
  givenname: Guillaume
  surname: Lagarde
  fullname: Lagarde, Guillaume
  organization: IRIF, Université Paris-Diderot
– sequence: 2
  givenname: Nutan
  surname: Limaye
  fullname: Limaye, Nutan
  email: nutan@cse.iitb.ac.in
  organization: Department of Computer Science and Engineering, IIT Bombay
– sequence: 3
  givenname: Srikanth
  surname: Srinivasan
  fullname: Srinivasan, Srikanth
  organization: Department of Mathematics, IIT Bombay
BookMark eNp9kE1LAzEQQINUsFZ_gLeA5-hk0-0mx1r8KBQVqeAtJNmsprSbmmQt_ntTVhAEPQwzDPNmhneMBq1vLUJnFC4oQHUZAYBVBCjPUVEiDtCQjgsgXJTjQa6BTghjBT9CxzGuAGjJ2XiIXhZ-ZwO-8l1bR6zaGj_Ol7jxAd_7lhi_2XRJJfdh8TS49LaxyRk8c8F0LkW8yy38ZGMKziSbWRWixctgbTxBh41aR3v6nUfo-eZ6Obsji4fb-Wy6IIaVIhFbGsEZ16rgwgpWKioEaKPAADMwqeqqEZpqXjMGGrTQ1mhGWV3q2gpaTNgInfd7t8G_d_kVufJdaPNJWRQVBwEcWJ6i_ZQJPsZgG7kNbqPCp6Qg9wJlL1BmgXIvUIrMVL8Y4_YufJuCcut_yaInY77Svtrw89Pf0BcTP4Z2
CitedBy_id crossref_primary_10_1007_s00037_021_00214_1
Cites_doi 10.1007/PL00001609
10.1137/140975103
10.1137/140990280
10.1016/S0022-0000(03)00010-2
10.1007/s00037-016-0141-z
10.1090/S0894-0347-2011-00694-2
10.1007/s00037-010-0299-8
10.4086/toc.2016.v012a012
10.1016/j.jco.2006.09.006
10.1007/s00037-009-0270-8
10.1007/s00037-005-0188-8
10.1016/S0304-3975(97)00227-2
10.1145/322326.322341
10.1145/2213977.2214034
10.1145/2591796.2591847
10.1145/1502793.1502797
10.1137/0212043
10.1109/SFCS.1977.31
10.1145/2629541
10.1109/CCC.2005.13
ContentType Journal Article
Copyright Springer Nature Switzerland AG 2018
Copyright Springer Nature B.V. 2019
Copyright_xml – notice: Springer Nature Switzerland AG 2018
– notice: Copyright Springer Nature B.V. 2019
DBID AAYXX
CITATION
JQ2
DOI 10.1007/s00037-018-0171-9
DatabaseName CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList ProQuest Computer Science Collection

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Computer Science
EISSN 1420-8954
EndPage 542
ExternalDocumentID 10_1007_s00037_018_0171_9
GroupedDBID -4Z
-59
-5G
-BR
-EM
-~C
.86
.DC
.VR
06D
0R~
0VY
199
1N0
203
29F
2J2
2JN
2JY
2KG
2KM
2LR
2~H
30V
4.4
406
408
409
40D
40E
5GY
67Z
6NX
78A
8TC
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BGNMA
BSONS
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FNLPD
FRRFC
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAS
LLZTM
M4Y
MA-
MBV
N9A
NPVJJ
NQJWS
NU0
O93
O9G
O9I
O9J
OAM
P19
P2P
P9O
PF0
PT4
PT5
QOK
QOS
R89
R9I
RHV
RNS
ROL
RPX
RSV
S16
S27
S3B
SAP
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
VC2
W23
W48
WK8
YLTOR
Z45
Z7X
Z83
Z88
Z8R
Z8W
Z92
ZMTXR
~EX
-Y2
1SB
2.D
28-
2P1
2VQ
5QI
5VS
AAOBN
AAPKM
AARHV
AAYTO
AAYXX
ABBRH
ABDBE
ABFSG
ABJCF
ABQSL
ABRTQ
ABULA
ACBXY
ACSTC
ADHKG
AEBTG
AEFIE
AEKMD
AEZWR
AFDZB
AFEXP
AFFHD
AFGCZ
AFHIU
AFKRA
AFOHR
AGGDS
AGQPQ
AHPBZ
AHWEU
AIXLP
AJBLW
ARAPS
ATHPR
AYFIA
AZQEC
BBWZM
BDATZ
BENPR
BGLVJ
CAG
CCPQU
CITATION
COF
DWQXO
FINBP
FSGXE
GNUQQ
H13
HCIFZ
HZ~
IHE
K7-
KOW
M2P
M7S
N2Q
NDZJH
O9-
PHGZM
PHGZT
PQGLB
PTHSS
R4E
RNI
RZK
S1Z
S26
S28
SCJ
SCLPG
T16
UZXMN
VFIZW
JQ2
ID FETCH-LOGICAL-c359t-e5c9838ba289e935a1990bca0c03c067d7f9b1b8d330b0b9becb313d5bde91263
IEDL.DBID RSV
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000482991500004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1016-3328
IngestDate Wed Sep 17 23:58:53 EDT 2025
Sat Nov 29 02:52:51 EST 2025
Tue Nov 18 21:56:28 EST 2025
Fri Feb 21 02:32:58 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Lower bounds
68Q25
Parse trees of circuits
Algebraic branching programs
68Q17
12Y05
Non-commutative arithmetic circuits
Formulas
Polynomial identity testing
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c359t-e5c9838ba289e935a1990bca0c03c067d7f9b1b8d330b0b9becb313d5bde91263
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2017.41
PQID 2278090803
PQPubID 2044003
PageCount 72
ParticipantIDs proquest_journals_2278090803
crossref_primary_10_1007_s00037_018_0171_9
crossref_citationtrail_10_1007_s00037_018_0171_9
springer_journals_10_1007_s00037_018_0171_9
PublicationCentury 2000
PublicationDate 2019-09-01
PublicationDateYYYYMMDD 2019-09-01
PublicationDate_xml – month: 09
  year: 2019
  text: 2019-09-01
  day: 01
PublicationDecade 2010
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Heidelberg
PublicationTitle Computational complexity
PublicationTitleAbbrev comput. complex
PublicationYear 2019
Publisher Springer International Publishing
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
References Chien, Rasmussen, Sinclair (CR10) 2003; 67
(CR34) 2009; 18
Hrubeš, Wigderson, Yehudayoff (CR20) 2011; 24
CR18
CR17
Arvind, Raja (CR8) 2014; 21
CR14
CR13
CR12
CR11
CR32
Saxena (CR36) 2009; 99
(CR38) 2001; 10
CR30
Kayal, Saha, Saptharishi (CR24) 2014; 2014
Arvind, Joglekar, Mukhopadhyay, Raja (CR4) 2016; 23
(CR31) 1997; 6
(CR33) 2005; 14
Allender, Jiao, Mahajan, Vinay (CR2) 1998; 209
Saxena (CR37) 2013; 20
(CR22) 1982; 29
Limaye, Malod, Srinivasan (CR28) 2016; 12
Arvind, Joglekar, Srinivasan (CR5) 2009; 2009
CR9
Arvind, Datta, Mukhopadhyay, Raja (CR3) 2017; 24
CR26
Arvind, Mukhopadhyay, Raja (CR6) 2016; 23
Arvind, Mukhopadhyay, Srinivasan (CR7) 2010; 19
CR21
Fournier, Limaye, Malod, Srinivasan (CR16) 2015; 44
CR40
(CR25) 2014; 2014
(CR29) 2008; 24
(CR39) 2010; 5
Forbes, Shpilka (CR15) 2013; 2013
Gurjar, Korwar, Saxena, Thierauf (CR19) 2017; 26
Agrawal, Gurjar, Korwar, Saxena (CR1) 2015; 44
Lagarde, Malod, Perifel (CR27) 2016; 23
(CR35) 2017; 24
Kayal, Limaye, Saha, Srinivasan (CR23) 2014; 2014
171_CR17
Ran Raz & Amir Yehudayoff (171_CR34) 2009; 18
171_CR18
Mrinal Kumar & Shubhangi Saraf (171_CR25) 2014; 2014
171_CR30
Steve Chien (171_CR10) 2003; 67
Guillaume Lagarde (171_CR27) 2016; 23
171_CR32
171_CR11
171_CR12
171_CR13
Amir Shpilka & Amir Yehudayoff (171_CR39) 2010; 5
171_CR14
Hervé Fournier (171_CR16) 2015; 44
Mark Jerrum & Marc Snir (171_CR22) 1982; 29
Rohit Gurjar (171_CR19) 2017; 26
Amir Shpilka & Avi Wigderson (171_CR38) 2001; 10
Michael A Forbes (171_CR15) 2013; 2013
Ramprasad Saptharishi & Anamay Tengse (171_CR35) 2017; 24
Vikraman Arvind (171_CR3) 2017; 24
171_CR40
Nitin Saxena (171_CR37) 2013; 20
Nitin Saxena (171_CR36) 2009; 99
Pavel Hrubeš (171_CR20) 2011; 24
Vikraman Arvind (171_CR7) 2010; 19
Vikraman Arvind (171_CR8) 2014; 21
Guillaume Malod & Natacha Portier (171_CR29) 2008; 24
Vikraman Arvind (171_CR4) 2016; 23
Noam Nisan & Avi Wigderson (171_CR31) 1997; 6
Manindra Agrawal (171_CR1) 2015; 44
Vikraman Arvind (171_CR5) 2009; 2009
171_CR21
171_CR26
Ran Raz & Amir Shpilka (171_CR33) 2005; 14
Vikraman Arvind (171_CR6) 2016; 23
Neeraj Kayal (171_CR23) 2014; 2014
Nutan Limaye (171_CR28) 2016; 12
Eric Allender (171_CR2) 1998; 209
171_CR9
Neeraj Kayal (171_CR24) 2014; 2014
References_xml – ident: CR18
– volume: 2014
  start-page: 146
  year: 2014
  end-page: 153
  ident: CR24
  article-title: A super-polynomial lower bound for regular arithmetic formulas
  publication-title: In Symposium on Theory of Computing, STOC
– volume: 24
  start-page: 74
  year: 2017
  ident: CR3
  article-title: Efficient Identity Testing and Polynomial Factorization over Non-associative Free Rings
  publication-title: Electronic Colloquium on Computational Complexity (ECCC)
– ident: CR14
– volume: 10
  start-page: 1
  issue: 1
  year: 2001
  end-page: 27
  ident: CR38
  article-title: Depth-3 arithmetic circuits over fields of characteristic zero
  publication-title: Computational Complexity
  doi: 10.1007/PL00001609
– ident: CR12
– ident: CR30
– volume: 44
  start-page: 669
  issue: 3
  year: 2015
  end-page: 697
  ident: CR1
  article-title: Hitting-Sets for ROABP and Sum of Set-Multilinear Circuits
  publication-title: SIAM J. Comput.
  doi: 10.1137/140975103
– volume: 44
  start-page: 1173
  issue: 5
  year: 2015
  end-page: 1201
  ident: CR16
  article-title: Lower Bounds for Depth-4 Formulas Computing Iterated Matrix Multiplication
  publication-title: SIAM J. Comput.
  doi: 10.1137/140990280
– volume: 6
  start-page: 217
  issue: 3
  year: 1997
  end-page: 234
  ident: CR31
  article-title: Lower Bounds on Arithmetic Circuits Via Partial Derivatives
  publication-title: Computational Complexity
– volume: 67
  start-page: 263
  issue: 2
  year: 2003
  end-page: 290
  ident: CR10
  article-title: Clifford algebras and approximating the permanent
  publication-title: J. Comput. Syst. Sci.
  doi: 10.1016/S0022-0000(03)00010-2
– volume: 26
  start-page: 835
  issue: 4
  year: 2017
  end-page: 880
  ident: CR19
  article-title: Deterministic Identity Testing for Sum of Read-Once Oblivious Arithmetic Branching Programs
  publication-title: Computational Complexity
  doi: 10.1007/s00037-016-0141-z
– volume: 24
  start-page: 135
  year: 2017
  ident: CR35
  article-title: Quasi-polynomial Hitting Sets for Circuits with Restricted Parse Trees
  publication-title: Electronic Colloquium on Computational Complexity (ECCC)
– ident: CR40
– volume: 99
  start-page: 49
  year: 2009
  end-page: 79
  ident: CR36
  article-title: Progress on Polynomial Identity Testing
  publication-title: Bulletin of the EATCS
– volume: 2014
  start-page: 364
  year: 2014
  end-page: 373
  ident: CR25
  article-title: On the Power of Homogeneous Depth 4 Arithmetic Circuits. In 55th IEEE Annual Symposium on Foundations of Computer Science
  publication-title: FOCS
– volume: 24
  start-page: 871
  issue: 3
  year: 2011
  end-page: 898
  ident: CR20
  article-title: Non-commutative circuits and the sum-of-squares problem
  publication-title: Journal of the American Mathematical Society
  doi: 10.1090/S0894-0347-2011-00694-2
– volume: 2014
  start-page: 61
  year: 2014
  end-page: 70
  ident: CR23
  article-title: An Exponential Lower Bound for Homogeneous Depth Four Arithmetic Formulas. In 55th IEEE Annual Symposium on Foundations of Computer Science
  publication-title: FOCS
– volume: 2013
  start-page: 243
  year: 2013
  end-page: 252
  ident: CR15
  article-title: Quasipolynomial-Time Identity Testing of Non-commutative and Read-Once Oblivious Algebraic Branching Programs. In 54th Annual IEEE Symposium on Foundations of Computer Science
  publication-title: FOCS
– ident: CR21
– volume: 23
  start-page: 94
  year: 2016
  ident: CR27
  article-title: Non-commutative computations: lower bounds and polynomial identity testing
  publication-title: Electronic Colloquium on Computational Complexity (ECCC)
– volume: 23
  start-page: 193
  year: 2016
  ident: CR4
  article-title: Identity Testing for +-Regular Noncommutative Arithmetic Circuits
  publication-title: Electronic Colloquium on Computational Complexity (ECCC)
– volume: 19
  start-page: 521
  issue: 4
  year: 2010
  end-page: 558
  ident: CR7
  article-title: New Results on Noncommutative and Commutative Polynomial Identity Testing
  publication-title: Computational Complexity
  doi: 10.1007/s00037-010-0299-8
– volume: 5
  start-page: 207
  issue: 3–4
  year: 2010
  end-page: 388
  ident: CR39
  article-title: Arithmetic Circuits: A survey of recent results and open questions
  publication-title: Foundations and Trends in Theoretical Computer Science
– ident: CR17
– volume: 12
  start-page: 1
  issue: 1
  year: 2016
  end-page: 38
  ident: CR28
  article-title: Lower Bounds for Non-Commutative Skew Circuits
  publication-title: Theory of Computing
  doi: 10.4086/toc.2016.v012a012
– volume: 24
  start-page: 16
  issue: 1
  year: 2008
  end-page: 38
  ident: CR29
  article-title: Characterizing Valiant's algebraic complexity classes
  publication-title: J. Complexity
  doi: 10.1016/j.jco.2006.09.006
– volume: 20
  start-page: 186
  year: 2013
  ident: CR37
  article-title: Progress on Polynomial Identity Testing - II
  publication-title: Electronic Colloquium on Computational Complexity (ECCC)
– ident: CR13
– ident: CR11
– ident: CR9
– volume: 18
  start-page: 171
  issue: 2
  year: 2009
  end-page: 207
  ident: CR34
  article-title: Lower Bounds and Separations for Constant Depth Multilinear Circuits
  publication-title: Computational Complexity
  doi: 10.1007/s00037-009-0270-8
– ident: CR32
– volume: 2009
  start-page: 25
  year: 2009
  end-page: 36
  ident: CR5
  article-title: Arithmetic Circuits and the Hadamard Product of Polynomials
  publication-title: In IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science, FSTTCS
– volume: 14
  start-page: 1
  issue: 1
  year: 2005
  end-page: 19
  ident: CR33
  article-title: Deterministic polynomial identity testing in non-commutative models
  publication-title: Computational Complexity
  doi: 10.1007/s00037-005-0188-8
– volume: 23
  start-page: 89
  year: 2016
  ident: CR6
  article-title: Randomized Polynomial Time Identity Testing for Noncommutative Circuits
  publication-title: Electronic Colloquium on Computational Complexity (ECCC)
– volume: 21
  start-page: 28
  year: 2014
  ident: CR8
  article-title: The Complexity of Two Register and Skew Arithmetic Computation
  publication-title: Electronic Colloquium on Computational Complexity (ECCC)
– volume: 209
  start-page: 47
  issue: 1–2
  year: 1998
  end-page: 86
  ident: CR2
  article-title: Non-Commutative Arithmetic Circuits: Depth Reduction and Size Lower Bounds
  publication-title: Theor. Comput. Sci.
  doi: 10.1016/S0304-3975(97)00227-2
– volume: 29
  start-page: 874
  issue: 3
  year: 1982
  end-page: 897
  ident: CR22
  article-title: Some Exact Complexity Results for Straight-Line Computations over Semirings
  publication-title: J. ACM
  doi: 10.1145/322326.322341
– ident: CR26
– volume: 209
  start-page: 47
  issue: 1–2
  year: 1998
  ident: 171_CR2
  publication-title: Theor. Comput. Sci.
  doi: 10.1016/S0304-3975(97)00227-2
– volume: 5
  start-page: 207
  issue: 3–4
  year: 2010
  ident: 171_CR39
  publication-title: Foundations and Trends in Theoretical Computer Science
– volume: 21
  start-page: 28
  year: 2014
  ident: 171_CR8
  publication-title: Electronic Colloquium on Computational Complexity (ECCC)
– volume: 24
  start-page: 74
  year: 2017
  ident: 171_CR3
  publication-title: Electronic Colloquium on Computational Complexity (ECCC)
– volume: 44
  start-page: 669
  issue: 3
  year: 2015
  ident: 171_CR1
  publication-title: SIAM J. Comput.
  doi: 10.1137/140975103
– ident: 171_CR13
  doi: 10.1145/2213977.2214034
– volume: 23
  start-page: 94
  year: 2016
  ident: 171_CR27
  publication-title: Electronic Colloquium on Computational Complexity (ECCC)
– volume: 2014
  start-page: 61
  year: 2014
  ident: 171_CR23
  publication-title: FOCS
– volume: 2014
  start-page: 146
  year: 2014
  ident: 171_CR24
  publication-title: In Symposium on Theory of Computing, STOC
  doi: 10.1145/2591796.2591847
– volume: 14
  start-page: 1
  issue: 1
  year: 2005
  ident: 171_CR33
  publication-title: Computational Complexity
  doi: 10.1007/s00037-005-0188-8
– ident: 171_CR12
– volume: 24
  start-page: 16
  issue: 1
  year: 2008
  ident: 171_CR29
  publication-title: J. Complexity
  doi: 10.1016/j.jco.2006.09.006
– volume: 24
  start-page: 135
  year: 2017
  ident: 171_CR35
  publication-title: Electronic Colloquium on Computational Complexity (ECCC)
– ident: 171_CR32
  doi: 10.1145/1502793.1502797
– volume: 10
  start-page: 1
  issue: 1
  year: 2001
  ident: 171_CR38
  publication-title: Computational Complexity
  doi: 10.1007/PL00001609
– volume: 29
  start-page: 874
  issue: 3
  year: 1982
  ident: 171_CR22
  publication-title: J. ACM
  doi: 10.1145/322326.322341
– volume: 12
  start-page: 1
  issue: 1
  year: 2016
  ident: 171_CR28
  publication-title: Theory of Computing
  doi: 10.4086/toc.2016.v012a012
– volume: 23
  start-page: 193
  year: 2016
  ident: 171_CR4
  publication-title: Electronic Colloquium on Computational Complexity (ECCC)
– volume: 2014
  start-page: 364
  year: 2014
  ident: 171_CR25
  publication-title: FOCS
– ident: 171_CR14
– volume: 20
  start-page: 186
  year: 2013
  ident: 171_CR37
  publication-title: Electronic Colloquium on Computational Complexity (ECCC)
– ident: 171_CR18
– volume: 67
  start-page: 263
  issue: 2
  year: 2003
  ident: 171_CR10
  publication-title: J. Comput. Syst. Sci.
  doi: 10.1016/S0022-0000(03)00010-2
– volume: 24
  start-page: 871
  issue: 3
  year: 2011
  ident: 171_CR20
  publication-title: Journal of the American Mathematical Society
  doi: 10.1090/S0894-0347-2011-00694-2
– volume: 18
  start-page: 171
  issue: 2
  year: 2009
  ident: 171_CR34
  publication-title: Computational Complexity
  doi: 10.1007/s00037-009-0270-8
– ident: 171_CR40
  doi: 10.1137/0212043
– volume: 99
  start-page: 49
  year: 2009
  ident: 171_CR36
  publication-title: Bulletin of the EATCS
– volume: 26
  start-page: 835
  issue: 4
  year: 2017
  ident: 171_CR19
  publication-title: Computational Complexity
  doi: 10.1007/s00037-016-0141-z
– ident: 171_CR21
  doi: 10.1109/SFCS.1977.31
– ident: 171_CR26
– volume: 19
  start-page: 521
  issue: 4
  year: 2010
  ident: 171_CR7
  publication-title: Computational Complexity
  doi: 10.1007/s00037-010-0299-8
– volume: 2009
  start-page: 25
  year: 2009
  ident: 171_CR5
  publication-title: In IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science, FSTTCS
– ident: 171_CR11
– volume: 44
  start-page: 1173
  issue: 5
  year: 2015
  ident: 171_CR16
  publication-title: SIAM J. Comput.
  doi: 10.1137/140990280
– volume: 23
  start-page: 89
  year: 2016
  ident: 171_CR6
  publication-title: Electronic Colloquium on Computational Complexity (ECCC)
– ident: 171_CR30
– ident: 171_CR17
  doi: 10.1145/2629541
– volume: 6
  start-page: 217
  issue: 3
  year: 1997
  ident: 171_CR31
  publication-title: Computational Complexity
– ident: 171_CR9
  doi: 10.1109/CCC.2005.13
– volume: 2013
  start-page: 243
  year: 2013
  ident: 171_CR15
  publication-title: FOCS
SSID ssj0015834
Score 2.214234
Snippet We investigate the power of Non-commutative Arithmetic Circuits , which compute polynomials over the free non-commutative polynomial ring F ⟨ x 1 , … , x N ⟩ ,...
We investigate the power of Non-commutative Arithmetic Circuits, which compute polynomials over the free non-commutative polynomial ring F⟨x1,…,xN⟩, where...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 471
SubjectTerms Algorithm Analysis and Problem Complexity
Algorithms
Arithmetic
Circuits
Computation
Computational Mathematics and Numerical Analysis
Computer Science
Lower bounds
Polynomials
Production scheduling
Rings (mathematics)
Trees
Title Lower Bounds and PIT for Non-commutative Arithmetic Circuits with Restricted Parse Trees
URI https://link.springer.com/article/10.1007/s00037-018-0171-9
https://www.proquest.com/docview/2278090803
Volume 28
WOSCitedRecordID wos000482991500004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1420-8954
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0015834
  issn: 1016-3328
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1RS8MwED50-qAPTqfidEoefFIC7dLa5FGHQ2GOMafsrSRpxIJ20nb-fi9d26GooM9Nj3KX5L70ct8HcOp7T4EfBYYimDfUU1JRLrRHmZLS1aJrgqjgmR0EwyGfTsWo7OPOqtvuVUmy2KnrZreCKwWPvvbyVeBSsQprmO241WsY3z_WpQOfL0rJiGUoY11elTK_M_E5GS0R5peiaJFr-s1_feU2bJXQklwu5sIOrJikBc1KtoGUq7gFm3c1VWu2C9OB1UkjV1ZeKSMyicjodkIQypLhLKHa9o_kBTk4Go7z51fb9Eh6carncZ4R-xuXjI0V_9CIXckIz8mGTFJjsj146F9Peje0lFugmvkip8bXgjOupA2bYL50MVMpLR3tMI1JLQqehHIVjxhzlKMERl8xl0W-ioxwuxdsHxrJLDEHQKQ2ntJdaal-PKMQxim0xphA9CiYDNrgVH4PdclFbiUxXsKaRbnwY4h-DK0fQ9GGs_qVtwURx2-DO1Uww3JNZqFt-nUEImTWhvMqeMvHPxo7_NPoI9hATFVeQ-tAI0_n5hjW9XseZ-lJMVU_AEy04gE
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1RS8MwED50CuqD06k4nZoHn5RAu7S2edShbLiNMafsrSRphgXtZO38_V66tkNRQZ-bHuUuyX3p5b4P4Nx1Jp4bepoimNfUkUJSnyuHMimErXhTe2HGM9v1-n1_POaDvI87KW67FyXJbKcum90yrhQ8-prLV55N-SqsOZiwDGH-8OGpLB24_qKUjFiGMtb0i1LmdyY-J6MlwvxSFM1yzV31X1-5A9s5tCTXi7mwCys6rkG1kG0g-SquwVavpGpN9mDcNTpp5MbIKyVExCEZdEYEoSzpT2OqTP9ImpGDo-EofX41TY-kFc3UPEoTYn7jkqE24h8KsSsZ4DlZk9FM62QfHu9uR602zeUWqGIuT6l2FfeZL4UJG2eusDFTSSUsZTGFSS30Jlza0g8Zs6QlOUZfMpuFrgw1t5tX7AAq8TTWh0CE0o5UTWGofhwtEcZJtMYYR_TImfDqYBV-D1TORW4kMV6CkkU582OAfgyMHwNeh4vylbcFEcdvgxtFMIN8TSaBafq1OCJkVofLInjLxz8aO_rT6DPYaI963aDb6d8fwybiq_xKWgMq6WyuT2BdvadRMjvNpu0H7MHk5Q
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1RS8MwED50iuiD06k4nZoHn5Swdmlt86jT4XCOoVP2FpI0w4J2o-38_SZd26GoID43PUruwn3p3X0fwKnrjD038BTWYF5hR3CBfSodTATntqQt5QUZz2zP6_f90YgOcp3TpOh2L0qS85kGw9IUpc1pMG6Wg28Zb4q-BptGLM_GdBlWHNNHb67rj89lGcH152VljWswIS2_KGt-Z-JzYlqgzS8F0izvdKr__uIt2MwhJ7qcx8g2LKmoBtVCzgHlp7sGG_clhWuyA6Oe0U9DV0Z2KUE8CtCgO0Qa4qL-JMLSzJWkGWm4NhymL29mGBK1w1jOwjRB5vcuelBGFERqTIsG-v6s0DBWKtmFp87NsH2LcxkGLIlLU6xcSX3iC27cSYnLbZ3BhOSWtIjUyS7wxlTYwg8IsYQlqI4KQWwSuCJQ1G5dkD2oRJNI7QPiUjlCtrihAHKU0PBOaGuEUI0qKeFeHazCB0zmHOVGKuOVlezK2T4yvY_M7COjdTgrX5nOCTp-W9woHMvys5owMwxsUY2cSR3OC0cuHv9o7OBPq09gbXDdYb1u_-4Q1jXsyjvVGlBJ45k6glX5noZJfJxF8AfrAO3J
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lower+Bounds+and+PIT+for+Non-commutative+Arithmetic+Circuits+with+Restricted+Parse+Trees&rft.jtitle=Computational+complexity&rft.au=Lagarde%2C+Guillaume&rft.au=Limaye%2C+Nutan&rft.au=Srinivasan%2C+Srikanth&rft.date=2019-09-01&rft.pub=Springer+Nature+B.V&rft.issn=1016-3328&rft.eissn=1420-8954&rft.volume=28&rft.issue=3&rft.spage=471&rft.epage=542&rft_id=info:doi/10.1007%2Fs00037-018-0171-9&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1016-3328&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1016-3328&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1016-3328&client=summon