Lossless to Lossy Dual-Tree BEZW Compression for Hyperspectral Images

This paper proposes a lossless to lossy compression scheme for hyperspectral images based on dual-tree Binary Embedded Zerotree Wavelet (BEZW) algorithm. The algorithm adapts Karhunen-Loève Transform and Discrete Wavelet Transform to achieve 3-D integer reversible hybrid transform and decorrelate s...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on geoscience and remote sensing Ročník 52; číslo 9; s. 5765 - 5770
Hlavní autoři: Kai-jen Cheng, Dill, Jeffrey
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.09.2014
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:0196-2892, 1558-0644
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This paper proposes a lossless to lossy compression scheme for hyperspectral images based on dual-tree Binary Embedded Zerotree Wavelet (BEZW) algorithm. The algorithm adapts Karhunen-Loève Transform and Discrete Wavelet Transform to achieve 3-D integer reversible hybrid transform and decorrelate spectral and spatial data. Since statistics of the hyperspectral image are not symmetrical, the asymmetrical dual-tree structure is introduced. The 3-D BEZW algorithm compresses hyperspectral images by implementing progressive bitplane coding. The lossless and lossy compression performance is compared with other state-of-the-art predictive coding and transform-based coding algorithms on Airborne Visible/Infrared Imaging Spectrometer images. Results show that the 3-D-BEZW lossless compression performance is comparable with the best predictive algorithms, while its computational cost is comparable with those of transform-based algorithms.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0196-2892
1558-0644
DOI:10.1109/TGRS.2013.2292366