Variational Graph Convolutional Networks for Dynamic Graph Representation Learning

The ubiquitous and ever-evolving nature of cyber threats demands innovative approaches that can adapt to the dynamic relationships and structures within network data. Traditional models struggle to adapt to the constantly changing nature of network traffic, where both structural dependencies and tem...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE access Ročník 12; s. 161697 - 161717
Hlavní autoři: Mir, Aabid A., Zuhairi, Megat F., Musa, Shahrulniza, Alanazi, Meshari H., Namoun, Abdallah
Médium: Journal Article
Jazyk:angličtina
Vydáno: Piscataway IEEE 2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:2169-3536, 2169-3536
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The ubiquitous and ever-evolving nature of cyber threats demands innovative approaches that can adapt to the dynamic relationships and structures within network data. Traditional models struggle to adapt to the constantly changing nature of network traffic, where both structural dependencies and temporal evolution must be accurately captured to detect anomalies and predict future threats. To address the challenges, this research introduces V-GCN (Variational Graph Convolutional Network), a new model that integrates the probabilistic latent space modelling of Variational Autoencoders (VAEs) with the structural learning capabilities of Graph Convolutional Networks (GCNs). The proposed model is designed to capture both temporal dependencies and uncertainties inherent in dynamic networks, and as such, it is highly suitable for tasks such as link prediction and node classification. The proposed hybrid model encodes node features into a probabilistic latent space using a VAE encoder and refine the representations using GCN layers, that aggregates structural information from neighbouring nodes. The integration of variational inference with graph convolution enables V-GCN to adapt to the dynamic evolution of network traffic and measure the uncertainties in node and edge relationships. The DynKDD dataset, a dynamic adaptation of the NSL-KDD dataset, is developed in this research to evaluate the model performance. The dataset introduces temporal dynamics into the conventional NSL-KDD dataset, enabling the application of advanced graph-based learning models such as V-GCN. Experimental evaluation indicates that V-GCN significantly outperforms baseline models such as GCNs, Graph Sample and Aggregation (GraphSAGE), and Graph Attention Networks (GATs). In node classification, V-GCN achieved a 10% higher F1-score (0.845), with precision reaching 83.7%, and a balanced accuracy of 84.2%, underscoring its ability to handle uncertainty and adapt to changing network structures in dynamic environments. V-GCN achieved a 15% improvement in AUC-ROC (0.98), a 12% increase in average precision (0.9357), and a 14% higher F1-score (0.8196) in link prediction tasks compared to baseline models. The V-GCN's integration of probabilistic modelling and graph convolution sets a new benchmark for dynamic network traffic analysis, providing a superior solution to real-world challenges in cybersecurity, social network analysis and beyond.
AbstractList The ubiquitous and ever-evolving nature of cyber threats demands innovative approaches that can adapt to the dynamic relationships and structures within network data. Traditional models struggle to adapt to the constantly changing nature of network traffic, where both structural dependencies and temporal evolution must be accurately captured to detect anomalies and predict future threats. To address the challenges, this research introduces V-GCN (Variational Graph Convolutional Network), a new model that integrates the probabilistic latent space modelling of Variational Autoencoders (VAEs) with the structural learning capabilities of Graph Convolutional Networks (GCNs). The proposed model is designed to capture both temporal dependencies and uncertainties inherent in dynamic networks, and as such, it is highly suitable for tasks such as link prediction and node classification. The proposed hybrid model encodes node features into a probabilistic latent space using a VAE encoder and refine the representations using GCN layers, that aggregates structural information from neighbouring nodes. The integration of variational inference with graph convolution enables V-GCN to adapt to the dynamic evolution of network traffic and measure the uncertainties in node and edge relationships. The DynKDD dataset, a dynamic adaptation of the NSL-KDD dataset, is developed in this research to evaluate the model performance. The dataset introduces temporal dynamics into the conventional NSL-KDD dataset, enabling the application of advanced graph-based learning models such as V-GCN. Experimental evaluation indicates that V-GCN significantly outperforms baseline models such as GCNs, Graph Sample and Aggregation (GraphSAGE), and Graph Attention Networks (GATs). In node classification, V-GCN achieved a 10% higher F1-score (0.845), with precision reaching 83.7%, and a balanced accuracy of 84.2%, underscoring its ability to handle uncertainty and adapt to changing network structures in dynamic environments. V-GCN achieved a 15% improvement in AUC-ROC (0.98), a 12% increase in average precision (0.9357), and a 14% higher F1-score (0.8196) in link prediction tasks compared to baseline models. The V-GCN's integration of probabilistic modelling and graph convolution sets a new benchmark for dynamic network traffic analysis, providing a superior solution to real-world challenges in cybersecurity, social network analysis and beyond.
Author Musa, Shahrulniza
Alanazi, Meshari H.
Zuhairi, Megat F.
Namoun, Abdallah
Mir, Aabid A.
Author_xml – sequence: 1
  givenname: Aabid A.
  orcidid: 0000-0003-1502-9335
  surname: Mir
  fullname: Mir, Aabid A.
  organization: Malaysian Institute of Information Technology, Universiti Kuala Lumpur, Kuala Lumpur, Malaysia
– sequence: 2
  givenname: Megat F.
  orcidid: 0000-0003-4418-8562
  surname: Zuhairi
  fullname: Zuhairi, Megat F.
  email: megatfarez@unikl.edu.my
  organization: Malaysian Institute of Information Technology, Universiti Kuala Lumpur, Kuala Lumpur, Malaysia
– sequence: 3
  givenname: Shahrulniza
  orcidid: 0000-0003-4867-5085
  surname: Musa
  fullname: Musa, Shahrulniza
  organization: Malaysian Institute of Information Technology, Universiti Kuala Lumpur, Kuala Lumpur, Malaysia
– sequence: 4
  givenname: Meshari H.
  orcidid: 0009-0001-9256-3665
  surname: Alanazi
  fullname: Alanazi, Meshari H.
  organization: Department of Computer Science, Northern Border University, Arar, Saudi Arabia
– sequence: 5
  givenname: Abdallah
  orcidid: 0000-0002-7050-0532
  surname: Namoun
  fullname: Namoun, Abdallah
  organization: AI Centre, Faculty of Computer and Information Systems, Islamic University of Madinah, Madinah, Saudi Arabia
BookMark eNpNkV9PwjAUxRuDiYh8An1Y4jPYv1v3SCYiCdEE1Nem625xCCu2Q8O3dzBiuC-9OTm_c9Oca9SpXAUI3RI8JASnD6MsGy8WQ4opHzIumWTpBepSEqcDJljcOduvUD-EFW5GNpJIumj-oX2p69JVeh1NvN5-Rpmrftx6d9JeoP51_itE1vnocV_pTWlOxjlsPQSo6iMfzUD7qqyWN-jS6nWA_untofen8Vv2PJi9TqbZaDYwTKT1AAhgTgzYNI8FTURRFJbanOCcGqxpTjiWEniSC6KxMWmcgyUEhOYc4tga1kPTNrdweqW2vtxov1dOl-ooOL9U2telWYOiWEgptRZSiAY3ssCQWGx4Cs0ZIZus-zZr6933DkKtVm7nm_8HxQjlksZckMbFWpfxLgQP9v8qwerQhWq7UIcu1KmLhrprqRIAzoiEMpoy9gefdYeA
CODEN IAECCG
Cites_doi 10.3390/info12030113
10.1016/j.procs.2016.04.102
10.3390/sym15061182
10.1109/ACCESS.2022.3175981
10.1007/978-981-16-6054-2_10
10.1016/j.ijforecast.2008.08.008
10.1016/j.physrep.2021.10.006
10.1109/TITS.2019.2935152
10.1109/TNNLS.2021.3084957
10.1038/s41598-021-86059-8
10.1109/DSAA.2017.26
10.1016/j.jocs.2022.101695
10.1155/2023/8342104
10.1093/acprof:oso/9780199641178.001.0001
10.48550/arXiv.1312.6114
10.3390/s21051809
10.1007/978-3-319-93417-4_38
10.1016/j.neunet.2024.106120
10.2307/j.ctv14jx6sm
10.1109/TNN.2008.2005605
10.14569/IJACSA.2023.0141162
10.1007/s00354-019-00065-z
10.1609/aaai.v34i04.5984
10.1016/j.jisa.2022.103149
10.1007/978-0-306-47630-3
10.1016/j.iotcps.2023.12.003
10.1609/aaai.v36i6.20618
10.1002/asi.21664
10.1145/3570906
10.1287/mnsc.38.10.1394
10.1080/17445760.2012.668546
10.1080/01621459.2017.1285773
10.1109/BigData.2018.8621910
10.1109/CISDA.2009.5356528
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2024.3483839
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList

Materials Research Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 161717
ExternalDocumentID oai_doaj_org_article_205888aa585544ec8d0e7f0c49e14058
10_1109_ACCESS_2024_3483839
10723293
Genre orig-research
GrantInformation_xml – fundername: Universiti Kuala Lumpur, with assistance from the Centre of Research and Innovation
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c359t-e1e041cef9b65275dddf2fb10b2c0a2b14088e47b51a0cc96bef11e5a44e66fc3
IEDL.DBID RIE
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001349747900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2169-3536
IngestDate Fri Oct 03 12:53:02 EDT 2025
Mon Jun 30 14:44:38 EDT 2025
Sat Nov 29 08:22:11 EST 2025
Wed Aug 27 01:50:59 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c359t-e1e041cef9b65275dddf2fb10b2c0a2b14088e47b51a0cc96bef11e5a44e66fc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4867-5085
0009-0001-9256-3665
0000-0003-4418-8562
0000-0002-7050-0532
0000-0003-1502-9335
OpenAccessLink https://ieeexplore.ieee.org/document/10723293
PQID 3124826451
PQPubID 4845423
PageCount 21
ParticipantIDs proquest_journals_3124826451
doaj_primary_oai_doaj_org_article_205888aa585544ec8d0e7f0c49e14058
crossref_primary_10_1109_ACCESS_2024_3483839
ieee_primary_10723293
PublicationCentury 2000
PublicationDate 20240000
2024-00-00
20240101
2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 20240000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref12
ref34
ref15
Hamilton (ref27); 30
ref37
ref14
ref31
ref30
ref11
Demyanov (ref13) 2015
ref33
ref10
(ref38) 2023
Kipf (ref2)
ref1
ref17
ref39
ref16
ref18
ref23
Kipf (ref32) 2016
ref26
ref25
ref20
ref42
ref41
ref22
ref21
Chen (ref40) 2020
Rossi (ref24) 2020
ref28
Veličković (ref43)
ref29
ref8
Ryan (ref36) 2023
ref7
ref9
ref4
ref3
ref6
ref5
Armstrong (ref19) 2001
References_xml – ident: ref10
  doi: 10.3390/info12030113
– ident: ref28
  doi: 10.1016/j.procs.2016.04.102
– ident: ref34
  doi: 10.3390/sym15061182
– ident: ref3
  doi: 10.1109/ACCESS.2022.3175981
– ident: ref30
  doi: 10.1007/978-981-16-6054-2_10
– year: 2020
  ident: ref24
  article-title: Temporal graph networks for deep learning on dynamic graphs
  publication-title: arXiv:2006.10637
– ident: ref17
  doi: 10.1016/j.ijforecast.2008.08.008
– ident: ref35
  doi: 10.1016/j.physrep.2021.10.006
– year: 2015
  ident: ref13
  article-title: Regularization methods for neural networks and related models
– ident: ref12
  doi: 10.1109/TITS.2019.2935152
– ident: ref8
  doi: 10.1109/TNNLS.2021.3084957
– ident: ref11
  doi: 10.1038/s41598-021-86059-8
– volume-title: Non-stationarity in time-series analysis: Modeling stochastic and deterministic trends
  year: 2023
  ident: ref36
– ident: ref16
  doi: 10.1109/DSAA.2017.26
– ident: ref31
  doi: 10.1016/j.jocs.2022.101695
– ident: ref39
  doi: 10.1155/2023/8342104
– ident: ref20
  doi: 10.1093/acprof:oso/9780199641178.001.0001
– ident: ref4
  doi: 10.48550/arXiv.1312.6114
– ident: ref1
  doi: 10.3390/s21051809
– ident: ref41
  doi: 10.1007/978-3-319-93417-4_38
– ident: ref14
  doi: 10.1016/j.neunet.2024.106120
– ident: ref21
  doi: 10.2307/j.ctv14jx6sm
– ident: ref23
  doi: 10.1109/TNN.2008.2005605
– ident: ref42
  doi: 10.14569/IJACSA.2023.0141162
– ident: ref9
  doi: 10.1007/s00354-019-00065-z
– year: 2020
  ident: ref40
  article-title: Simple and deep graph convolutional networks
  publication-title: arXiv:2007.02133
– start-page: 1
  volume-title: Proc. ICLR
  ident: ref43
  article-title: Graph attention networks
– ident: ref25
  doi: 10.1609/aaai.v34i04.5984
– volume-title: SIGKDD—KDD Cup. KDD Cup 1999: Computer Network Intrusion Detection
  year: 2023
  ident: ref38
– ident: ref7
  doi: 10.1016/j.jisa.2022.103149
– volume-title: Principles of Forecasting: A Handbook for Researchers and Practitioners
  year: 2001
  ident: ref19
  doi: 10.1007/978-0-306-47630-3
– volume: 30
  start-page: 1025
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref27
  article-title: Inductive representation learning on large graphs
– ident: ref5
  doi: 10.1016/j.iotcps.2023.12.003
– ident: ref22
  doi: 10.1609/aaai.v36i6.20618
– start-page: 1
  volume-title: Proc. 5th Int. Conf. Learn. Represent. (ICLR)
  ident: ref2
  article-title: Semi-supervised classification with graph convolutional networks
– ident: ref29
  doi: 10.1002/asi.21664
– ident: ref6
  doi: 10.1145/3570906
– ident: ref18
  doi: 10.1287/mnsc.38.10.1394
– ident: ref33
  doi: 10.1080/17445760.2012.668546
– year: 2016
  ident: ref32
  article-title: Variational graph auto-encoders
  publication-title: arXiv:1611.07308
– ident: ref15
  doi: 10.1080/01621459.2017.1285773
– ident: ref26
  doi: 10.1109/BigData.2018.8621910
– ident: ref37
  doi: 10.1109/CISDA.2009.5356528
SSID ssj0000816957
Score 2.3262231
Snippet The ubiquitous and ever-evolving nature of cyber threats demands innovative approaches that can adapt to the dynamic relationships and structures within...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage 161697
SubjectTerms Accuracy
Adaptation models
Analytical models
Anomaly detection
Artificial neural networks
Classification
Communications traffic
complex networks
Computer security
Convolution
Cybersecurity
Datasets
deep learning
Dynamic structural analysis
Graph convolutional networks
graph neural networks
Graph representations
Graphical representations
heterogeneous networks
Machine learning
Mathematical models
Modelling
Network analysis
network security
Nodes
Performance evaluation
Predictive models
Probabilistic inference
Probabilistic logic
Probabilistic models
Social networks
Telecommunication traffic
Traffic analysis
Uncertainty
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PT8MgFCZm8aAH448Zq9P04NEqtFDgOKvTg1nMostupKVgvHRmm_v7fVBmajx48UpoKd-jvPeRx_cQuqzBy7iNL2G5cKLanCbgZ3BiayFqoBPEeCml6RMfj8VsJp87pb5cTlgrD9wCB-ScAUkrS-byqajR8AbDLdZUGuAGzF_zxVx2yJTfgwXJJeNBZohgeTMsCpgREMKUXmdUADGTP1yRV-wPJVZ-7cve2Yz20V6IEuNh-3UHaMs0h2i3ox14hCZTYLnhJC9-cLLTcTFv1mElQdu4TfBexhCWxndt4fnQceLTX8OtoyYOGqtvffQ6un8pHpNQICHRGZOrxBCDKdHGyipnKWd1XdvUVgRXqcZlWgFAQhjKK0ZKrLXMK2MJMawEIPPc6uwY9Zp5Y05QzLCuaqENrnlKbe5KU8GDuALfJUtTmghdbbBSH60OhvL8AUvVQqsctCpAG6Fbh-d3Vydi7RvAtCqYVv1l2gj1nTU643GI_2QWocHGPCr8cUuVQaACVIkycvofY5-hHTef9rBlgHqrxac5R9t6vXpfLi78YvsCOF_VAg
  priority: 102
  providerName: Directory of Open Access Journals
Title Variational Graph Convolutional Networks for Dynamic Graph Representation Learning
URI https://ieeexplore.ieee.org/document/10723293
https://www.proquest.com/docview/3124826451
https://doaj.org/article/205888aa585544ec8d0e7f0c49e14058
Volume 12
WOSCitedRecordID wos001349747900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8QwDLYAMcDA8xDHSx0YKSRt0iQjHK8BTggBYqvaxEUsPcQdjPx2nDSHQIiBpaqqRE3jJPbn2p8B9h1pGX_wpbLQnlRbiZT0DEsbp7UjOMExUCk9XKnhUD8-mpuYrB5yYRAxBJ_hob8N__LdyL55VxntcEUGgMlnYVapokvW-nKo-AoSRqrILMSZOToeDOgjCANm4jAXmrCY-aF9Akl_rKry6ygO-uV8-Z8jW4GlaEgmx53kV2EG2zVY_EYvuA63DwSEo7MvufDM1Mlg1L7HxUbPhl0M-DghyzU57WrTx4a3IUI2Jia1SaRhferB_fnZ3eAyjTUUUptLM0mRIxPcYmPqQmZKOuearKk5qzPLqqwmfKU1ClVLXjFrTVFjwznKSggsisbmGzDXjlrchEQyWzttkTmViabw1auoI6tJvZkKK-zDwXRuy5eOKqMMEIOZshNF6UVRRlH04cTP_1dTz3MdHtDElnHbUAdJEL2qpI-mE2hp_aBqmBUGaeRS96HnhfHtfZ0c-rAzFWcZN-W4zMmWITQlJN_6o9s2LPghdi6WHZibvL7hLszb98nz-HUv4HW6Xn-c7YW19wmpUdWy
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB7RBan0wKMtIlAgB46ktRM7sY_LwrJVlwhVperNSuwJ4pJF-_r9HTveqqjiwC2ybMXx2J75JjPfAHx0pGX8xZfJUnlS7UpkpGdY1jmlHMEJjoFK6Xpe1bW6udE_YrJ6yIVBxBB8hqf-MfzLdwu78a4yOuEVGQC62IPHvnRWTNe6c6n4GhJaVpFbiDN9Np5M6DMIBebitBCK0Jj-S_8Emv5YV-XBZRw0zPT5f87tBTyLpmQ6HmT_Eh5hfwgH9wgGj-DymqBwdPel3zw3dTpZ9Nu43aitHqLAVynZrumXoTp97HgZYmRjalKfRiLWX8fwc_r1ajLLYhWFzBZSrzPkyAS32Om2lHklnXNd3rWctbllTd4SwlIKRdVK3jBrddlixznKRggsy84Wr2DUL3p8DalktnXKInNVLrrS16-igawlBacbbDCBT7u1NX8GsgwTQAbTZhCF8aIwURQJfPbrf9fVM12HBlpYEw8ODZAE0ptG-ng6gZZ2EFYds0IjzVyqBI69MO69b5BDAic7cZp4LFemIGuG8JSQ_M0_hn2A_dnV97mZn9cXb-Gpn-7gcDmB0Xq5wXfwxG7Xv1fL92Hv3QLdaNbV
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Variational+Graph+Convolutional+Networks+for+Dynamic+Graph+Representation+Learning&rft.jtitle=IEEE+access&rft.au=Mir%2C+Aabid+A.&rft.au=Zuhairi%2C+Megat+F.&rft.au=Musa%2C+Shahrulniza&rft.au=Alanazi%2C+Meshari+H.&rft.date=2024&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=12&rft.spage=161697&rft.epage=161717&rft_id=info:doi/10.1109%2FACCESS.2024.3483839&rft.externalDocID=10723293
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon