Variational Graph Convolutional Networks for Dynamic Graph Representation Learning
The ubiquitous and ever-evolving nature of cyber threats demands innovative approaches that can adapt to the dynamic relationships and structures within network data. Traditional models struggle to adapt to the constantly changing nature of network traffic, where both structural dependencies and tem...
Uloženo v:
| Vydáno v: | IEEE access Ročník 12; s. 161697 - 161717 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Piscataway
IEEE
2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 2169-3536, 2169-3536 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The ubiquitous and ever-evolving nature of cyber threats demands innovative approaches that can adapt to the dynamic relationships and structures within network data. Traditional models struggle to adapt to the constantly changing nature of network traffic, where both structural dependencies and temporal evolution must be accurately captured to detect anomalies and predict future threats. To address the challenges, this research introduces V-GCN (Variational Graph Convolutional Network), a new model that integrates the probabilistic latent space modelling of Variational Autoencoders (VAEs) with the structural learning capabilities of Graph Convolutional Networks (GCNs). The proposed model is designed to capture both temporal dependencies and uncertainties inherent in dynamic networks, and as such, it is highly suitable for tasks such as link prediction and node classification. The proposed hybrid model encodes node features into a probabilistic latent space using a VAE encoder and refine the representations using GCN layers, that aggregates structural information from neighbouring nodes. The integration of variational inference with graph convolution enables V-GCN to adapt to the dynamic evolution of network traffic and measure the uncertainties in node and edge relationships. The DynKDD dataset, a dynamic adaptation of the NSL-KDD dataset, is developed in this research to evaluate the model performance. The dataset introduces temporal dynamics into the conventional NSL-KDD dataset, enabling the application of advanced graph-based learning models such as V-GCN. Experimental evaluation indicates that V-GCN significantly outperforms baseline models such as GCNs, Graph Sample and Aggregation (GraphSAGE), and Graph Attention Networks (GATs). In node classification, V-GCN achieved a 10% higher F1-score (0.845), with precision reaching 83.7%, and a balanced accuracy of 84.2%, underscoring its ability to handle uncertainty and adapt to changing network structures in dynamic environments. V-GCN achieved a 15% improvement in AUC-ROC (0.98), a 12% increase in average precision (0.9357), and a 14% higher F1-score (0.8196) in link prediction tasks compared to baseline models. The V-GCN's integration of probabilistic modelling and graph convolution sets a new benchmark for dynamic network traffic analysis, providing a superior solution to real-world challenges in cybersecurity, social network analysis and beyond. |
|---|---|
| AbstractList | The ubiquitous and ever-evolving nature of cyber threats demands innovative approaches that can adapt to the dynamic relationships and structures within network data. Traditional models struggle to adapt to the constantly changing nature of network traffic, where both structural dependencies and temporal evolution must be accurately captured to detect anomalies and predict future threats. To address the challenges, this research introduces V-GCN (Variational Graph Convolutional Network), a new model that integrates the probabilistic latent space modelling of Variational Autoencoders (VAEs) with the structural learning capabilities of Graph Convolutional Networks (GCNs). The proposed model is designed to capture both temporal dependencies and uncertainties inherent in dynamic networks, and as such, it is highly suitable for tasks such as link prediction and node classification. The proposed hybrid model encodes node features into a probabilistic latent space using a VAE encoder and refine the representations using GCN layers, that aggregates structural information from neighbouring nodes. The integration of variational inference with graph convolution enables V-GCN to adapt to the dynamic evolution of network traffic and measure the uncertainties in node and edge relationships. The DynKDD dataset, a dynamic adaptation of the NSL-KDD dataset, is developed in this research to evaluate the model performance. The dataset introduces temporal dynamics into the conventional NSL-KDD dataset, enabling the application of advanced graph-based learning models such as V-GCN. Experimental evaluation indicates that V-GCN significantly outperforms baseline models such as GCNs, Graph Sample and Aggregation (GraphSAGE), and Graph Attention Networks (GATs). In node classification, V-GCN achieved a 10% higher F1-score (0.845), with precision reaching 83.7%, and a balanced accuracy of 84.2%, underscoring its ability to handle uncertainty and adapt to changing network structures in dynamic environments. V-GCN achieved a 15% improvement in AUC-ROC (0.98), a 12% increase in average precision (0.9357), and a 14% higher F1-score (0.8196) in link prediction tasks compared to baseline models. The V-GCN's integration of probabilistic modelling and graph convolution sets a new benchmark for dynamic network traffic analysis, providing a superior solution to real-world challenges in cybersecurity, social network analysis and beyond. |
| Author | Musa, Shahrulniza Alanazi, Meshari H. Zuhairi, Megat F. Namoun, Abdallah Mir, Aabid A. |
| Author_xml | – sequence: 1 givenname: Aabid A. orcidid: 0000-0003-1502-9335 surname: Mir fullname: Mir, Aabid A. organization: Malaysian Institute of Information Technology, Universiti Kuala Lumpur, Kuala Lumpur, Malaysia – sequence: 2 givenname: Megat F. orcidid: 0000-0003-4418-8562 surname: Zuhairi fullname: Zuhairi, Megat F. email: megatfarez@unikl.edu.my organization: Malaysian Institute of Information Technology, Universiti Kuala Lumpur, Kuala Lumpur, Malaysia – sequence: 3 givenname: Shahrulniza orcidid: 0000-0003-4867-5085 surname: Musa fullname: Musa, Shahrulniza organization: Malaysian Institute of Information Technology, Universiti Kuala Lumpur, Kuala Lumpur, Malaysia – sequence: 4 givenname: Meshari H. orcidid: 0009-0001-9256-3665 surname: Alanazi fullname: Alanazi, Meshari H. organization: Department of Computer Science, Northern Border University, Arar, Saudi Arabia – sequence: 5 givenname: Abdallah orcidid: 0000-0002-7050-0532 surname: Namoun fullname: Namoun, Abdallah organization: AI Centre, Faculty of Computer and Information Systems, Islamic University of Madinah, Madinah, Saudi Arabia |
| BookMark | eNpNkV9PwjAUxRuDiYh8An1Y4jPYv1v3SCYiCdEE1Nem625xCCu2Q8O3dzBiuC-9OTm_c9Oca9SpXAUI3RI8JASnD6MsGy8WQ4opHzIumWTpBepSEqcDJljcOduvUD-EFW5GNpJIumj-oX2p69JVeh1NvN5-Rpmrftx6d9JeoP51_itE1vnocV_pTWlOxjlsPQSo6iMfzUD7qqyWN-jS6nWA_untofen8Vv2PJi9TqbZaDYwTKT1AAhgTgzYNI8FTURRFJbanOCcGqxpTjiWEniSC6KxMWmcgyUEhOYc4tga1kPTNrdweqW2vtxov1dOl-ooOL9U2telWYOiWEgptRZSiAY3ssCQWGx4Cs0ZIZus-zZr6933DkKtVm7nm_8HxQjlksZckMbFWpfxLgQP9v8qwerQhWq7UIcu1KmLhrprqRIAzoiEMpoy9gefdYeA |
| CODEN | IAECCG |
| Cites_doi | 10.3390/info12030113 10.1016/j.procs.2016.04.102 10.3390/sym15061182 10.1109/ACCESS.2022.3175981 10.1007/978-981-16-6054-2_10 10.1016/j.ijforecast.2008.08.008 10.1016/j.physrep.2021.10.006 10.1109/TITS.2019.2935152 10.1109/TNNLS.2021.3084957 10.1038/s41598-021-86059-8 10.1109/DSAA.2017.26 10.1016/j.jocs.2022.101695 10.1155/2023/8342104 10.1093/acprof:oso/9780199641178.001.0001 10.48550/arXiv.1312.6114 10.3390/s21051809 10.1007/978-3-319-93417-4_38 10.1016/j.neunet.2024.106120 10.2307/j.ctv14jx6sm 10.1109/TNN.2008.2005605 10.14569/IJACSA.2023.0141162 10.1007/s00354-019-00065-z 10.1609/aaai.v34i04.5984 10.1016/j.jisa.2022.103149 10.1007/978-0-306-47630-3 10.1016/j.iotcps.2023.12.003 10.1609/aaai.v36i6.20618 10.1002/asi.21664 10.1145/3570906 10.1287/mnsc.38.10.1394 10.1080/17445760.2012.668546 10.1080/01621459.2017.1285773 10.1109/BigData.2018.8621910 10.1109/CISDA.2009.5356528 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
| DOI | 10.1109/ACCESS.2024.3483839 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Materials Research Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2169-3536 |
| EndPage | 161717 |
| ExternalDocumentID | oai_doaj_org_article_205888aa585544ec8d0e7f0c49e14058 10_1109_ACCESS_2024_3483839 10723293 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Universiti Kuala Lumpur, with assistance from the Centre of Research and Innovation |
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c359t-e1e041cef9b65275dddf2fb10b2c0a2b14088e47b51a0cc96bef11e5a44e66fc3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001349747900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2169-3536 |
| IngestDate | Fri Oct 03 12:53:02 EDT 2025 Mon Jun 30 14:44:38 EDT 2025 Sat Nov 29 08:22:11 EST 2025 Wed Aug 27 01:50:59 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://creativecommons.org/licenses/by-nc-nd/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c359t-e1e041cef9b65275dddf2fb10b2c0a2b14088e47b51a0cc96bef11e5a44e66fc3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-4867-5085 0009-0001-9256-3665 0000-0003-4418-8562 0000-0002-7050-0532 0000-0003-1502-9335 |
| OpenAccessLink | https://ieeexplore.ieee.org/document/10723293 |
| PQID | 3124826451 |
| PQPubID | 4845423 |
| PageCount | 21 |
| ParticipantIDs | proquest_journals_3124826451 doaj_primary_oai_doaj_org_article_205888aa585544ec8d0e7f0c49e14058 crossref_primary_10_1109_ACCESS_2024_3483839 ieee_primary_10723293 |
| PublicationCentury | 2000 |
| PublicationDate | 20240000 2024-00-00 20240101 2024-01-01 |
| PublicationDateYYYYMMDD | 2024-01-01 |
| PublicationDate_xml | – year: 2024 text: 20240000 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE access |
| PublicationTitleAbbrev | Access |
| PublicationYear | 2024 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref35 ref12 ref34 ref15 Hamilton (ref27); 30 ref37 ref14 ref31 ref30 ref11 Demyanov (ref13) 2015 ref33 ref10 (ref38) 2023 Kipf (ref2) ref1 ref17 ref39 ref16 ref18 ref23 Kipf (ref32) 2016 ref26 ref25 ref20 ref42 ref41 ref22 ref21 Chen (ref40) 2020 Rossi (ref24) 2020 ref28 Veličković (ref43) ref29 ref8 Ryan (ref36) 2023 ref7 ref9 ref4 ref3 ref6 ref5 Armstrong (ref19) 2001 |
| References_xml | – ident: ref10 doi: 10.3390/info12030113 – ident: ref28 doi: 10.1016/j.procs.2016.04.102 – ident: ref34 doi: 10.3390/sym15061182 – ident: ref3 doi: 10.1109/ACCESS.2022.3175981 – ident: ref30 doi: 10.1007/978-981-16-6054-2_10 – year: 2020 ident: ref24 article-title: Temporal graph networks for deep learning on dynamic graphs publication-title: arXiv:2006.10637 – ident: ref17 doi: 10.1016/j.ijforecast.2008.08.008 – ident: ref35 doi: 10.1016/j.physrep.2021.10.006 – year: 2015 ident: ref13 article-title: Regularization methods for neural networks and related models – ident: ref12 doi: 10.1109/TITS.2019.2935152 – ident: ref8 doi: 10.1109/TNNLS.2021.3084957 – ident: ref11 doi: 10.1038/s41598-021-86059-8 – volume-title: Non-stationarity in time-series analysis: Modeling stochastic and deterministic trends year: 2023 ident: ref36 – ident: ref16 doi: 10.1109/DSAA.2017.26 – ident: ref31 doi: 10.1016/j.jocs.2022.101695 – ident: ref39 doi: 10.1155/2023/8342104 – ident: ref20 doi: 10.1093/acprof:oso/9780199641178.001.0001 – ident: ref4 doi: 10.48550/arXiv.1312.6114 – ident: ref1 doi: 10.3390/s21051809 – ident: ref41 doi: 10.1007/978-3-319-93417-4_38 – ident: ref14 doi: 10.1016/j.neunet.2024.106120 – ident: ref21 doi: 10.2307/j.ctv14jx6sm – ident: ref23 doi: 10.1109/TNN.2008.2005605 – ident: ref42 doi: 10.14569/IJACSA.2023.0141162 – ident: ref9 doi: 10.1007/s00354-019-00065-z – year: 2020 ident: ref40 article-title: Simple and deep graph convolutional networks publication-title: arXiv:2007.02133 – start-page: 1 volume-title: Proc. ICLR ident: ref43 article-title: Graph attention networks – ident: ref25 doi: 10.1609/aaai.v34i04.5984 – volume-title: SIGKDD—KDD Cup. KDD Cup 1999: Computer Network Intrusion Detection year: 2023 ident: ref38 – ident: ref7 doi: 10.1016/j.jisa.2022.103149 – volume-title: Principles of Forecasting: A Handbook for Researchers and Practitioners year: 2001 ident: ref19 doi: 10.1007/978-0-306-47630-3 – volume: 30 start-page: 1025 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref27 article-title: Inductive representation learning on large graphs – ident: ref5 doi: 10.1016/j.iotcps.2023.12.003 – ident: ref22 doi: 10.1609/aaai.v36i6.20618 – start-page: 1 volume-title: Proc. 5th Int. Conf. Learn. Represent. (ICLR) ident: ref2 article-title: Semi-supervised classification with graph convolutional networks – ident: ref29 doi: 10.1002/asi.21664 – ident: ref6 doi: 10.1145/3570906 – ident: ref18 doi: 10.1287/mnsc.38.10.1394 – ident: ref33 doi: 10.1080/17445760.2012.668546 – year: 2016 ident: ref32 article-title: Variational graph auto-encoders publication-title: arXiv:1611.07308 – ident: ref15 doi: 10.1080/01621459.2017.1285773 – ident: ref26 doi: 10.1109/BigData.2018.8621910 – ident: ref37 doi: 10.1109/CISDA.2009.5356528 |
| SSID | ssj0000816957 |
| Score | 2.3262231 |
| Snippet | The ubiquitous and ever-evolving nature of cyber threats demands innovative approaches that can adapt to the dynamic relationships and structures within... |
| SourceID | doaj proquest crossref ieee |
| SourceType | Open Website Aggregation Database Index Database Publisher |
| StartPage | 161697 |
| SubjectTerms | Accuracy Adaptation models Analytical models Anomaly detection Artificial neural networks Classification Communications traffic complex networks Computer security Convolution Cybersecurity Datasets deep learning Dynamic structural analysis Graph convolutional networks graph neural networks Graph representations Graphical representations heterogeneous networks Machine learning Mathematical models Modelling Network analysis network security Nodes Performance evaluation Predictive models Probabilistic inference Probabilistic logic Probabilistic models Social networks Telecommunication traffic Traffic analysis Uncertainty |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PT8MgFCZm8aAH448Zq9P04NEqtFDgOKvTg1nMostupKVgvHRmm_v7fVBmajx48UpoKd-jvPeRx_cQuqzBy7iNL2G5cKLanCbgZ3BiayFqoBPEeCml6RMfj8VsJp87pb5cTlgrD9wCB-ScAUkrS-byqajR8AbDLdZUGuAGzF_zxVx2yJTfgwXJJeNBZohgeTMsCpgREMKUXmdUADGTP1yRV-wPJVZ-7cve2Yz20V6IEuNh-3UHaMs0h2i3ox14hCZTYLnhJC9-cLLTcTFv1mElQdu4TfBexhCWxndt4fnQceLTX8OtoyYOGqtvffQ6un8pHpNQICHRGZOrxBCDKdHGyipnKWd1XdvUVgRXqcZlWgFAQhjKK0ZKrLXMK2MJMawEIPPc6uwY9Zp5Y05QzLCuaqENrnlKbe5KU8GDuALfJUtTmghdbbBSH60OhvL8AUvVQqsctCpAG6Fbh-d3Vydi7RvAtCqYVv1l2gj1nTU643GI_2QWocHGPCr8cUuVQaACVIkycvofY5-hHTef9rBlgHqrxac5R9t6vXpfLi78YvsCOF_VAg priority: 102 providerName: Directory of Open Access Journals |
| Title | Variational Graph Convolutional Networks for Dynamic Graph Representation Learning |
| URI | https://ieeexplore.ieee.org/document/10723293 https://www.proquest.com/docview/3124826451 https://doaj.org/article/205888aa585544ec8d0e7f0c49e14058 |
| Volume | 12 |
| WOSCitedRecordID | wos001349747900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8QwDLYAMcDA8xDHSx0YKSRt0iQjHK8BTggBYqvaxEUsPcQdjPx2nDSHQIiBpaqqRE3jJPbn2p8B9h1pGX_wpbLQnlRbiZT0DEsbp7UjOMExUCk9XKnhUD8-mpuYrB5yYRAxBJ_hob8N__LdyL55VxntcEUGgMlnYVapokvW-nKo-AoSRqrILMSZOToeDOgjCANm4jAXmrCY-aF9Akl_rKry6ygO-uV8-Z8jW4GlaEgmx53kV2EG2zVY_EYvuA63DwSEo7MvufDM1Mlg1L7HxUbPhl0M-DghyzU57WrTx4a3IUI2Jia1SaRhferB_fnZ3eAyjTUUUptLM0mRIxPcYmPqQmZKOuearKk5qzPLqqwmfKU1ClVLXjFrTVFjwznKSggsisbmGzDXjlrchEQyWzttkTmViabw1auoI6tJvZkKK-zDwXRuy5eOKqMMEIOZshNF6UVRRlH04cTP_1dTz3MdHtDElnHbUAdJEL2qpI-mE2hp_aBqmBUGaeRS96HnhfHtfZ0c-rAzFWcZN-W4zMmWITQlJN_6o9s2LPghdi6WHZibvL7hLszb98nz-HUv4HW6Xn-c7YW19wmpUdWy |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB7RBan0wKMtIlAgB46ktRM7sY_LwrJVlwhVperNSuwJ4pJF-_r9HTveqqjiwC2ybMXx2J75JjPfAHx0pGX8xZfJUnlS7UpkpGdY1jmlHMEJjoFK6Xpe1bW6udE_YrJ6yIVBxBB8hqf-MfzLdwu78a4yOuEVGQC62IPHvnRWTNe6c6n4GhJaVpFbiDN9Np5M6DMIBebitBCK0Jj-S_8Emv5YV-XBZRw0zPT5f87tBTyLpmQ6HmT_Eh5hfwgH9wgGj-DymqBwdPel3zw3dTpZ9Nu43aitHqLAVynZrumXoTp97HgZYmRjalKfRiLWX8fwc_r1ajLLYhWFzBZSrzPkyAS32Om2lHklnXNd3rWctbllTd4SwlIKRdVK3jBrddlixznKRggsy84Wr2DUL3p8DalktnXKInNVLrrS16-igawlBacbbDCBT7u1NX8GsgwTQAbTZhCF8aIwURQJfPbrf9fVM12HBlpYEw8ODZAE0ptG-ng6gZZ2EFYds0IjzVyqBI69MO69b5BDAic7cZp4LFemIGuG8JSQ_M0_hn2A_dnV97mZn9cXb-Gpn-7gcDmB0Xq5wXfwxG7Xv1fL92Hv3QLdaNbV |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Variational+Graph+Convolutional+Networks+for+Dynamic+Graph+Representation+Learning&rft.jtitle=IEEE+access&rft.au=Mir%2C+Aabid+A.&rft.au=Zuhairi%2C+Megat+F.&rft.au=Musa%2C+Shahrulniza&rft.au=Alanazi%2C+Meshari+H.&rft.date=2024&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=12&rft.spage=161697&rft.epage=161717&rft_id=info:doi/10.1109%2FACCESS.2024.3483839&rft.externalDocID=10723293 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |