An evolutionary deep neural network for predicting morbidity of gastrointestinal infections by food contamination

A majority of gastrointestinal infectious diseases are caused by food contamination, and prediction of morbidity can be very useful for etiological factor controlling and medical resource utilization. However, an accurate prediction is often very difficult not only because there are various types of...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Neurocomputing (Amsterdam) Ročník 226; s. 16 - 22
Hlavní autori: Song, Qin, Zheng, Yu-Jun, Xue, Yu, Sheng, Wei-Guo, Zhao, Mei-Rong
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier B.V 22.02.2017
Predmet:
ISSN:0925-2312, 1872-8286
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract A majority of gastrointestinal infectious diseases are caused by food contamination, and prediction of morbidity can be very useful for etiological factor controlling and medical resource utilization. However, an accurate prediction is often very difficult not only because there are various types of food and contaminants, but also because the relationship between the diseases and the contaminants is highly complex and probabilistic. In this study, we use the deep denoising autoencoder (DDAE) to model the effect of food contamination on gastrointestinal infections, and thus provide a valuable tool for morbidity prediction. For effectively training the model with high-dimensional input data, we propose an evolutionary learning algorithm based on ecogeography-based optimization (EBO) in order to avoid premature convergence. Experimental results show that our evolutionary deep learning model obtains a much higher prediction accuracy than the shallow artificial neural network (ANN) model and the DDAE with other learning algorithms on a real-world dataset. •A deep neural network is developed predicting gastrointestinal morbidity.•An evolutionary algorithm is proposed for training the network.•A higher prediction accuracy is obtained on a real-world dataset.
AbstractList A majority of gastrointestinal infectious diseases are caused by food contamination, and prediction of morbidity can be very useful for etiological factor controlling and medical resource utilization. However, an accurate prediction is often very difficult not only because there are various types of food and contaminants, but also because the relationship between the diseases and the contaminants is highly complex and probabilistic. In this study, we use the deep denoising autoencoder (DDAE) to model the effect of food contamination on gastrointestinal infections, and thus provide a valuable tool for morbidity prediction. For effectively training the model with high-dimensional input data, we propose an evolutionary learning algorithm based on ecogeography-based optimization (EBO) in order to avoid premature convergence. Experimental results show that our evolutionary deep learning model obtains a much higher prediction accuracy than the shallow artificial neural network (ANN) model and the DDAE with other learning algorithms on a real-world dataset. •A deep neural network is developed predicting gastrointestinal morbidity.•An evolutionary algorithm is proposed for training the network.•A higher prediction accuracy is obtained on a real-world dataset.
Author Zheng, Yu-Jun
Sheng, Wei-Guo
Song, Qin
Zhao, Mei-Rong
Xue, Yu
Author_xml – sequence: 1
  givenname: Qin
  surname: Song
  fullname: Song, Qin
  organization: College of Environmental Engineering, Zhejiang University of Technology, Hangzhou 310014, China
– sequence: 2
  givenname: Yu-Jun
  surname: Zheng
  fullname: Zheng, Yu-Jun
  email: yujun.zheng@computer.org
  organization: College of Computer Science & Technology, Zhejiang University of Technology, Hangzhou 310023, China
– sequence: 3
  givenname: Yu
  surname: Xue
  fullname: Xue, Yu
  organization: School of Computer & Software, Nanjing University of Information Science & Technology, Nanjing 210044, China
– sequence: 4
  givenname: Wei-Guo
  surname: Sheng
  fullname: Sheng, Wei-Guo
  organization: College of Computer Science & Technology, Zhejiang University of Technology, Hangzhou 310023, China
– sequence: 5
  givenname: Mei-Rong
  surname: Zhao
  fullname: Zhao, Mei-Rong
  organization: College of Environmental Engineering, Zhejiang University of Technology, Hangzhou 310014, China
BookMark eNqFkM9KAzEQh4NUsK2-gYe8wK6ZbHa760Eo4j8oeNFz2E0mJbVNahIrfXtT68mDnoaZ4fsx803IyHmHhFwCK4FBc7UqHX4ovyl57kqAkkF7QsbQznjR8rYZkTHreF3wCvgZmcS4YgxmwLsxeZ87iju__kjWuz7sqUbc0hwX-nUu6dOHN2p8oNuA2qpk3ZJufBistmlPvaHLPqbgrUsY8zJD1hlUh7RIh31GvabKu9Rv8vYwPienpl9HvPipU_J6f_dy-1gsnh-ebueLQlV1lwo9GI3QCKOUqLtaaN60yDjOOiOQqRlC2yjF0dSiM7oBIQbDFQxVJTiwtqqm5PqYq4KPMaCRyqbvC1Lo7VoCkwd5ciWP8uRBngSQWV6GxS94G-wm-_kPuzlimB_bWQwyKotOZXUhS5Ha278DvgCsUJGs
CitedBy_id crossref_primary_10_1080_19393210_2023_2188611
crossref_primary_10_3390_toxics13060453
crossref_primary_10_1109_TII_2018_2870879
crossref_primary_10_3390_ijerph16050838
crossref_primary_10_1109_TNNLS_2020_2979486
crossref_primary_10_1145_3467477
crossref_primary_10_1016_j_inffus_2021_11_006
crossref_primary_10_1016_j_ins_2019_03_023
crossref_primary_10_1108_BFJ_04_2021_0366
crossref_primary_10_1016_j_ecolind_2017_06_037
crossref_primary_10_1016_j_envres_2021_111740
crossref_primary_10_1007_s12161_022_02353_9
crossref_primary_10_1016_j_afres_2025_100924
crossref_primary_10_1051_e3sconf_202339101086
crossref_primary_10_3390_microorganisms10101911
crossref_primary_10_1109_ACCESS_2020_2994327
crossref_primary_10_1111_2041_210X_13256
crossref_primary_10_3390_agriculture11050408
crossref_primary_10_1016_j_inffus_2018_06_002
crossref_primary_10_1080_09637486_2019_1695758
crossref_primary_10_1111_1541_4337_12492
crossref_primary_10_3390_s23010062
crossref_primary_10_1016_j_dcit_2024_100032
crossref_primary_10_1109_TFUZZ_2017_2738605
crossref_primary_10_1016_j_jenvman_2024_120356
crossref_primary_10_1016_j_swevo_2019_100561
crossref_primary_10_1007_s00521_022_07744_x
crossref_primary_10_1016_j_neunet_2018_02_015
crossref_primary_10_1111_1541_4337_12667
crossref_primary_10_1016_j_foodcont_2023_110040
crossref_primary_10_1038_s41538_023_00226_x
crossref_primary_10_1515_ijfe_2021_0299
crossref_primary_10_1007_s10586_017_1122_y
crossref_primary_10_1016_j_drudis_2019_03_003
crossref_primary_10_3389_fphar_2017_00830
crossref_primary_10_3390_informatics8020027
crossref_primary_10_1007_s11063_022_11055_6
crossref_primary_10_1016_j_foodcont_2021_108697
crossref_primary_10_1186_s40001_025_02680_7
crossref_primary_10_1016_j_inffus_2020_10_014
crossref_primary_10_1111_zph_12622
crossref_primary_10_1039_D1RA08311B
crossref_primary_10_1016_j_chemosphere_2022_135593
crossref_primary_10_1016_j_eswa_2018_03_056
crossref_primary_10_1016_j_foodcont_2024_110548
crossref_primary_10_1016_j_neucom_2018_09_001
Cites_doi 10.1016/j.automatica.2015.11.008
10.1016/S0377-2217(99)00435-X
10.7326/0003-4819-135-8_Part_1-200110160-00023
10.1109/TPAMI.2012.269
10.1111/j.1708-8305.1994.tb00563.x
10.1109/ICASSP.2015.7178918
10.1007/s10653-009-9248-3
10.1007/s12559-016-9404-x
10.1016/j.asoc.2015.08.043
10.1007/s00500-013-1209-1
10.1109/TCYB.2016.2514846
10.1016/j.inffus.2016.01.001
10.1016/j.cor.2014.10.008
10.1111/j.1398-9995.1993.tb02402.x
10.1016/j.neunet.2016.01.001
10.1378/chest.122.5.1627
10.1016/j.asoc.2013.07.004
10.1086/520737
10.1016/j.scitotenv.2007.10.058
10.1016/j.neucom.2015.07.148
10.1089/dis.2005.8.42
10.1109/TEVC.2013.2281396
10.1016/j.ins.2014.10.040
10.1109/BMEI.2010.5639268
10.1086/342885
10.1017/S0950268800029988
10.1109/TBC.2015.2419824
10.1016/j.neucom.2014.05.028
10.1109/TEVC.2008.919004
10.1016/j.neucom.2012.08.075
10.1007/0-306-48056-5_16
10.1504/IJEWM.2009.026892
10.1007/s00500-012-0968-4
10.1016/j.tox.2004.01.030
10.1016/j.cor.2014.04.013
10.1016/j.neucom.2016.01.093
10.3233/IFS-141378
10.1109/TNNLS.2016.2609437
10.1080/00207179.2012.756149
10.1109/TSMCB.2012.2199751
10.1016/j.envint.2014.12.010
10.1109/TCBB.2014.2343960
10.1145/1390156.1390294
10.1109/TNNLS.2015.2411615
10.1126/science.1127647
10.1016/j.eswa.2005.09.002
10.1017/S0950268804003218
10.1109/TFUZZ.2014.2337938
10.1109/COMPSAC.2015.63
10.1016/0004-3702(89)90049-0
10.1162/neco.2006.18.7.1527
10.1145/2598394.2602287
10.1109/TNNLS.2016.2544779
10.1016/j.asoc.2015.08.025
10.1007/s10527-013-9331-z
ContentType Journal Article
Copyright 2016 Elsevier B.V.
Copyright_xml – notice: 2016 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.neucom.2016.11.018
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-8286
EndPage 22
ExternalDocumentID 10_1016_j_neucom_2016_11_018
S0925231216313996
GroupedDBID ---
--K
--M
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AADPK
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXLA
AAXUO
AAYFN
ABBOA
ABCQJ
ABFNM
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
KOM
LG9
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSN
SSV
SSZ
T5K
ZMT
~G-
29N
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
HLZ
HVGLF
HZ~
R2-
SBC
SEW
WUQ
XPP
~HD
ID FETCH-LOGICAL-c359t-dbfde164fcc45954d268e02e79f4e0c7e186cc2ef549fd6144bf2c1b334210833
ISICitedReferencesCount 52
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000392037800003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0925-2312
IngestDate Tue Nov 18 20:44:40 EST 2025
Sat Nov 29 03:02:46 EST 2025
Fri Feb 23 02:30:24 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Deep denoising autoencoder (DDAE)
Evolutionary algorithms (EAs)
Neural networks
Morbidity prediction
Gastrointestinal infections
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c359t-dbfde164fcc45954d268e02e79f4e0c7e186cc2ef549fd6144bf2c1b334210833
PageCount 7
ParticipantIDs crossref_citationtrail_10_1016_j_neucom_2016_11_018
crossref_primary_10_1016_j_neucom_2016_11_018
elsevier_sciencedirect_doi_10_1016_j_neucom_2016_11_018
PublicationCentury 2000
PublicationDate 2017-02-22
PublicationDateYYYYMMDD 2017-02-22
PublicationDate_xml – month: 02
  year: 2017
  text: 2017-02-22
  day: 22
PublicationDecade 2010
PublicationTitle Neurocomputing (Amsterdam)
PublicationYear 2017
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References L.H. Keith, Environmental endocrine disruptors: an overview of the analytical challenge, in: Proceedings of the 13th Annual Waste Testing and Quality Assurance Symposium, Arlington, 1997.
S. Lander, Y. Shang, EvoAE – a new evolutionary method for training autoencoders for deep learning networks, in: Proceedings COMPSAC, Vol. 2, Taichung, Taiwan, 2015, pp. 790–795.
Boyce, Havill, Otter, Adams (bib8) 2007; 28
T. Sandholm, C. Brodley, A. Vidovic, M. Sandholm, Comparison of regression methods, symbolic induction methods and neural networks in morbidity diagnosis and mortality prediction in equine gastrointestinal colic., in: In AAAI 1996 Spring Symposium Series, Artificial Intelligence in Medicine, Applications of Current Technologies, Spring, 1996, pp. 154–159.
Y. Luo, Z. Wang, J. Liang, G. Wei, F.E. Alsaadi
B. Gu, X. Sun, V.S. Sheng, Structural Minimax Probability Machine, IEEE Trans. Neural Netw. Learn. Syst. Online first.
Zheng, Ling, Chen, Xue (bib55) 2015; 23
Ashbolt (bib6) 2004; 198
Lu, Song, Wang, Liu, Meng, Sweetman, Jenkins, Ferrier, Li, Luo, Wang (bib12) 2015; 77
Junk, Krein, Helbig (bib22) 2009; 4
O.E. David, I. Greental, Genetic Algorithms for Evolving Deep Neural Networks, in: Proceedings of the GECCO, ACM, Vancouver, Canada, 2014, pp. 1451–1452.
Li, Huang (bib41) 2009
Vincent, Larochelle, Lajoie, Bengio, Manzagol (bib46) 2010; 11
Hu, Root (bib2) 2005; 8
Zeng, Wang, Zhang, Liu, Alsaadi (bib35) 2016; 8
Dmitriev, Kotin (bib16) 2013; 47
Zheng, Ling, Xue (bib40) 2014; 50
Mandic, Chambers (bib13) 2001
Bibi, Nutman, Shoseyov, Shalom, Peled, Kivity, Nutman (bib19) 2002; 122
Gan, Li, Zhai, Liu (bib36) 2014; 144
control for 2-D fuzzy systems with interval time-varying delays and missing measurements, IEEE Trans. Cybern. Online first.
Hu, Wang, Chen, Alsaadi (bib63) 2016; 31
Pan, Zhang, Kwong (bib57) 2015; 61
Spencer, Eickholt, Cheng (bib38) 2015; 12
Zheng, Ling, Wu, Xue (bib52) 2014; 18
Crump, Griffin, Angulo (bib5) 2002; 35
Hinton, Osindero, Teh (bib33) 2006; 18
Zheng, Ling, Xue, Chen (bib59) 2014; 18
Yang, Er, Wang, Tan (bib31) 2016; 199
.
Simon (bib51) 2008; 12
Liu, Wang, Liang, Liu (bib26) 2013; 43
Zheng, Ling (bib58) 2013; 17
Zheng, Xu, Ling, Chen (bib60) 2015; 148
Y.X. Ma, S.G. Wang, The application of artificial neural network in the forecasting on incidence of a disease, in: Proceedings of the 3rd International Conference on Biomedical Engineering and Informatics, Vol. 3, 2010, pp. 1269–1272.
Wang, Liu, Pan (bib21) 2008; 391
Zheng (bib65) 2015; 55
Tian, Li, Chen, Feng (bib29) 2016; 27
Hinton (bib44) 1989; 40
Hu, Wang, Liu, Gao (bib62) 2016; 64
Huang, Zeng, Wan, Chen (bib17) 2016; 204
Mølbak, Højlyng, Jepsen, Gaarslev (bib3) 1989; 102
A.G. Tettamanzi, M. Tomassini, Soft Computing: Integrating Evolutionary, Neural, and Fuzzy Systems, Springer Verlag, Berlin Heidelberg, 2013.
Hertz, Kobler (bib56) 2000; 126
Moseholm, Taudorf, Frøsig (bib18) 1993; 48
Luo, Wang, Wei, Alsaadi, Hayat (bib30) 2016; 77
E. Burke, E. Hart, G. Kendall, J. Newall, P. Ross, S. Schulenburg, Hyper-heuristics: An emerging direction in modern research technolology, in: F. Glover, G. Kochenberger (Eds.), Handbook of Metaheuristics, Kluwer, 2003, Ch. 16, pp. 457–474.
Gallimore, Pipkin, Shrimpton, Green, Pickford, McCartney, Sutherland, Brown, Gray (bib7) 2005; 133
Salakhutdinov, Tenenbaum, Torralba (bib34) 2013; 35
Wu, Wu, Wang, Zhou (bib20) 2006; 17
Zheng, Song, Chen (bib9) 2013; 13
T. Shinozaki, S. Watanabe, Structure discovery of deep neural network based on evolutionary algorithms, in: Proceedings of the ICASSP, Brisbane, Australia, 2015, pp. 4979–4983.
Lv, Duan, Kang, Li, Wang (bib37) 2015; 16
Mathewson (bib4) 1994; 1
Zhou, Li, Dai (bib42) 2014
M. Wang, Z. Wang, D. Bao, et al., Food Contamination Monitoring and Analysis in 2000 in China, Chin. J. Food Hyg.
Zhuang, Zou, Li, Li (bib11) 2009; 31
Ijjina, Mohan (bib39) 2016; 46
Reynolds (bib1) 2001; 135
Wen, Shao, Xue, Fang (bib27) 2015; 295
Zheng, Jeon, Xu, Wu, Zhang (bib54) 2015; 28
Hu, Wang, Shen, Gao (bib61) 2013; 86
Y.J. Zheng, W.G. Sheng, X.M. Sun, S.Y. Chen, Airline passenger profiling based on fuzzy deep machine learning, IEEE Trans. Neural Netw. Learn. Syst. Online first.
P. Vincent, H. Larochelle, Y. Bengio, P.-A. Manzagol, Extracting and composing robust features with denoising autoencoders, in: Proceedings of the 25th International Conference on Machine Learning, ACM, New York, NY, USA, 2008, pp. 1096–1103.
Ture, Kurt (bib15) 2006; 31
Hinton, Salakhutdinov (bib32) 2006; 313
ao Paulo Papa, Scheirer, Cox (bib50) 2016; 46
Reynolds (10.1016/j.neucom.2016.11.018_bib1) 2001; 135
Hu (10.1016/j.neucom.2016.11.018_bib2) 2005; 8
Zheng (10.1016/j.neucom.2016.11.018_bib9) 2013; 13
Zheng (10.1016/j.neucom.2016.11.018_bib55) 2015; 23
Tian (10.1016/j.neucom.2016.11.018_bib29) 2016; 27
Hertz (10.1016/j.neucom.2016.11.018_bib56) 2000; 126
Zheng (10.1016/j.neucom.2016.11.018_bib65) 2015; 55
10.1016/j.neucom.2016.11.018_bib43
Mandic (10.1016/j.neucom.2016.11.018_bib13) 2001
10.1016/j.neucom.2016.11.018_bib45
10.1016/j.neucom.2016.11.018_bib48
10.1016/j.neucom.2016.11.018_bib47
Zheng (10.1016/j.neucom.2016.11.018_bib59) 2014; 18
10.1016/j.neucom.2016.11.018_bib49
Zheng (10.1016/j.neucom.2016.11.018_bib60) 2015; 148
Hinton (10.1016/j.neucom.2016.11.018_bib33) 2006; 18
Zheng (10.1016/j.neucom.2016.11.018_bib52) 2014; 18
Liu (10.1016/j.neucom.2016.11.018_bib26) 2013; 43
Spencer (10.1016/j.neucom.2016.11.018_bib38) 2015; 12
Wu (10.1016/j.neucom.2016.11.018_bib20) 2006; 17
Ijjina (10.1016/j.neucom.2016.11.018_bib39) 2016; 46
Zheng (10.1016/j.neucom.2016.11.018_bib58) 2013; 17
Junk (10.1016/j.neucom.2016.11.018_bib22) 2009; 4
10.1016/j.neucom.2016.11.018_bib53
Gallimore (10.1016/j.neucom.2016.11.018_bib7) 2005; 133
10.1016/j.neucom.2016.11.018_bib10
Wang (10.1016/j.neucom.2016.11.018_bib21) 2008; 391
Moseholm (10.1016/j.neucom.2016.11.018_bib18) 1993; 48
10.1016/j.neucom.2016.11.018_bib14
Gan (10.1016/j.neucom.2016.11.018_bib36) 2014; 144
Hu (10.1016/j.neucom.2016.11.018_bib62) 2016; 64
Hinton (10.1016/j.neucom.2016.11.018_bib32) 2006; 313
ao Paulo Papa (10.1016/j.neucom.2016.11.018_bib50) 2016; 46
Zhou (10.1016/j.neucom.2016.11.018_bib42) 2014
Bibi (10.1016/j.neucom.2016.11.018_bib19) 2002; 122
Salakhutdinov (10.1016/j.neucom.2016.11.018_bib34) 2013; 35
10.1016/j.neucom.2016.11.018_bib64
Wen (10.1016/j.neucom.2016.11.018_bib27) 2015; 295
Zeng (10.1016/j.neucom.2016.11.018_bib35) 2016; 8
Li (10.1016/j.neucom.2016.11.018_bib41) 2009
Zheng (10.1016/j.neucom.2016.11.018_bib54) 2015; 28
10.1016/j.neucom.2016.11.018_bib24
Hinton (10.1016/j.neucom.2016.11.018_bib44) 1989; 40
Hu (10.1016/j.neucom.2016.11.018_bib61) 2013; 86
10.1016/j.neucom.2016.11.018_bib23
Pan (10.1016/j.neucom.2016.11.018_bib57) 2015; 61
Boyce (10.1016/j.neucom.2016.11.018_bib8) 2007; 28
Lu (10.1016/j.neucom.2016.11.018_bib12) 2015; 77
10.1016/j.neucom.2016.11.018_bib25
10.1016/j.neucom.2016.11.018_bib28
Ashbolt (10.1016/j.neucom.2016.11.018_bib6) 2004; 198
Zhuang (10.1016/j.neucom.2016.11.018_bib11) 2009; 31
Huang (10.1016/j.neucom.2016.11.018_bib17) 2016; 204
Mathewson (10.1016/j.neucom.2016.11.018_bib4) 1994; 1
Dmitriev (10.1016/j.neucom.2016.11.018_bib16) 2013; 47
Yang (10.1016/j.neucom.2016.11.018_bib31) 2016; 199
Simon (10.1016/j.neucom.2016.11.018_bib51) 2008; 12
Luo (10.1016/j.neucom.2016.11.018_bib30) 2016; 77
Ture (10.1016/j.neucom.2016.11.018_bib15) 2006; 31
Zheng (10.1016/j.neucom.2016.11.018_bib40) 2014; 50
Crump (10.1016/j.neucom.2016.11.018_bib5) 2002; 35
Hu (10.1016/j.neucom.2016.11.018_bib63) 2016; 31
Mølbak (10.1016/j.neucom.2016.11.018_bib3) 1989; 102
Vincent (10.1016/j.neucom.2016.11.018_bib46) 2010; 11
Lv (10.1016/j.neucom.2016.11.018_bib37) 2015; 16
References_xml – volume: 35
  start-page: 859
  year: 2002
  end-page: 865
  ident: bib5
  article-title: Bacterial contamination of animal feed and its relationship to human foodborne illness
  publication-title: Clin. Infect. Dis.
– volume: 295
  start-page: 395
  year: 2015
  end-page: 406
  ident: bib27
  article-title: A rapid learning algorithm for vehicle classification
  publication-title: Inform. Sci.
– volume: 102
  start-page: 309
  year: 1989
  end-page: 316
  ident: bib3
  article-title: Bacterial contamination of stored water and stored food: a potential source of diarrhoeal disease in West Africa
  publication-title: Epidemiol. Infect.
– reference: T. Shinozaki, S. Watanabe, Structure discovery of deep neural network based on evolutionary algorithms, in: Proceedings of the ICASSP, Brisbane, Australia, 2015, pp. 4979–4983. 〈
– volume: 17
  start-page: 223
  year: 2006
  end-page: 226
  ident: bib20
  article-title: Prediction for incidence of hemorrhagic fever with renal syndrome with back propagation artificial neural network model
  publication-title: Chin. J. Vector Bio Control
– volume: 122
  start-page: 1627
  year: 2002
  end-page: 1632
  ident: bib19
  article-title: Prediction of emergency department visits for respiratory symptoms using an artificial neural network
  publication-title: Chest
– volume: 16
  start-page: 865
  year: 2015
  end-page: 873
  ident: bib37
  article-title: Traffic flow prediction with big data: a deep learning approach
  publication-title: IEEE Trans. Intell. Transp. Syst.
– reference: E. Burke, E. Hart, G. Kendall, J. Newall, P. Ross, S. Schulenburg, Hyper-heuristics: An emerging direction in modern research technolology, in: F. Glover, G. Kochenberger (Eds.), Handbook of Metaheuristics, Kluwer, 2003, Ch. 16, pp. 457–474.
– volume: 204
  start-page: 125
  year: 2016
  end-page: 134
  ident: bib17
  article-title: Medical media analytics via ranking and big learning: a multi-modality image-based disease severity prediction study
  publication-title: Neurocomputing
– volume: 199
  start-page: 31
  year: 2016
  end-page: 39
  ident: bib31
  article-title: An RBF neural network approach towards precision motion system with selective sensor fusion
  publication-title: Neurocomputing
– volume: 77
  start-page: 5
  year: 2015
  end-page: 15
  ident: bib12
  article-title: Impacts of soil and water pollution on food safety and health risks in China
  publication-title: Environ. Int.
– reference: Y. Luo, Z. Wang, J. Liang, G. Wei, F.E. Alsaadi,
– volume: 55
  start-page: 1
  year: 2015
  end-page: 11
  ident: bib65
  article-title: Water wave optimization: a new nature inspired metaheuristic
  publication-title: Comput. Oper. Res.
– reference: B. Gu, X. Sun, V.S. Sheng, Structural Minimax Probability Machine, IEEE Trans. Neural Netw. Learn. Syst. Online first. 〈
– volume: 11
  start-page: 3371
  year: 2010
  end-page: 3408
  ident: bib46
  article-title: Stacked denoising autoencoders learning useful representations in a deep network with a local denoising criterion
  publication-title: J. Mach. Learn. Res.
– volume: 13
  start-page: 4253
  year: 2013
  end-page: 4263
  ident: bib9
  article-title: Multiobjective fireworks optimization for variable-rate fertilization in oil crop production
  publication-title: Appl. Soft Comput.
– volume: 28
  start-page: 1142
  year: 2007
  end-page: 1147
  ident: bib8
  article-title: Widespread environmental contamination associated with patients with diarrhea and methicillin-resistant Staphylococcus aureus colonization of the gastrointestinal tract
  publication-title: Infect. Control Hosp. Epidemiol.
– volume: 86
  start-page: 650
  year: 2013
  end-page: 663
  ident: bib61
  article-title: Quantised recursive filtering for a class of nonlinear systems with multiplicative noises and missing measurements
  publication-title: Int. J. Control
– reference: P. Vincent, H. Larochelle, Y. Bengio, P.-A. Manzagol, Extracting and composing robust features with denoising autoencoders, in: Proceedings of the 25th International Conference on Machine Learning, ACM, New York, NY, USA, 2008, pp. 1096–1103. 〈
– volume: 35
  start-page: 1958
  year: 2013
  end-page: 1971
  ident: bib34
  article-title: Learning with hierarchical-deep models
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 77
  start-page: 70
  year: 2016
  end-page: 79
  ident: bib30
  article-title: State estimation for a class of artificial neural networks with stochastically corrupted measurements under round-robin protocol
  publication-title: Neural Netw.
– reference: 〉.
– volume: 126
  start-page: 1
  year: 2000
  end-page: 12
  ident: bib56
  article-title: A framework for the description of evolutionary algorithms
  publication-title: Eur. J. Oper. Res.
– volume: 148
  start-page: 75
  year: 2015
  end-page: 82
  ident: bib60
  article-title: A hybrid fireworks optimization method with differential evolution operators
  publication-title: Neurocomputing
– volume: 12
  start-page: 103
  year: 2015
  end-page: 112
  ident: bib38
  article-title: A deep learning network approach to ab initio protein secondary structure prediction
  publication-title: IEEE/ACM Trans. Comput. Biol. Bioinforma.
– volume: 8
  start-page: 42
  year: 2005
  end-page: 47
  ident: bib2
  article-title: Accuracy of prediction models in the context of disease management
  publication-title: Dis. Manag.
– volume: 4
  start-page: 197
  year: 2009
  end-page: 212
  ident: bib22
  article-title: Mortality rates and air pollution levels under different weather conditions: an example from Western Europe
  publication-title: Int. J. Environ. Waste Manag.
– volume: 46
  start-page: 936
  year: 2016
  end-page: 952
  ident: bib39
  article-title: Hybrid deep neural network model for human action recognition
  publication-title: Appl. Soft Comput.
– volume: 43
  start-page: 102
  year: 2013
  end-page: 114
  ident: bib26
  article-title: Synchronization of coupled neutral-type neural networks with jumping-mode-dependent discrete and unbounded distributed delays
  publication-title: IEEE Trans. Cyber
– volume: 18
  start-page: 2323
  year: 2014
  end-page: 2334
  ident: bib52
  article-title: Localized biogeography-based optimization
  publication-title: Soft Comput.
– volume: 23
  start-page: 1070
  year: 2015
  end-page: 1083
  ident: bib55
  article-title: A hybrid neuro-fuzzy network based on differential biogeography-based optimization for online population classification in earthquakes
  publication-title: IEEE Trans. Fuzzy Syst.
– volume: 40
  start-page: 185
  year: 1989
  end-page: 234
  ident: bib44
  article-title: Connectionist learning procedures
  publication-title: Artif. Intell.
– reference: S. Lander, Y. Shang, EvoAE – a new evolutionary method for training autoencoders for deep learning networks, in: Proceedings COMPSAC, Vol. 2, Taichung, Taiwan, 2015, pp. 790–795. 〈
– volume: 18
  start-page: 1527
  year: 2006
  end-page: 1554
  ident: bib33
  article-title: A fast learning algorithm for deep belief nets
  publication-title: Neural Comput.
– volume: 313
  start-page: 504
  year: 2006
  end-page: 507
  ident: bib32
  article-title: Reducing the dimensionality of data with neural networks
  publication-title: Science
– volume: 50
  start-page: 115
  year: 2014
  end-page: 127
  ident: bib40
  article-title: Ecogeography-based optimization enhancing biogeography-based optimization with ecogeographic barriers and differentiations
  publication-title: Comput. Oper. Res.
– year: 2001
  ident: bib13
  article-title: Recurrent Neural Networks for Prediction: Learning Algorithms, Architectures and Stability
– volume: 31
  start-page: 41
  year: 2006
  end-page: 46
  ident: bib15
  article-title: Comparison of four different time series methods to forecast hepatitis a virus infection
  publication-title: Expert Syst. Appl.
– year: 2009
  ident: bib41
  article-title: Mannual of Organic Pesticides and Intermediate Mass Spectrum
– reference: L.H. Keith, Environmental endocrine disruptors: an overview of the analytical challenge, in: Proceedings of the 13th Annual Waste Testing and Quality Assurance Symposium, Arlington, 1997.
– volume: 64
  start-page: 155
  year: 2016
  end-page: 162
  ident: bib62
  article-title: A variance-constrained approach to recursive state estimation for time-varying complex networks with missing measurements
  publication-title: Automatica
– volume: 144
  start-page: 295
  year: 2014
  end-page: 303
  ident: bib36
  article-title: Deep self-taught learning for facial beauty prediction
  publication-title: Neurocomputing
– volume: 198
  start-page: 229
  year: 2004
  end-page: 238
  ident: bib6
  article-title: Microbial contamination of drinking water and disease outcomes in developing regions
  publication-title: Toxicol
– reference: M. Wang, Z. Wang, D. Bao, et al., Food Contamination Monitoring and Analysis in 2000 in China, Chin. J. Food Hyg.
– volume: 391
  start-page: 143
  year: 2008
  end-page: 148
  ident: bib21
  article-title: Atmosphere pollutants and mortality rate of respiratory diseases in beijing
  publication-title: Sci. Total Environ.
– volume: 31
  start-page: 707
  year: 2009
  end-page: 715
  ident: bib11
  article-title: Heavy metal contamination in soils and food crops around Dabaoshan mine in Guangdong, China: implication for human health
  publication-title: Environ. Geochem. Health
– year: 2014
  ident: bib42
  article-title: Heterocyclic Pesticides: Herbicides
– volume: 133
  start-page: 41
  year: 2005
  end-page: 47
  ident: bib7
  article-title: Detection of multiple enteric virus strains within a foodborne outbreak of gastroenteritis: an indication of the source of contamination
  publication-title: Epidemiol. Infect.
– volume: 27
  start-page: 47
  year: 2016
  end-page: 61
  ident: bib29
  article-title: Learning subspace-based RBFNN using coevolutionary algorithm for complex classification tasks
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 18
  start-page: 70
  year: 2014
  end-page: 81
  ident: bib59
  article-title: Population classificationin fire evacuation: a multiobjective particle swarm optimization approach
  publication-title: IEEE Trans. Evol. Comput.
– volume: 8
  start-page: 684
  year: 2016
  end-page: 692
  ident: bib35
  article-title: Deep belief networks for quantitative analysis of a gold immunochromatographic strip
  publication-title: Cogn. Comput.
– volume: 61
  start-page: 166
  year: 2015
  end-page: 176
  ident: bib57
  article-title: Efficient motion and disparity estimation optimization for low complexity multiview video coding
  publication-title: IEEE Trans. Broadcast.
– reference: Y.X. Ma, S.G. Wang, The application of artificial neural network in the forecasting on incidence of a disease, in: Proceedings of the 3rd International Conference on Biomedical Engineering and Informatics, Vol. 3, 2010, pp. 1269–1272. 〈
– volume: 47
  start-page: 43
  year: 2013
  end-page: 45
  ident: bib16
  article-title: Time series prediction of morbidity using artificial neural networks
  publication-title: Biomed. Eng.
– reference: Y.J. Zheng, W.G. Sheng, X.M. Sun, S.Y. Chen, Airline passenger profiling based on fuzzy deep machine learning, IEEE Trans. Neural Netw. Learn. Syst. Online first. 〈
– volume: 46
  start-page: 875
  year: 2016
  end-page: 885
  ident: bib50
  article-title: Fine-tuning deep belief networks using harmony search
  publication-title: Appl. Soft Comput.
– volume: 135
  start-page: 637
  year: 2001
  end-page: 640
  ident: bib1
  article-title: Disease prediction models aim to guide medical decision making
  publication-title: Ann. Intern. Med.
– volume: 1
  start-page: 61
  year: 1994
  end-page: 62
  ident: bib4
  article-title: Food contamination and disease in travelers: the connection?
  publication-title: J. Travel Med.
– volume: 12
  start-page: 702
  year: 2008
  end-page: 713
  ident: bib51
  article-title: Biogeography-based optimization
  publication-title: IEEE Trans. Evol. Comput.
– reference: T. Sandholm, C. Brodley, A. Vidovic, M. Sandholm, Comparison of regression methods, symbolic induction methods and neural networks in morbidity diagnosis and mortality prediction in equine gastrointestinal colic., in: In AAAI 1996 Spring Symposium Series, Artificial Intelligence in Medicine, Applications of Current Technologies, Spring, 1996, pp. 154–159.
– reference: O.E. David, I. Greental, Genetic Algorithms for Evolving Deep Neural Networks, in: Proceedings of the GECCO, ACM, Vancouver, Canada, 2014, pp. 1451–1452.
– reference: A.G. Tettamanzi, M. Tomassini, Soft Computing: Integrating Evolutionary, Neural, and Fuzzy Systems, Springer Verlag, Berlin Heidelberg, 2013.
– volume: 17
  start-page: 1301
  year: 2013
  end-page: 1314
  ident: bib58
  article-title: Emergency transportation planning in disaster relief supply chain management: a cooperative fuzzy optimization approach
  publication-title: Soft Comput.
– volume: 48
  start-page: 334
  year: 1993
  end-page: 344
  ident: bib18
  article-title: Pulmonary function changes in asthmatics associated with low-level SO2 and NO2 air pollution, weather, and medicine intake
  publication-title: Allergy
– volume: 31
  start-page: 65
  year: 2016
  end-page: 75
  ident: bib63
  article-title: Estimation, filteringand fusion for networked systems with network-induced phenomena: new progress and prospects
  publication-title: Inform. Fusion
– reference: control for 2-D fuzzy systems with interval time-varying delays and missing measurements, IEEE Trans. Cybern. Online first. 〈
– volume: 28
  start-page: 961
  year: 2015
  end-page: 973
  ident: bib54
  article-title: Image segmentation by generalized hierarchical fuzzy c-means algorithm
  publication-title: J. Intell. Fuzzy Syst.
– volume: 64
  start-page: 155
  year: 2016
  ident: 10.1016/j.neucom.2016.11.018_bib62
  article-title: A variance-constrained approach to recursive state estimation for time-varying complex networks with missing measurements
  publication-title: Automatica
  doi: 10.1016/j.automatica.2015.11.008
– volume: 126
  start-page: 1
  issue: 1
  year: 2000
  ident: 10.1016/j.neucom.2016.11.018_bib56
  article-title: A framework for the description of evolutionary algorithms
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/S0377-2217(99)00435-X
– volume: 135
  start-page: 637
  issue: 8
  year: 2001
  ident: 10.1016/j.neucom.2016.11.018_bib1
  article-title: Disease prediction models aim to guide medical decision making
  publication-title: Ann. Intern. Med.
  doi: 10.7326/0003-4819-135-8_Part_1-200110160-00023
– year: 2009
  ident: 10.1016/j.neucom.2016.11.018_bib41
– volume: 35
  start-page: 1958
  issue: 8
  year: 2013
  ident: 10.1016/j.neucom.2016.11.018_bib34
  article-title: Learning with hierarchical-deep models
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2012.269
– volume: 1
  start-page: 61
  issue: 2
  year: 1994
  ident: 10.1016/j.neucom.2016.11.018_bib4
  article-title: Food contamination and disease in travelers: the connection?
  publication-title: J. Travel Med.
  doi: 10.1111/j.1708-8305.1994.tb00563.x
– ident: 10.1016/j.neucom.2016.11.018_bib49
  doi: 10.1109/ICASSP.2015.7178918
– volume: 31
  start-page: 707
  issue: 6
  year: 2009
  ident: 10.1016/j.neucom.2016.11.018_bib11
  article-title: Heavy metal contamination in soils and food crops around Dabaoshan mine in Guangdong, China: implication for human health
  publication-title: Environ. Geochem. Health
  doi: 10.1007/s10653-009-9248-3
– volume: 8
  start-page: 684
  issue: 4
  year: 2016
  ident: 10.1016/j.neucom.2016.11.018_bib35
  article-title: Deep belief networks for quantitative analysis of a gold immunochromatographic strip
  publication-title: Cogn. Comput.
  doi: 10.1007/s12559-016-9404-x
– volume: 46
  start-page: 875
  year: 2016
  ident: 10.1016/j.neucom.2016.11.018_bib50
  article-title: Fine-tuning deep belief networks using harmony search
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2015.08.043
– ident: 10.1016/j.neucom.2016.11.018_bib43
– volume: 18
  start-page: 2323
  issue: 11
  year: 2014
  ident: 10.1016/j.neucom.2016.11.018_bib52
  article-title: Localized biogeography-based optimization
  publication-title: Soft Comput.
  doi: 10.1007/s00500-013-1209-1
– ident: 10.1016/j.neucom.2016.11.018_bib14
– ident: 10.1016/j.neucom.2016.11.018_bib24
  doi: 10.1109/TCYB.2016.2514846
– ident: 10.1016/j.neucom.2016.11.018_bib10
– volume: 31
  start-page: 65
  year: 2016
  ident: 10.1016/j.neucom.2016.11.018_bib63
  article-title: Estimation, filteringand fusion for networked systems with network-induced phenomena: new progress and prospects
  publication-title: Inform. Fusion
  doi: 10.1016/j.inffus.2016.01.001
– volume: 55
  start-page: 1
  issue: 1
  year: 2015
  ident: 10.1016/j.neucom.2016.11.018_bib65
  article-title: Water wave optimization: a new nature inspired metaheuristic
  publication-title: Comput. Oper. Res.
  doi: 10.1016/j.cor.2014.10.008
– volume: 48
  start-page: 334
  issue: 5
  year: 1993
  ident: 10.1016/j.neucom.2016.11.018_bib18
  article-title: Pulmonary function changes in asthmatics associated with low-level SO2 and NO2 air pollution, weather, and medicine intake
  publication-title: Allergy
  doi: 10.1111/j.1398-9995.1993.tb02402.x
– volume: 77
  start-page: 70
  issue: 1
  year: 2016
  ident: 10.1016/j.neucom.2016.11.018_bib30
  article-title: State estimation for a class of artificial neural networks with stochastically corrupted measurements under round-robin protocol
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2016.01.001
– volume: 122
  start-page: 1627
  issue: 5
  year: 2002
  ident: 10.1016/j.neucom.2016.11.018_bib19
  article-title: Prediction of emergency department visits for respiratory symptoms using an artificial neural network
  publication-title: Chest
  doi: 10.1378/chest.122.5.1627
– volume: 13
  start-page: 4253
  issue: 11
  year: 2013
  ident: 10.1016/j.neucom.2016.11.018_bib9
  article-title: Multiobjective fireworks optimization for variable-rate fertilization in oil crop production
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2013.07.004
– volume: 28
  start-page: 1142
  year: 2007
  ident: 10.1016/j.neucom.2016.11.018_bib8
  article-title: Widespread environmental contamination associated with patients with diarrhea and methicillin-resistant Staphylococcus aureus colonization of the gastrointestinal tract
  publication-title: Infect. Control Hosp. Epidemiol.
  doi: 10.1086/520737
– volume: 391
  start-page: 143
  issue: 1
  year: 2008
  ident: 10.1016/j.neucom.2016.11.018_bib21
  article-title: Atmosphere pollutants and mortality rate of respiratory diseases in beijing
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2007.10.058
– volume: 204
  start-page: 125
  year: 2016
  ident: 10.1016/j.neucom.2016.11.018_bib17
  article-title: Medical media analytics via ranking and big learning: a multi-modality image-based disease severity prediction study
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.07.148
– volume: 8
  start-page: 42
  issue: 1
  year: 2005
  ident: 10.1016/j.neucom.2016.11.018_bib2
  article-title: Accuracy of prediction models in the context of disease management
  publication-title: Dis. Manag.
  doi: 10.1089/dis.2005.8.42
– volume: 11
  start-page: 3371
  year: 2010
  ident: 10.1016/j.neucom.2016.11.018_bib46
  article-title: Stacked denoising autoencoders learning useful representations in a deep network with a local denoising criterion
  publication-title: J. Mach. Learn. Res.
– volume: 18
  start-page: 70
  issue: 1
  year: 2014
  ident: 10.1016/j.neucom.2016.11.018_bib59
  article-title: Population classificationin fire evacuation: a multiobjective particle swarm optimization approach
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2013.2281396
– volume: 295
  start-page: 395
  year: 2015
  ident: 10.1016/j.neucom.2016.11.018_bib27
  article-title: A rapid learning algorithm for vehicle classification
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2014.10.040
– volume: 16
  start-page: 865
  issue: 2
  year: 2015
  ident: 10.1016/j.neucom.2016.11.018_bib37
  article-title: Traffic flow prediction with big data: a deep learning approach
  publication-title: IEEE Trans. Intell. Transp. Syst.
– ident: 10.1016/j.neucom.2016.11.018_bib23
  doi: 10.1109/BMEI.2010.5639268
– volume: 35
  start-page: 859
  issue: 7
  year: 2002
  ident: 10.1016/j.neucom.2016.11.018_bib5
  article-title: Bacterial contamination of animal feed and its relationship to human foodborne illness
  publication-title: Clin. Infect. Dis.
  doi: 10.1086/342885
– volume: 102
  start-page: 309
  issue: 2
  year: 1989
  ident: 10.1016/j.neucom.2016.11.018_bib3
  article-title: Bacterial contamination of stored water and stored food: a potential source of diarrhoeal disease in West Africa
  publication-title: Epidemiol. Infect.
  doi: 10.1017/S0950268800029988
– volume: 61
  start-page: 166
  issue: 2
  year: 2015
  ident: 10.1016/j.neucom.2016.11.018_bib57
  article-title: Efficient motion and disparity estimation optimization for low complexity multiview video coding
  publication-title: IEEE Trans. Broadcast.
  doi: 10.1109/TBC.2015.2419824
– ident: 10.1016/j.neucom.2016.11.018_bib48
– volume: 144
  start-page: 295
  year: 2014
  ident: 10.1016/j.neucom.2016.11.018_bib36
  article-title: Deep self-taught learning for facial beauty prediction
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2014.05.028
– volume: 12
  start-page: 702
  issue: 6
  year: 2008
  ident: 10.1016/j.neucom.2016.11.018_bib51
  article-title: Biogeography-based optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2008.919004
– volume: 148
  start-page: 75
  issue: 1
  year: 2015
  ident: 10.1016/j.neucom.2016.11.018_bib60
  article-title: A hybrid fireworks optimization method with differential evolution operators
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2012.08.075
– ident: 10.1016/j.neucom.2016.11.018_bib64
  doi: 10.1007/0-306-48056-5_16
– volume: 4
  start-page: 197
  issue: 1–2
  year: 2009
  ident: 10.1016/j.neucom.2016.11.018_bib22
  article-title: Mortality rates and air pollution levels under different weather conditions: an example from Western Europe
  publication-title: Int. J. Environ. Waste Manag.
  doi: 10.1504/IJEWM.2009.026892
– volume: 17
  start-page: 1301
  issue: 7
  year: 2013
  ident: 10.1016/j.neucom.2016.11.018_bib58
  article-title: Emergency transportation planning in disaster relief supply chain management: a cooperative fuzzy optimization approach
  publication-title: Soft Comput.
  doi: 10.1007/s00500-012-0968-4
– volume: 198
  start-page: 229
  issue: 1–3
  year: 2004
  ident: 10.1016/j.neucom.2016.11.018_bib6
  article-title: Microbial contamination of drinking water and disease outcomes in developing regions
  publication-title: Toxicol
  doi: 10.1016/j.tox.2004.01.030
– volume: 50
  start-page: 115
  year: 2014
  ident: 10.1016/j.neucom.2016.11.018_bib40
  article-title: Ecogeography-based optimization enhancing biogeography-based optimization with ecogeographic barriers and differentiations
  publication-title: Comput. Oper. Res.
  doi: 10.1016/j.cor.2014.04.013
– volume: 199
  start-page: 31
  year: 2016
  ident: 10.1016/j.neucom.2016.11.018_bib31
  article-title: An RBF neural network approach towards precision motion system with selective sensor fusion
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.01.093
– volume: 28
  start-page: 961
  issue: 2
  year: 2015
  ident: 10.1016/j.neucom.2016.11.018_bib54
  article-title: Image segmentation by generalized hierarchical fuzzy c-means algorithm
  publication-title: J. Intell. Fuzzy Syst.
  doi: 10.3233/IFS-141378
– ident: 10.1016/j.neucom.2016.11.018_bib25
  doi: 10.1109/TNNLS.2016.2609437
– volume: 86
  start-page: 650
  issue: 4
  year: 2013
  ident: 10.1016/j.neucom.2016.11.018_bib61
  article-title: Quantised recursive filtering for a class of nonlinear systems with multiplicative noises and missing measurements
  publication-title: Int. J. Control
  doi: 10.1080/00207179.2012.756149
– volume: 43
  start-page: 102
  issue: 1
  year: 2013
  ident: 10.1016/j.neucom.2016.11.018_bib26
  article-title: Synchronization of coupled neutral-type neural networks with jumping-mode-dependent discrete and unbounded distributed delays
  publication-title: IEEE Trans. Cyber
  doi: 10.1109/TSMCB.2012.2199751
– volume: 77
  start-page: 5
  issue: 1
  year: 2015
  ident: 10.1016/j.neucom.2016.11.018_bib12
  article-title: Impacts of soil and water pollution on food safety and health risks in China
  publication-title: Environ. Int.
  doi: 10.1016/j.envint.2014.12.010
– volume: 12
  start-page: 103
  issue: 1
  year: 2015
  ident: 10.1016/j.neucom.2016.11.018_bib38
  article-title: A deep learning network approach to ab initio protein secondary structure prediction
  publication-title: IEEE/ACM Trans. Comput. Biol. Bioinforma.
  doi: 10.1109/TCBB.2014.2343960
– ident: 10.1016/j.neucom.2016.11.018_bib45
  doi: 10.1145/1390156.1390294
– volume: 27
  start-page: 47
  issue: 1
  year: 2016
  ident: 10.1016/j.neucom.2016.11.018_bib29
  article-title: Learning subspace-based RBFNN using coevolutionary algorithm for complex classification tasks
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2015.2411615
– volume: 313
  start-page: 504
  issue: 5786
  year: 2006
  ident: 10.1016/j.neucom.2016.11.018_bib32
  article-title: Reducing the dimensionality of data with neural networks
  publication-title: Science
  doi: 10.1126/science.1127647
– volume: 31
  start-page: 41
  issue: 1
  year: 2006
  ident: 10.1016/j.neucom.2016.11.018_bib15
  article-title: Comparison of four different time series methods to forecast hepatitis a virus infection
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2005.09.002
– volume: 133
  start-page: 41
  year: 2005
  ident: 10.1016/j.neucom.2016.11.018_bib7
  article-title: Detection of multiple enteric virus strains within a foodborne outbreak of gastroenteritis: an indication of the source of contamination
  publication-title: Epidemiol. Infect.
  doi: 10.1017/S0950268804003218
– volume: 23
  start-page: 1070
  issue: 4
  year: 2015
  ident: 10.1016/j.neucom.2016.11.018_bib55
  article-title: A hybrid neuro-fuzzy network based on differential biogeography-based optimization for online population classification in earthquakes
  publication-title: IEEE Trans. Fuzzy Syst.
  doi: 10.1109/TFUZZ.2014.2337938
– ident: 10.1016/j.neucom.2016.11.018_bib47
  doi: 10.1109/COMPSAC.2015.63
– year: 2001
  ident: 10.1016/j.neucom.2016.11.018_bib13
– volume: 40
  start-page: 185
  issue: 1
  year: 1989
  ident: 10.1016/j.neucom.2016.11.018_bib44
  article-title: Connectionist learning procedures
  publication-title: Artif. Intell.
  doi: 10.1016/0004-3702(89)90049-0
– year: 2014
  ident: 10.1016/j.neucom.2016.11.018_bib42
– volume: 18
  start-page: 1527
  issue: 7
  year: 2006
  ident: 10.1016/j.neucom.2016.11.018_bib33
  article-title: A fast learning algorithm for deep belief nets
  publication-title: Neural Comput.
  doi: 10.1162/neco.2006.18.7.1527
– ident: 10.1016/j.neucom.2016.11.018_bib53
  doi: 10.1145/2598394.2602287
– volume: 17
  start-page: 223
  issue: 3
  year: 2006
  ident: 10.1016/j.neucom.2016.11.018_bib20
  article-title: Prediction for incidence of hemorrhagic fever with renal syndrome with back propagation artificial neural network model
  publication-title: Chin. J. Vector Bio Control
– ident: 10.1016/j.neucom.2016.11.018_bib28
  doi: 10.1109/TNNLS.2016.2544779
– volume: 46
  start-page: 936
  year: 2016
  ident: 10.1016/j.neucom.2016.11.018_bib39
  article-title: Hybrid deep neural network model for human action recognition
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2015.08.025
– volume: 47
  start-page: 43
  issue: 1
  year: 2013
  ident: 10.1016/j.neucom.2016.11.018_bib16
  article-title: Time series prediction of morbidity using artificial neural networks
  publication-title: Biomed. Eng.
  doi: 10.1007/s10527-013-9331-z
SSID ssj0017129
Score 2.443378
Snippet A majority of gastrointestinal infectious diseases are caused by food contamination, and prediction of morbidity can be very useful for etiological factor...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 16
SubjectTerms Deep denoising autoencoder (DDAE)
Evolutionary algorithms (EAs)
Gastrointestinal infections
Morbidity prediction
Neural networks
Title An evolutionary deep neural network for predicting morbidity of gastrointestinal infections by food contamination
URI https://dx.doi.org/10.1016/j.neucom.2016.11.018
Volume 226
WOSCitedRecordID wos000392037800003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-8286
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017129
  issn: 0925-2312
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWlgMX3ojykg_cKld5Jz5GqDx6qEAUsXCJ4tiGXbXJkt2syi_h7zITO95siwo9cIkiK7aTzJfxePL5MyEvvbCMKhi2mNY-Z5HMBBNhohmPPV9kOtRCZ_1mE-nxcTad8veTya9hLcz6NK3r7PycL_6rqaEMjI1LZ69hbtcoFMA5GB2OYHY4_pPh83pfrW0PSImTSi32UbYSjFEb0nfPLVy0-I-mZz2fNa2YSUvO-FYuV22DMhLw9de9Jofha9VLjFU1yiAjwb1EEo0z63xQgepgROx3irA5iPwMpRgk4s7lHD5aHvCHmYPm1-_KlH3p2FHniqedMoWu6nDdZzVjb7pmnLWAkRBXgY8TmTyIGcSWW544CMa-1E9Go7Kpe8nfm9TD_ADeIpJ_oKfkAEVZrU_fkte-MOw5MuLAc5sXppUCW4GZUQGt3CC7QRpzcJe7-bvD6ZH7QZX6gZFxtI8xrMrsqYOX7-bPUc8okjm5S27bKQjNDXTukYmq75M7w_Ye1Hr7B-RHXtMxkigiiRokUYskCkiiGyRRhyTaaHoRSXSDJCp-UkQS3ULSQ_Lp9eHJq7fM7tDBqjDmKyaFlgom3LqqopjHkQySTHmBSrmOlFelys-Ql690HHEtMfcgdFD5IgyjwIfgP3xEduqmVo8Jhal6ibG_rEqYRPuJiCVP_ar0lAiSMJV7JBzeYFFZ-XrcReW0uMp-e4S5Wgsj3_KX69PBOIUNQU1oWQDirqz55Jo9PSW3Nt_FM7Kzajv1nNys1qvZsn1h4fYblECwRg
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+evolutionary+deep+neural+network+for+predicting+morbidity+of+gastrointestinal+infections+by+food+contamination&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=Song%2C+Qin&rft.au=Zheng%2C+Yu-Jun&rft.au=Xue%2C+Yu&rft.au=Sheng%2C+Wei-Guo&rft.date=2017-02-22&rft.issn=0925-2312&rft.volume=226&rft.spage=16&rft.epage=22&rft_id=info:doi/10.1016%2Fj.neucom.2016.11.018&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_neucom_2016_11_018
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon