An evolutionary deep neural network for predicting morbidity of gastrointestinal infections by food contamination
A majority of gastrointestinal infectious diseases are caused by food contamination, and prediction of morbidity can be very useful for etiological factor controlling and medical resource utilization. However, an accurate prediction is often very difficult not only because there are various types of...
Uložené v:
| Vydané v: | Neurocomputing (Amsterdam) Ročník 226; s. 16 - 22 |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier B.V
22.02.2017
|
| Predmet: | |
| ISSN: | 0925-2312, 1872-8286 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | A majority of gastrointestinal infectious diseases are caused by food contamination, and prediction of morbidity can be very useful for etiological factor controlling and medical resource utilization. However, an accurate prediction is often very difficult not only because there are various types of food and contaminants, but also because the relationship between the diseases and the contaminants is highly complex and probabilistic. In this study, we use the deep denoising autoencoder (DDAE) to model the effect of food contamination on gastrointestinal infections, and thus provide a valuable tool for morbidity prediction. For effectively training the model with high-dimensional input data, we propose an evolutionary learning algorithm based on ecogeography-based optimization (EBO) in order to avoid premature convergence. Experimental results show that our evolutionary deep learning model obtains a much higher prediction accuracy than the shallow artificial neural network (ANN) model and the DDAE with other learning algorithms on a real-world dataset.
•A deep neural network is developed predicting gastrointestinal morbidity.•An evolutionary algorithm is proposed for training the network.•A higher prediction accuracy is obtained on a real-world dataset. |
|---|---|
| AbstractList | A majority of gastrointestinal infectious diseases are caused by food contamination, and prediction of morbidity can be very useful for etiological factor controlling and medical resource utilization. However, an accurate prediction is often very difficult not only because there are various types of food and contaminants, but also because the relationship between the diseases and the contaminants is highly complex and probabilistic. In this study, we use the deep denoising autoencoder (DDAE) to model the effect of food contamination on gastrointestinal infections, and thus provide a valuable tool for morbidity prediction. For effectively training the model with high-dimensional input data, we propose an evolutionary learning algorithm based on ecogeography-based optimization (EBO) in order to avoid premature convergence. Experimental results show that our evolutionary deep learning model obtains a much higher prediction accuracy than the shallow artificial neural network (ANN) model and the DDAE with other learning algorithms on a real-world dataset.
•A deep neural network is developed predicting gastrointestinal morbidity.•An evolutionary algorithm is proposed for training the network.•A higher prediction accuracy is obtained on a real-world dataset. |
| Author | Zheng, Yu-Jun Sheng, Wei-Guo Song, Qin Zhao, Mei-Rong Xue, Yu |
| Author_xml | – sequence: 1 givenname: Qin surname: Song fullname: Song, Qin organization: College of Environmental Engineering, Zhejiang University of Technology, Hangzhou 310014, China – sequence: 2 givenname: Yu-Jun surname: Zheng fullname: Zheng, Yu-Jun email: yujun.zheng@computer.org organization: College of Computer Science & Technology, Zhejiang University of Technology, Hangzhou 310023, China – sequence: 3 givenname: Yu surname: Xue fullname: Xue, Yu organization: School of Computer & Software, Nanjing University of Information Science & Technology, Nanjing 210044, China – sequence: 4 givenname: Wei-Guo surname: Sheng fullname: Sheng, Wei-Guo organization: College of Computer Science & Technology, Zhejiang University of Technology, Hangzhou 310023, China – sequence: 5 givenname: Mei-Rong surname: Zhao fullname: Zhao, Mei-Rong organization: College of Environmental Engineering, Zhejiang University of Technology, Hangzhou 310014, China |
| BookMark | eNqFkM9KAzEQh4NUsK2-gYe8wK6ZbHa760Eo4j8oeNFz2E0mJbVNahIrfXtT68mDnoaZ4fsx803IyHmHhFwCK4FBc7UqHX4ovyl57kqAkkF7QsbQznjR8rYZkTHreF3wCvgZmcS4YgxmwLsxeZ87iju__kjWuz7sqUbc0hwX-nUu6dOHN2p8oNuA2qpk3ZJufBistmlPvaHLPqbgrUsY8zJD1hlUh7RIh31GvabKu9Rv8vYwPienpl9HvPipU_J6f_dy-1gsnh-ebueLQlV1lwo9GI3QCKOUqLtaaN60yDjOOiOQqRlC2yjF0dSiM7oBIQbDFQxVJTiwtqqm5PqYq4KPMaCRyqbvC1Lo7VoCkwd5ciWP8uRBngSQWV6GxS94G-wm-_kPuzlimB_bWQwyKotOZXUhS5Ha278DvgCsUJGs |
| CitedBy_id | crossref_primary_10_1080_19393210_2023_2188611 crossref_primary_10_3390_toxics13060453 crossref_primary_10_1109_TII_2018_2870879 crossref_primary_10_3390_ijerph16050838 crossref_primary_10_1109_TNNLS_2020_2979486 crossref_primary_10_1145_3467477 crossref_primary_10_1016_j_inffus_2021_11_006 crossref_primary_10_1016_j_ins_2019_03_023 crossref_primary_10_1108_BFJ_04_2021_0366 crossref_primary_10_1016_j_ecolind_2017_06_037 crossref_primary_10_1016_j_envres_2021_111740 crossref_primary_10_1007_s12161_022_02353_9 crossref_primary_10_1016_j_afres_2025_100924 crossref_primary_10_1051_e3sconf_202339101086 crossref_primary_10_3390_microorganisms10101911 crossref_primary_10_1109_ACCESS_2020_2994327 crossref_primary_10_1111_2041_210X_13256 crossref_primary_10_3390_agriculture11050408 crossref_primary_10_1016_j_inffus_2018_06_002 crossref_primary_10_1080_09637486_2019_1695758 crossref_primary_10_1111_1541_4337_12492 crossref_primary_10_3390_s23010062 crossref_primary_10_1016_j_dcit_2024_100032 crossref_primary_10_1109_TFUZZ_2017_2738605 crossref_primary_10_1016_j_jenvman_2024_120356 crossref_primary_10_1016_j_swevo_2019_100561 crossref_primary_10_1007_s00521_022_07744_x crossref_primary_10_1016_j_neunet_2018_02_015 crossref_primary_10_1111_1541_4337_12667 crossref_primary_10_1016_j_foodcont_2023_110040 crossref_primary_10_1038_s41538_023_00226_x crossref_primary_10_1515_ijfe_2021_0299 crossref_primary_10_1007_s10586_017_1122_y crossref_primary_10_1016_j_drudis_2019_03_003 crossref_primary_10_3389_fphar_2017_00830 crossref_primary_10_3390_informatics8020027 crossref_primary_10_1007_s11063_022_11055_6 crossref_primary_10_1016_j_foodcont_2021_108697 crossref_primary_10_1186_s40001_025_02680_7 crossref_primary_10_1016_j_inffus_2020_10_014 crossref_primary_10_1111_zph_12622 crossref_primary_10_1039_D1RA08311B crossref_primary_10_1016_j_chemosphere_2022_135593 crossref_primary_10_1016_j_eswa_2018_03_056 crossref_primary_10_1016_j_foodcont_2024_110548 crossref_primary_10_1016_j_neucom_2018_09_001 |
| Cites_doi | 10.1016/j.automatica.2015.11.008 10.1016/S0377-2217(99)00435-X 10.7326/0003-4819-135-8_Part_1-200110160-00023 10.1109/TPAMI.2012.269 10.1111/j.1708-8305.1994.tb00563.x 10.1109/ICASSP.2015.7178918 10.1007/s10653-009-9248-3 10.1007/s12559-016-9404-x 10.1016/j.asoc.2015.08.043 10.1007/s00500-013-1209-1 10.1109/TCYB.2016.2514846 10.1016/j.inffus.2016.01.001 10.1016/j.cor.2014.10.008 10.1111/j.1398-9995.1993.tb02402.x 10.1016/j.neunet.2016.01.001 10.1378/chest.122.5.1627 10.1016/j.asoc.2013.07.004 10.1086/520737 10.1016/j.scitotenv.2007.10.058 10.1016/j.neucom.2015.07.148 10.1089/dis.2005.8.42 10.1109/TEVC.2013.2281396 10.1016/j.ins.2014.10.040 10.1109/BMEI.2010.5639268 10.1086/342885 10.1017/S0950268800029988 10.1109/TBC.2015.2419824 10.1016/j.neucom.2014.05.028 10.1109/TEVC.2008.919004 10.1016/j.neucom.2012.08.075 10.1007/0-306-48056-5_16 10.1504/IJEWM.2009.026892 10.1007/s00500-012-0968-4 10.1016/j.tox.2004.01.030 10.1016/j.cor.2014.04.013 10.1016/j.neucom.2016.01.093 10.3233/IFS-141378 10.1109/TNNLS.2016.2609437 10.1080/00207179.2012.756149 10.1109/TSMCB.2012.2199751 10.1016/j.envint.2014.12.010 10.1109/TCBB.2014.2343960 10.1145/1390156.1390294 10.1109/TNNLS.2015.2411615 10.1126/science.1127647 10.1016/j.eswa.2005.09.002 10.1017/S0950268804003218 10.1109/TFUZZ.2014.2337938 10.1109/COMPSAC.2015.63 10.1016/0004-3702(89)90049-0 10.1162/neco.2006.18.7.1527 10.1145/2598394.2602287 10.1109/TNNLS.2016.2544779 10.1016/j.asoc.2015.08.025 10.1007/s10527-013-9331-z |
| ContentType | Journal Article |
| Copyright | 2016 Elsevier B.V. |
| Copyright_xml | – notice: 2016 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.neucom.2016.11.018 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1872-8286 |
| EndPage | 22 |
| ExternalDocumentID | 10_1016_j_neucom_2016_11_018 S0925231216313996 |
| GroupedDBID | --- --K --M .DC .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AADPK AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXLA AAXUO AAYFN ABBOA ABCQJ ABFNM ABJNI ABMAC ABYKQ ACDAQ ACGFS ACRLP ACZNC ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGWIK AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W KOM LG9 M41 MO0 MOBAO N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SDP SES SPC SPCBC SSN SSV SSZ T5K ZMT ~G- 29N 9DU AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS FEDTE FGOYB HLZ HVGLF HZ~ R2- SBC SEW WUQ XPP ~HD |
| ID | FETCH-LOGICAL-c359t-dbfde164fcc45954d268e02e79f4e0c7e186cc2ef549fd6144bf2c1b334210833 |
| ISICitedReferencesCount | 52 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000392037800003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0925-2312 |
| IngestDate | Tue Nov 18 20:44:40 EST 2025 Sat Nov 29 03:02:46 EST 2025 Fri Feb 23 02:30:24 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Deep denoising autoencoder (DDAE) Evolutionary algorithms (EAs) Neural networks Morbidity prediction Gastrointestinal infections |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c359t-dbfde164fcc45954d268e02e79f4e0c7e186cc2ef549fd6144bf2c1b334210833 |
| PageCount | 7 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_neucom_2016_11_018 crossref_primary_10_1016_j_neucom_2016_11_018 elsevier_sciencedirect_doi_10_1016_j_neucom_2016_11_018 |
| PublicationCentury | 2000 |
| PublicationDate | 2017-02-22 |
| PublicationDateYYYYMMDD | 2017-02-22 |
| PublicationDate_xml | – month: 02 year: 2017 text: 2017-02-22 day: 22 |
| PublicationDecade | 2010 |
| PublicationTitle | Neurocomputing (Amsterdam) |
| PublicationYear | 2017 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | L.H. Keith, Environmental endocrine disruptors: an overview of the analytical challenge, in: Proceedings of the 13th Annual Waste Testing and Quality Assurance Symposium, Arlington, 1997. S. Lander, Y. Shang, EvoAE – a new evolutionary method for training autoencoders for deep learning networks, in: Proceedings COMPSAC, Vol. 2, Taichung, Taiwan, 2015, pp. 790–795. Boyce, Havill, Otter, Adams (bib8) 2007; 28 T. Sandholm, C. Brodley, A. Vidovic, M. Sandholm, Comparison of regression methods, symbolic induction methods and neural networks in morbidity diagnosis and mortality prediction in equine gastrointestinal colic., in: In AAAI 1996 Spring Symposium Series, Artificial Intelligence in Medicine, Applications of Current Technologies, Spring, 1996, pp. 154–159. Y. Luo, Z. Wang, J. Liang, G. Wei, F.E. Alsaadi B. Gu, X. Sun, V.S. Sheng, Structural Minimax Probability Machine, IEEE Trans. Neural Netw. Learn. Syst. Online first. Zheng, Ling, Chen, Xue (bib55) 2015; 23 Ashbolt (bib6) 2004; 198 Lu, Song, Wang, Liu, Meng, Sweetman, Jenkins, Ferrier, Li, Luo, Wang (bib12) 2015; 77 Junk, Krein, Helbig (bib22) 2009; 4 O.E. David, I. Greental, Genetic Algorithms for Evolving Deep Neural Networks, in: Proceedings of the GECCO, ACM, Vancouver, Canada, 2014, pp. 1451–1452. Li, Huang (bib41) 2009 Vincent, Larochelle, Lajoie, Bengio, Manzagol (bib46) 2010; 11 Hu, Root (bib2) 2005; 8 Zeng, Wang, Zhang, Liu, Alsaadi (bib35) 2016; 8 Dmitriev, Kotin (bib16) 2013; 47 Zheng, Ling, Xue (bib40) 2014; 50 Mandic, Chambers (bib13) 2001 Bibi, Nutman, Shoseyov, Shalom, Peled, Kivity, Nutman (bib19) 2002; 122 Gan, Li, Zhai, Liu (bib36) 2014; 144 control for 2-D fuzzy systems with interval time-varying delays and missing measurements, IEEE Trans. Cybern. Online first. Hu, Wang, Chen, Alsaadi (bib63) 2016; 31 Pan, Zhang, Kwong (bib57) 2015; 61 Spencer, Eickholt, Cheng (bib38) 2015; 12 Zheng, Ling, Wu, Xue (bib52) 2014; 18 Crump, Griffin, Angulo (bib5) 2002; 35 Hinton, Osindero, Teh (bib33) 2006; 18 Zheng, Ling, Xue, Chen (bib59) 2014; 18 Yang, Er, Wang, Tan (bib31) 2016; 199 . Simon (bib51) 2008; 12 Liu, Wang, Liang, Liu (bib26) 2013; 43 Zheng, Ling (bib58) 2013; 17 Zheng, Xu, Ling, Chen (bib60) 2015; 148 Y.X. Ma, S.G. Wang, The application of artificial neural network in the forecasting on incidence of a disease, in: Proceedings of the 3rd International Conference on Biomedical Engineering and Informatics, Vol. 3, 2010, pp. 1269–1272. Wang, Liu, Pan (bib21) 2008; 391 Zheng (bib65) 2015; 55 Tian, Li, Chen, Feng (bib29) 2016; 27 Hinton (bib44) 1989; 40 Hu, Wang, Liu, Gao (bib62) 2016; 64 Huang, Zeng, Wan, Chen (bib17) 2016; 204 Mølbak, Højlyng, Jepsen, Gaarslev (bib3) 1989; 102 A.G. Tettamanzi, M. Tomassini, Soft Computing: Integrating Evolutionary, Neural, and Fuzzy Systems, Springer Verlag, Berlin Heidelberg, 2013. Hertz, Kobler (bib56) 2000; 126 Moseholm, Taudorf, Frøsig (bib18) 1993; 48 Luo, Wang, Wei, Alsaadi, Hayat (bib30) 2016; 77 E. Burke, E. Hart, G. Kendall, J. Newall, P. Ross, S. Schulenburg, Hyper-heuristics: An emerging direction in modern research technolology, in: F. Glover, G. Kochenberger (Eds.), Handbook of Metaheuristics, Kluwer, 2003, Ch. 16, pp. 457–474. Gallimore, Pipkin, Shrimpton, Green, Pickford, McCartney, Sutherland, Brown, Gray (bib7) 2005; 133 Salakhutdinov, Tenenbaum, Torralba (bib34) 2013; 35 Wu, Wu, Wang, Zhou (bib20) 2006; 17 Zheng, Song, Chen (bib9) 2013; 13 T. Shinozaki, S. Watanabe, Structure discovery of deep neural network based on evolutionary algorithms, in: Proceedings of the ICASSP, Brisbane, Australia, 2015, pp. 4979–4983. Lv, Duan, Kang, Li, Wang (bib37) 2015; 16 Mathewson (bib4) 1994; 1 Zhou, Li, Dai (bib42) 2014 M. Wang, Z. Wang, D. Bao, et al., Food Contamination Monitoring and Analysis in 2000 in China, Chin. J. Food Hyg. Zhuang, Zou, Li, Li (bib11) 2009; 31 Ijjina, Mohan (bib39) 2016; 46 Reynolds (bib1) 2001; 135 Wen, Shao, Xue, Fang (bib27) 2015; 295 Zheng, Jeon, Xu, Wu, Zhang (bib54) 2015; 28 Hu, Wang, Shen, Gao (bib61) 2013; 86 Y.J. Zheng, W.G. Sheng, X.M. Sun, S.Y. Chen, Airline passenger profiling based on fuzzy deep machine learning, IEEE Trans. Neural Netw. Learn. Syst. Online first. P. Vincent, H. Larochelle, Y. Bengio, P.-A. Manzagol, Extracting and composing robust features with denoising autoencoders, in: Proceedings of the 25th International Conference on Machine Learning, ACM, New York, NY, USA, 2008, pp. 1096–1103. Ture, Kurt (bib15) 2006; 31 Hinton, Salakhutdinov (bib32) 2006; 313 ao Paulo Papa, Scheirer, Cox (bib50) 2016; 46 Reynolds (10.1016/j.neucom.2016.11.018_bib1) 2001; 135 Hu (10.1016/j.neucom.2016.11.018_bib2) 2005; 8 Zheng (10.1016/j.neucom.2016.11.018_bib9) 2013; 13 Zheng (10.1016/j.neucom.2016.11.018_bib55) 2015; 23 Tian (10.1016/j.neucom.2016.11.018_bib29) 2016; 27 Hertz (10.1016/j.neucom.2016.11.018_bib56) 2000; 126 Zheng (10.1016/j.neucom.2016.11.018_bib65) 2015; 55 10.1016/j.neucom.2016.11.018_bib43 Mandic (10.1016/j.neucom.2016.11.018_bib13) 2001 10.1016/j.neucom.2016.11.018_bib45 10.1016/j.neucom.2016.11.018_bib48 10.1016/j.neucom.2016.11.018_bib47 Zheng (10.1016/j.neucom.2016.11.018_bib59) 2014; 18 10.1016/j.neucom.2016.11.018_bib49 Zheng (10.1016/j.neucom.2016.11.018_bib60) 2015; 148 Hinton (10.1016/j.neucom.2016.11.018_bib33) 2006; 18 Zheng (10.1016/j.neucom.2016.11.018_bib52) 2014; 18 Liu (10.1016/j.neucom.2016.11.018_bib26) 2013; 43 Spencer (10.1016/j.neucom.2016.11.018_bib38) 2015; 12 Wu (10.1016/j.neucom.2016.11.018_bib20) 2006; 17 Ijjina (10.1016/j.neucom.2016.11.018_bib39) 2016; 46 Zheng (10.1016/j.neucom.2016.11.018_bib58) 2013; 17 Junk (10.1016/j.neucom.2016.11.018_bib22) 2009; 4 10.1016/j.neucom.2016.11.018_bib53 Gallimore (10.1016/j.neucom.2016.11.018_bib7) 2005; 133 10.1016/j.neucom.2016.11.018_bib10 Wang (10.1016/j.neucom.2016.11.018_bib21) 2008; 391 Moseholm (10.1016/j.neucom.2016.11.018_bib18) 1993; 48 10.1016/j.neucom.2016.11.018_bib14 Gan (10.1016/j.neucom.2016.11.018_bib36) 2014; 144 Hu (10.1016/j.neucom.2016.11.018_bib62) 2016; 64 Hinton (10.1016/j.neucom.2016.11.018_bib32) 2006; 313 ao Paulo Papa (10.1016/j.neucom.2016.11.018_bib50) 2016; 46 Zhou (10.1016/j.neucom.2016.11.018_bib42) 2014 Bibi (10.1016/j.neucom.2016.11.018_bib19) 2002; 122 Salakhutdinov (10.1016/j.neucom.2016.11.018_bib34) 2013; 35 10.1016/j.neucom.2016.11.018_bib64 Wen (10.1016/j.neucom.2016.11.018_bib27) 2015; 295 Zeng (10.1016/j.neucom.2016.11.018_bib35) 2016; 8 Li (10.1016/j.neucom.2016.11.018_bib41) 2009 Zheng (10.1016/j.neucom.2016.11.018_bib54) 2015; 28 10.1016/j.neucom.2016.11.018_bib24 Hinton (10.1016/j.neucom.2016.11.018_bib44) 1989; 40 Hu (10.1016/j.neucom.2016.11.018_bib61) 2013; 86 10.1016/j.neucom.2016.11.018_bib23 Pan (10.1016/j.neucom.2016.11.018_bib57) 2015; 61 Boyce (10.1016/j.neucom.2016.11.018_bib8) 2007; 28 Lu (10.1016/j.neucom.2016.11.018_bib12) 2015; 77 10.1016/j.neucom.2016.11.018_bib25 10.1016/j.neucom.2016.11.018_bib28 Ashbolt (10.1016/j.neucom.2016.11.018_bib6) 2004; 198 Zhuang (10.1016/j.neucom.2016.11.018_bib11) 2009; 31 Huang (10.1016/j.neucom.2016.11.018_bib17) 2016; 204 Mathewson (10.1016/j.neucom.2016.11.018_bib4) 1994; 1 Dmitriev (10.1016/j.neucom.2016.11.018_bib16) 2013; 47 Yang (10.1016/j.neucom.2016.11.018_bib31) 2016; 199 Simon (10.1016/j.neucom.2016.11.018_bib51) 2008; 12 Luo (10.1016/j.neucom.2016.11.018_bib30) 2016; 77 Ture (10.1016/j.neucom.2016.11.018_bib15) 2006; 31 Zheng (10.1016/j.neucom.2016.11.018_bib40) 2014; 50 Crump (10.1016/j.neucom.2016.11.018_bib5) 2002; 35 Hu (10.1016/j.neucom.2016.11.018_bib63) 2016; 31 Mølbak (10.1016/j.neucom.2016.11.018_bib3) 1989; 102 Vincent (10.1016/j.neucom.2016.11.018_bib46) 2010; 11 Lv (10.1016/j.neucom.2016.11.018_bib37) 2015; 16 |
| References_xml | – volume: 35 start-page: 859 year: 2002 end-page: 865 ident: bib5 article-title: Bacterial contamination of animal feed and its relationship to human foodborne illness publication-title: Clin. Infect. Dis. – volume: 295 start-page: 395 year: 2015 end-page: 406 ident: bib27 article-title: A rapid learning algorithm for vehicle classification publication-title: Inform. Sci. – volume: 102 start-page: 309 year: 1989 end-page: 316 ident: bib3 article-title: Bacterial contamination of stored water and stored food: a potential source of diarrhoeal disease in West Africa publication-title: Epidemiol. Infect. – reference: T. Shinozaki, S. Watanabe, Structure discovery of deep neural network based on evolutionary algorithms, in: Proceedings of the ICASSP, Brisbane, Australia, 2015, pp. 4979–4983. 〈 – volume: 17 start-page: 223 year: 2006 end-page: 226 ident: bib20 article-title: Prediction for incidence of hemorrhagic fever with renal syndrome with back propagation artificial neural network model publication-title: Chin. J. Vector Bio Control – volume: 122 start-page: 1627 year: 2002 end-page: 1632 ident: bib19 article-title: Prediction of emergency department visits for respiratory symptoms using an artificial neural network publication-title: Chest – volume: 16 start-page: 865 year: 2015 end-page: 873 ident: bib37 article-title: Traffic flow prediction with big data: a deep learning approach publication-title: IEEE Trans. Intell. Transp. Syst. – reference: E. Burke, E. Hart, G. Kendall, J. Newall, P. Ross, S. Schulenburg, Hyper-heuristics: An emerging direction in modern research technolology, in: F. Glover, G. Kochenberger (Eds.), Handbook of Metaheuristics, Kluwer, 2003, Ch. 16, pp. 457–474. – volume: 204 start-page: 125 year: 2016 end-page: 134 ident: bib17 article-title: Medical media analytics via ranking and big learning: a multi-modality image-based disease severity prediction study publication-title: Neurocomputing – volume: 199 start-page: 31 year: 2016 end-page: 39 ident: bib31 article-title: An RBF neural network approach towards precision motion system with selective sensor fusion publication-title: Neurocomputing – volume: 77 start-page: 5 year: 2015 end-page: 15 ident: bib12 article-title: Impacts of soil and water pollution on food safety and health risks in China publication-title: Environ. Int. – reference: Y. Luo, Z. Wang, J. Liang, G. Wei, F.E. Alsaadi, – volume: 55 start-page: 1 year: 2015 end-page: 11 ident: bib65 article-title: Water wave optimization: a new nature inspired metaheuristic publication-title: Comput. Oper. Res. – reference: B. Gu, X. Sun, V.S. Sheng, Structural Minimax Probability Machine, IEEE Trans. Neural Netw. Learn. Syst. Online first. 〈 – volume: 11 start-page: 3371 year: 2010 end-page: 3408 ident: bib46 article-title: Stacked denoising autoencoders learning useful representations in a deep network with a local denoising criterion publication-title: J. Mach. Learn. Res. – volume: 13 start-page: 4253 year: 2013 end-page: 4263 ident: bib9 article-title: Multiobjective fireworks optimization for variable-rate fertilization in oil crop production publication-title: Appl. Soft Comput. – volume: 28 start-page: 1142 year: 2007 end-page: 1147 ident: bib8 article-title: Widespread environmental contamination associated with patients with diarrhea and methicillin-resistant Staphylococcus aureus colonization of the gastrointestinal tract publication-title: Infect. Control Hosp. Epidemiol. – volume: 86 start-page: 650 year: 2013 end-page: 663 ident: bib61 article-title: Quantised recursive filtering for a class of nonlinear systems with multiplicative noises and missing measurements publication-title: Int. J. Control – reference: P. Vincent, H. Larochelle, Y. Bengio, P.-A. Manzagol, Extracting and composing robust features with denoising autoencoders, in: Proceedings of the 25th International Conference on Machine Learning, ACM, New York, NY, USA, 2008, pp. 1096–1103. 〈 – volume: 35 start-page: 1958 year: 2013 end-page: 1971 ident: bib34 article-title: Learning with hierarchical-deep models publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 77 start-page: 70 year: 2016 end-page: 79 ident: bib30 article-title: State estimation for a class of artificial neural networks with stochastically corrupted measurements under round-robin protocol publication-title: Neural Netw. – reference: 〉. – volume: 126 start-page: 1 year: 2000 end-page: 12 ident: bib56 article-title: A framework for the description of evolutionary algorithms publication-title: Eur. J. Oper. Res. – volume: 148 start-page: 75 year: 2015 end-page: 82 ident: bib60 article-title: A hybrid fireworks optimization method with differential evolution operators publication-title: Neurocomputing – volume: 12 start-page: 103 year: 2015 end-page: 112 ident: bib38 article-title: A deep learning network approach to ab initio protein secondary structure prediction publication-title: IEEE/ACM Trans. Comput. Biol. Bioinforma. – volume: 8 start-page: 42 year: 2005 end-page: 47 ident: bib2 article-title: Accuracy of prediction models in the context of disease management publication-title: Dis. Manag. – volume: 4 start-page: 197 year: 2009 end-page: 212 ident: bib22 article-title: Mortality rates and air pollution levels under different weather conditions: an example from Western Europe publication-title: Int. J. Environ. Waste Manag. – volume: 46 start-page: 936 year: 2016 end-page: 952 ident: bib39 article-title: Hybrid deep neural network model for human action recognition publication-title: Appl. Soft Comput. – volume: 43 start-page: 102 year: 2013 end-page: 114 ident: bib26 article-title: Synchronization of coupled neutral-type neural networks with jumping-mode-dependent discrete and unbounded distributed delays publication-title: IEEE Trans. Cyber – volume: 18 start-page: 2323 year: 2014 end-page: 2334 ident: bib52 article-title: Localized biogeography-based optimization publication-title: Soft Comput. – volume: 23 start-page: 1070 year: 2015 end-page: 1083 ident: bib55 article-title: A hybrid neuro-fuzzy network based on differential biogeography-based optimization for online population classification in earthquakes publication-title: IEEE Trans. Fuzzy Syst. – volume: 40 start-page: 185 year: 1989 end-page: 234 ident: bib44 article-title: Connectionist learning procedures publication-title: Artif. Intell. – reference: S. Lander, Y. Shang, EvoAE – a new evolutionary method for training autoencoders for deep learning networks, in: Proceedings COMPSAC, Vol. 2, Taichung, Taiwan, 2015, pp. 790–795. 〈 – volume: 18 start-page: 1527 year: 2006 end-page: 1554 ident: bib33 article-title: A fast learning algorithm for deep belief nets publication-title: Neural Comput. – volume: 313 start-page: 504 year: 2006 end-page: 507 ident: bib32 article-title: Reducing the dimensionality of data with neural networks publication-title: Science – volume: 50 start-page: 115 year: 2014 end-page: 127 ident: bib40 article-title: Ecogeography-based optimization enhancing biogeography-based optimization with ecogeographic barriers and differentiations publication-title: Comput. Oper. Res. – year: 2001 ident: bib13 article-title: Recurrent Neural Networks for Prediction: Learning Algorithms, Architectures and Stability – volume: 31 start-page: 41 year: 2006 end-page: 46 ident: bib15 article-title: Comparison of four different time series methods to forecast hepatitis a virus infection publication-title: Expert Syst. Appl. – year: 2009 ident: bib41 article-title: Mannual of Organic Pesticides and Intermediate Mass Spectrum – reference: L.H. Keith, Environmental endocrine disruptors: an overview of the analytical challenge, in: Proceedings of the 13th Annual Waste Testing and Quality Assurance Symposium, Arlington, 1997. – volume: 64 start-page: 155 year: 2016 end-page: 162 ident: bib62 article-title: A variance-constrained approach to recursive state estimation for time-varying complex networks with missing measurements publication-title: Automatica – volume: 144 start-page: 295 year: 2014 end-page: 303 ident: bib36 article-title: Deep self-taught learning for facial beauty prediction publication-title: Neurocomputing – volume: 198 start-page: 229 year: 2004 end-page: 238 ident: bib6 article-title: Microbial contamination of drinking water and disease outcomes in developing regions publication-title: Toxicol – reference: M. Wang, Z. Wang, D. Bao, et al., Food Contamination Monitoring and Analysis in 2000 in China, Chin. J. Food Hyg. – volume: 391 start-page: 143 year: 2008 end-page: 148 ident: bib21 article-title: Atmosphere pollutants and mortality rate of respiratory diseases in beijing publication-title: Sci. Total Environ. – volume: 31 start-page: 707 year: 2009 end-page: 715 ident: bib11 article-title: Heavy metal contamination in soils and food crops around Dabaoshan mine in Guangdong, China: implication for human health publication-title: Environ. Geochem. Health – year: 2014 ident: bib42 article-title: Heterocyclic Pesticides: Herbicides – volume: 133 start-page: 41 year: 2005 end-page: 47 ident: bib7 article-title: Detection of multiple enteric virus strains within a foodborne outbreak of gastroenteritis: an indication of the source of contamination publication-title: Epidemiol. Infect. – volume: 27 start-page: 47 year: 2016 end-page: 61 ident: bib29 article-title: Learning subspace-based RBFNN using coevolutionary algorithm for complex classification tasks publication-title: IEEE Trans. Neural Netw. Learn. Syst. – volume: 18 start-page: 70 year: 2014 end-page: 81 ident: bib59 article-title: Population classificationin fire evacuation: a multiobjective particle swarm optimization approach publication-title: IEEE Trans. Evol. Comput. – volume: 8 start-page: 684 year: 2016 end-page: 692 ident: bib35 article-title: Deep belief networks for quantitative analysis of a gold immunochromatographic strip publication-title: Cogn. Comput. – volume: 61 start-page: 166 year: 2015 end-page: 176 ident: bib57 article-title: Efficient motion and disparity estimation optimization for low complexity multiview video coding publication-title: IEEE Trans. Broadcast. – reference: Y.X. Ma, S.G. Wang, The application of artificial neural network in the forecasting on incidence of a disease, in: Proceedings of the 3rd International Conference on Biomedical Engineering and Informatics, Vol. 3, 2010, pp. 1269–1272. 〈 – volume: 47 start-page: 43 year: 2013 end-page: 45 ident: bib16 article-title: Time series prediction of morbidity using artificial neural networks publication-title: Biomed. Eng. – reference: Y.J. Zheng, W.G. Sheng, X.M. Sun, S.Y. Chen, Airline passenger profiling based on fuzzy deep machine learning, IEEE Trans. Neural Netw. Learn. Syst. Online first. 〈 – volume: 46 start-page: 875 year: 2016 end-page: 885 ident: bib50 article-title: Fine-tuning deep belief networks using harmony search publication-title: Appl. Soft Comput. – volume: 135 start-page: 637 year: 2001 end-page: 640 ident: bib1 article-title: Disease prediction models aim to guide medical decision making publication-title: Ann. Intern. Med. – volume: 1 start-page: 61 year: 1994 end-page: 62 ident: bib4 article-title: Food contamination and disease in travelers: the connection? publication-title: J. Travel Med. – volume: 12 start-page: 702 year: 2008 end-page: 713 ident: bib51 article-title: Biogeography-based optimization publication-title: IEEE Trans. Evol. Comput. – reference: T. Sandholm, C. Brodley, A. Vidovic, M. Sandholm, Comparison of regression methods, symbolic induction methods and neural networks in morbidity diagnosis and mortality prediction in equine gastrointestinal colic., in: In AAAI 1996 Spring Symposium Series, Artificial Intelligence in Medicine, Applications of Current Technologies, Spring, 1996, pp. 154–159. – reference: O.E. David, I. Greental, Genetic Algorithms for Evolving Deep Neural Networks, in: Proceedings of the GECCO, ACM, Vancouver, Canada, 2014, pp. 1451–1452. – reference: A.G. Tettamanzi, M. Tomassini, Soft Computing: Integrating Evolutionary, Neural, and Fuzzy Systems, Springer Verlag, Berlin Heidelberg, 2013. – volume: 17 start-page: 1301 year: 2013 end-page: 1314 ident: bib58 article-title: Emergency transportation planning in disaster relief supply chain management: a cooperative fuzzy optimization approach publication-title: Soft Comput. – volume: 48 start-page: 334 year: 1993 end-page: 344 ident: bib18 article-title: Pulmonary function changes in asthmatics associated with low-level SO2 and NO2 air pollution, weather, and medicine intake publication-title: Allergy – volume: 31 start-page: 65 year: 2016 end-page: 75 ident: bib63 article-title: Estimation, filteringand fusion for networked systems with network-induced phenomena: new progress and prospects publication-title: Inform. Fusion – reference: control for 2-D fuzzy systems with interval time-varying delays and missing measurements, IEEE Trans. Cybern. Online first. 〈 – volume: 28 start-page: 961 year: 2015 end-page: 973 ident: bib54 article-title: Image segmentation by generalized hierarchical fuzzy c-means algorithm publication-title: J. Intell. Fuzzy Syst. – volume: 64 start-page: 155 year: 2016 ident: 10.1016/j.neucom.2016.11.018_bib62 article-title: A variance-constrained approach to recursive state estimation for time-varying complex networks with missing measurements publication-title: Automatica doi: 10.1016/j.automatica.2015.11.008 – volume: 126 start-page: 1 issue: 1 year: 2000 ident: 10.1016/j.neucom.2016.11.018_bib56 article-title: A framework for the description of evolutionary algorithms publication-title: Eur. J. Oper. Res. doi: 10.1016/S0377-2217(99)00435-X – volume: 135 start-page: 637 issue: 8 year: 2001 ident: 10.1016/j.neucom.2016.11.018_bib1 article-title: Disease prediction models aim to guide medical decision making publication-title: Ann. Intern. Med. doi: 10.7326/0003-4819-135-8_Part_1-200110160-00023 – year: 2009 ident: 10.1016/j.neucom.2016.11.018_bib41 – volume: 35 start-page: 1958 issue: 8 year: 2013 ident: 10.1016/j.neucom.2016.11.018_bib34 article-title: Learning with hierarchical-deep models publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2012.269 – volume: 1 start-page: 61 issue: 2 year: 1994 ident: 10.1016/j.neucom.2016.11.018_bib4 article-title: Food contamination and disease in travelers: the connection? publication-title: J. Travel Med. doi: 10.1111/j.1708-8305.1994.tb00563.x – ident: 10.1016/j.neucom.2016.11.018_bib49 doi: 10.1109/ICASSP.2015.7178918 – volume: 31 start-page: 707 issue: 6 year: 2009 ident: 10.1016/j.neucom.2016.11.018_bib11 article-title: Heavy metal contamination in soils and food crops around Dabaoshan mine in Guangdong, China: implication for human health publication-title: Environ. Geochem. Health doi: 10.1007/s10653-009-9248-3 – volume: 8 start-page: 684 issue: 4 year: 2016 ident: 10.1016/j.neucom.2016.11.018_bib35 article-title: Deep belief networks for quantitative analysis of a gold immunochromatographic strip publication-title: Cogn. Comput. doi: 10.1007/s12559-016-9404-x – volume: 46 start-page: 875 year: 2016 ident: 10.1016/j.neucom.2016.11.018_bib50 article-title: Fine-tuning deep belief networks using harmony search publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2015.08.043 – ident: 10.1016/j.neucom.2016.11.018_bib43 – volume: 18 start-page: 2323 issue: 11 year: 2014 ident: 10.1016/j.neucom.2016.11.018_bib52 article-title: Localized biogeography-based optimization publication-title: Soft Comput. doi: 10.1007/s00500-013-1209-1 – ident: 10.1016/j.neucom.2016.11.018_bib14 – ident: 10.1016/j.neucom.2016.11.018_bib24 doi: 10.1109/TCYB.2016.2514846 – ident: 10.1016/j.neucom.2016.11.018_bib10 – volume: 31 start-page: 65 year: 2016 ident: 10.1016/j.neucom.2016.11.018_bib63 article-title: Estimation, filteringand fusion for networked systems with network-induced phenomena: new progress and prospects publication-title: Inform. Fusion doi: 10.1016/j.inffus.2016.01.001 – volume: 55 start-page: 1 issue: 1 year: 2015 ident: 10.1016/j.neucom.2016.11.018_bib65 article-title: Water wave optimization: a new nature inspired metaheuristic publication-title: Comput. Oper. Res. doi: 10.1016/j.cor.2014.10.008 – volume: 48 start-page: 334 issue: 5 year: 1993 ident: 10.1016/j.neucom.2016.11.018_bib18 article-title: Pulmonary function changes in asthmatics associated with low-level SO2 and NO2 air pollution, weather, and medicine intake publication-title: Allergy doi: 10.1111/j.1398-9995.1993.tb02402.x – volume: 77 start-page: 70 issue: 1 year: 2016 ident: 10.1016/j.neucom.2016.11.018_bib30 article-title: State estimation for a class of artificial neural networks with stochastically corrupted measurements under round-robin protocol publication-title: Neural Netw. doi: 10.1016/j.neunet.2016.01.001 – volume: 122 start-page: 1627 issue: 5 year: 2002 ident: 10.1016/j.neucom.2016.11.018_bib19 article-title: Prediction of emergency department visits for respiratory symptoms using an artificial neural network publication-title: Chest doi: 10.1378/chest.122.5.1627 – volume: 13 start-page: 4253 issue: 11 year: 2013 ident: 10.1016/j.neucom.2016.11.018_bib9 article-title: Multiobjective fireworks optimization for variable-rate fertilization in oil crop production publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2013.07.004 – volume: 28 start-page: 1142 year: 2007 ident: 10.1016/j.neucom.2016.11.018_bib8 article-title: Widespread environmental contamination associated with patients with diarrhea and methicillin-resistant Staphylococcus aureus colonization of the gastrointestinal tract publication-title: Infect. Control Hosp. Epidemiol. doi: 10.1086/520737 – volume: 391 start-page: 143 issue: 1 year: 2008 ident: 10.1016/j.neucom.2016.11.018_bib21 article-title: Atmosphere pollutants and mortality rate of respiratory diseases in beijing publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2007.10.058 – volume: 204 start-page: 125 year: 2016 ident: 10.1016/j.neucom.2016.11.018_bib17 article-title: Medical media analytics via ranking and big learning: a multi-modality image-based disease severity prediction study publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.07.148 – volume: 8 start-page: 42 issue: 1 year: 2005 ident: 10.1016/j.neucom.2016.11.018_bib2 article-title: Accuracy of prediction models in the context of disease management publication-title: Dis. Manag. doi: 10.1089/dis.2005.8.42 – volume: 11 start-page: 3371 year: 2010 ident: 10.1016/j.neucom.2016.11.018_bib46 article-title: Stacked denoising autoencoders learning useful representations in a deep network with a local denoising criterion publication-title: J. Mach. Learn. Res. – volume: 18 start-page: 70 issue: 1 year: 2014 ident: 10.1016/j.neucom.2016.11.018_bib59 article-title: Population classificationin fire evacuation: a multiobjective particle swarm optimization approach publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2013.2281396 – volume: 295 start-page: 395 year: 2015 ident: 10.1016/j.neucom.2016.11.018_bib27 article-title: A rapid learning algorithm for vehicle classification publication-title: Inform. Sci. doi: 10.1016/j.ins.2014.10.040 – volume: 16 start-page: 865 issue: 2 year: 2015 ident: 10.1016/j.neucom.2016.11.018_bib37 article-title: Traffic flow prediction with big data: a deep learning approach publication-title: IEEE Trans. Intell. Transp. Syst. – ident: 10.1016/j.neucom.2016.11.018_bib23 doi: 10.1109/BMEI.2010.5639268 – volume: 35 start-page: 859 issue: 7 year: 2002 ident: 10.1016/j.neucom.2016.11.018_bib5 article-title: Bacterial contamination of animal feed and its relationship to human foodborne illness publication-title: Clin. Infect. Dis. doi: 10.1086/342885 – volume: 102 start-page: 309 issue: 2 year: 1989 ident: 10.1016/j.neucom.2016.11.018_bib3 article-title: Bacterial contamination of stored water and stored food: a potential source of diarrhoeal disease in West Africa publication-title: Epidemiol. Infect. doi: 10.1017/S0950268800029988 – volume: 61 start-page: 166 issue: 2 year: 2015 ident: 10.1016/j.neucom.2016.11.018_bib57 article-title: Efficient motion and disparity estimation optimization for low complexity multiview video coding publication-title: IEEE Trans. Broadcast. doi: 10.1109/TBC.2015.2419824 – ident: 10.1016/j.neucom.2016.11.018_bib48 – volume: 144 start-page: 295 year: 2014 ident: 10.1016/j.neucom.2016.11.018_bib36 article-title: Deep self-taught learning for facial beauty prediction publication-title: Neurocomputing doi: 10.1016/j.neucom.2014.05.028 – volume: 12 start-page: 702 issue: 6 year: 2008 ident: 10.1016/j.neucom.2016.11.018_bib51 article-title: Biogeography-based optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2008.919004 – volume: 148 start-page: 75 issue: 1 year: 2015 ident: 10.1016/j.neucom.2016.11.018_bib60 article-title: A hybrid fireworks optimization method with differential evolution operators publication-title: Neurocomputing doi: 10.1016/j.neucom.2012.08.075 – ident: 10.1016/j.neucom.2016.11.018_bib64 doi: 10.1007/0-306-48056-5_16 – volume: 4 start-page: 197 issue: 1–2 year: 2009 ident: 10.1016/j.neucom.2016.11.018_bib22 article-title: Mortality rates and air pollution levels under different weather conditions: an example from Western Europe publication-title: Int. J. Environ. Waste Manag. doi: 10.1504/IJEWM.2009.026892 – volume: 17 start-page: 1301 issue: 7 year: 2013 ident: 10.1016/j.neucom.2016.11.018_bib58 article-title: Emergency transportation planning in disaster relief supply chain management: a cooperative fuzzy optimization approach publication-title: Soft Comput. doi: 10.1007/s00500-012-0968-4 – volume: 198 start-page: 229 issue: 1–3 year: 2004 ident: 10.1016/j.neucom.2016.11.018_bib6 article-title: Microbial contamination of drinking water and disease outcomes in developing regions publication-title: Toxicol doi: 10.1016/j.tox.2004.01.030 – volume: 50 start-page: 115 year: 2014 ident: 10.1016/j.neucom.2016.11.018_bib40 article-title: Ecogeography-based optimization enhancing biogeography-based optimization with ecogeographic barriers and differentiations publication-title: Comput. Oper. Res. doi: 10.1016/j.cor.2014.04.013 – volume: 199 start-page: 31 year: 2016 ident: 10.1016/j.neucom.2016.11.018_bib31 article-title: An RBF neural network approach towards precision motion system with selective sensor fusion publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.01.093 – volume: 28 start-page: 961 issue: 2 year: 2015 ident: 10.1016/j.neucom.2016.11.018_bib54 article-title: Image segmentation by generalized hierarchical fuzzy c-means algorithm publication-title: J. Intell. Fuzzy Syst. doi: 10.3233/IFS-141378 – ident: 10.1016/j.neucom.2016.11.018_bib25 doi: 10.1109/TNNLS.2016.2609437 – volume: 86 start-page: 650 issue: 4 year: 2013 ident: 10.1016/j.neucom.2016.11.018_bib61 article-title: Quantised recursive filtering for a class of nonlinear systems with multiplicative noises and missing measurements publication-title: Int. J. Control doi: 10.1080/00207179.2012.756149 – volume: 43 start-page: 102 issue: 1 year: 2013 ident: 10.1016/j.neucom.2016.11.018_bib26 article-title: Synchronization of coupled neutral-type neural networks with jumping-mode-dependent discrete and unbounded distributed delays publication-title: IEEE Trans. Cyber doi: 10.1109/TSMCB.2012.2199751 – volume: 77 start-page: 5 issue: 1 year: 2015 ident: 10.1016/j.neucom.2016.11.018_bib12 article-title: Impacts of soil and water pollution on food safety and health risks in China publication-title: Environ. Int. doi: 10.1016/j.envint.2014.12.010 – volume: 12 start-page: 103 issue: 1 year: 2015 ident: 10.1016/j.neucom.2016.11.018_bib38 article-title: A deep learning network approach to ab initio protein secondary structure prediction publication-title: IEEE/ACM Trans. Comput. Biol. Bioinforma. doi: 10.1109/TCBB.2014.2343960 – ident: 10.1016/j.neucom.2016.11.018_bib45 doi: 10.1145/1390156.1390294 – volume: 27 start-page: 47 issue: 1 year: 2016 ident: 10.1016/j.neucom.2016.11.018_bib29 article-title: Learning subspace-based RBFNN using coevolutionary algorithm for complex classification tasks publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2015.2411615 – volume: 313 start-page: 504 issue: 5786 year: 2006 ident: 10.1016/j.neucom.2016.11.018_bib32 article-title: Reducing the dimensionality of data with neural networks publication-title: Science doi: 10.1126/science.1127647 – volume: 31 start-page: 41 issue: 1 year: 2006 ident: 10.1016/j.neucom.2016.11.018_bib15 article-title: Comparison of four different time series methods to forecast hepatitis a virus infection publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2005.09.002 – volume: 133 start-page: 41 year: 2005 ident: 10.1016/j.neucom.2016.11.018_bib7 article-title: Detection of multiple enteric virus strains within a foodborne outbreak of gastroenteritis: an indication of the source of contamination publication-title: Epidemiol. Infect. doi: 10.1017/S0950268804003218 – volume: 23 start-page: 1070 issue: 4 year: 2015 ident: 10.1016/j.neucom.2016.11.018_bib55 article-title: A hybrid neuro-fuzzy network based on differential biogeography-based optimization for online population classification in earthquakes publication-title: IEEE Trans. Fuzzy Syst. doi: 10.1109/TFUZZ.2014.2337938 – ident: 10.1016/j.neucom.2016.11.018_bib47 doi: 10.1109/COMPSAC.2015.63 – year: 2001 ident: 10.1016/j.neucom.2016.11.018_bib13 – volume: 40 start-page: 185 issue: 1 year: 1989 ident: 10.1016/j.neucom.2016.11.018_bib44 article-title: Connectionist learning procedures publication-title: Artif. Intell. doi: 10.1016/0004-3702(89)90049-0 – year: 2014 ident: 10.1016/j.neucom.2016.11.018_bib42 – volume: 18 start-page: 1527 issue: 7 year: 2006 ident: 10.1016/j.neucom.2016.11.018_bib33 article-title: A fast learning algorithm for deep belief nets publication-title: Neural Comput. doi: 10.1162/neco.2006.18.7.1527 – ident: 10.1016/j.neucom.2016.11.018_bib53 doi: 10.1145/2598394.2602287 – volume: 17 start-page: 223 issue: 3 year: 2006 ident: 10.1016/j.neucom.2016.11.018_bib20 article-title: Prediction for incidence of hemorrhagic fever with renal syndrome with back propagation artificial neural network model publication-title: Chin. J. Vector Bio Control – ident: 10.1016/j.neucom.2016.11.018_bib28 doi: 10.1109/TNNLS.2016.2544779 – volume: 46 start-page: 936 year: 2016 ident: 10.1016/j.neucom.2016.11.018_bib39 article-title: Hybrid deep neural network model for human action recognition publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2015.08.025 – volume: 47 start-page: 43 issue: 1 year: 2013 ident: 10.1016/j.neucom.2016.11.018_bib16 article-title: Time series prediction of morbidity using artificial neural networks publication-title: Biomed. Eng. doi: 10.1007/s10527-013-9331-z |
| SSID | ssj0017129 |
| Score | 2.443378 |
| Snippet | A majority of gastrointestinal infectious diseases are caused by food contamination, and prediction of morbidity can be very useful for etiological factor... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 16 |
| SubjectTerms | Deep denoising autoencoder (DDAE) Evolutionary algorithms (EAs) Gastrointestinal infections Morbidity prediction Neural networks |
| Title | An evolutionary deep neural network for predicting morbidity of gastrointestinal infections by food contamination |
| URI | https://dx.doi.org/10.1016/j.neucom.2016.11.018 |
| Volume | 226 |
| WOSCitedRecordID | wos000392037800003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-8286 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017129 issn: 0925-2312 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWlgMX3ojykg_cKld5Jz5GqDx6qEAUsXCJ4tiGXbXJkt2syi_h7zITO95siwo9cIkiK7aTzJfxePL5MyEvvbCMKhi2mNY-Z5HMBBNhohmPPV9kOtRCZ_1mE-nxcTad8veTya9hLcz6NK3r7PycL_6rqaEMjI1LZ69hbtcoFMA5GB2OYHY4_pPh83pfrW0PSImTSi32UbYSjFEb0nfPLVy0-I-mZz2fNa2YSUvO-FYuV22DMhLw9de9Jofha9VLjFU1yiAjwb1EEo0z63xQgepgROx3irA5iPwMpRgk4s7lHD5aHvCHmYPm1-_KlH3p2FHniqedMoWu6nDdZzVjb7pmnLWAkRBXgY8TmTyIGcSWW544CMa-1E9Go7Kpe8nfm9TD_ADeIpJ_oKfkAEVZrU_fkte-MOw5MuLAc5sXppUCW4GZUQGt3CC7QRpzcJe7-bvD6ZH7QZX6gZFxtI8xrMrsqYOX7-bPUc8okjm5S27bKQjNDXTukYmq75M7w_Ye1Hr7B-RHXtMxkigiiRokUYskCkiiGyRRhyTaaHoRSXSDJCp-UkQS3ULSQ_Lp9eHJq7fM7tDBqjDmKyaFlgom3LqqopjHkQySTHmBSrmOlFelys-Ql690HHEtMfcgdFD5IgyjwIfgP3xEduqmVo8Jhal6ibG_rEqYRPuJiCVP_ar0lAiSMJV7JBzeYFFZ-XrcReW0uMp-e4S5Wgsj3_KX69PBOIUNQU1oWQDirqz55Jo9PSW3Nt_FM7Kzajv1nNys1qvZsn1h4fYblECwRg |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+evolutionary+deep+neural+network+for+predicting+morbidity+of+gastrointestinal+infections+by+food+contamination&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=Song%2C+Qin&rft.au=Zheng%2C+Yu-Jun&rft.au=Xue%2C+Yu&rft.au=Sheng%2C+Wei-Guo&rft.date=2017-02-22&rft.issn=0925-2312&rft.volume=226&rft.spage=16&rft.epage=22&rft_id=info:doi/10.1016%2Fj.neucom.2016.11.018&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_neucom_2016_11_018 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon |