A Survey of Normalization Methods in Multiobjective Evolutionary Algorithms

A real-world multiobjective optimization problem (MOP) usually has differently scaled objectives. Objective space normalization has been widely used in multiobjective optimization evolutionary algorithms (MOEAs). Without objective space normalization, most of the MOEAs may fail to obtain uniformly d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on evolutionary computation Jg. 25; H. 6; S. 1028 - 1048
Hauptverfasser: He, Linjun, Ishibuchi, Hisao, Trivedi, Anupam, Wang, Handing, Nan, Yang, Srinivasan, Dipti
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York IEEE 01.12.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:1089-778X, 1941-0026
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract A real-world multiobjective optimization problem (MOP) usually has differently scaled objectives. Objective space normalization has been widely used in multiobjective optimization evolutionary algorithms (MOEAs). Without objective space normalization, most of the MOEAs may fail to obtain uniformly distributed and well-converged solutions on MOPs with differently scaled objectives. Objective space normalization requires information on the Pareto front (PF) range, which can be acquired from the ideal and nadir points. Since the ideal and nadir points of a real-world MOP are usually not known a priori , many recently proposed MOEAs tend to estimate and update the two points adaptively during the evolutionary process. Different methods to estimate ideal and nadir points have been proposed in the literature. Due to inaccurate estimation of the two points (i.e., inaccurate estimation of the PF range), objective space normalization may deteriorate the performance of an MOEA. Different methods have also been proposed to alleviate the negative effects of inaccurate estimation. This article presents a comprehensive survey of objective space normalization methods, including ideal point estimation methods, nadir point estimation methods, and different methods based on the utilization of the estimated PF range.
AbstractList A real-world multiobjective optimization problem (MOP) usually has differently scaled objectives. Objective space normalization has been widely used in multiobjective optimization evolutionary algorithms (MOEAs). Without objective space normalization, most of the MOEAs may fail to obtain uniformly distributed and well-converged solutions on MOPs with differently scaled objectives. Objective space normalization requires information on the Pareto front (PF) range, which can be acquired from the ideal and nadir points. Since the ideal and nadir points of a real-world MOP are usually not known a priori , many recently proposed MOEAs tend to estimate and update the two points adaptively during the evolutionary process. Different methods to estimate ideal and nadir points have been proposed in the literature. Due to inaccurate estimation of the two points (i.e., inaccurate estimation of the PF range), objective space normalization may deteriorate the performance of an MOEA. Different methods have also been proposed to alleviate the negative effects of inaccurate estimation. This article presents a comprehensive survey of objective space normalization methods, including ideal point estimation methods, nadir point estimation methods, and different methods based on the utilization of the estimated PF range.
Author Wang, Handing
Srinivasan, Dipti
Ishibuchi, Hisao
Nan, Yang
He, Linjun
Trivedi, Anupam
Author_xml – sequence: 1
  givenname: Linjun
  orcidid: 0000-0002-4255-2538
  surname: He
  fullname: He, Linjun
  email: this.helj@gmail.com
  organization: Department of Computer Science and Engineering, Guangdong Provincial Key Laboratory of Brain-Inspired Intelligent Computation, Southern University of Science and Technology, Shenzhen, China
– sequence: 2
  givenname: Hisao
  orcidid: 0000-0001-9186-6472
  surname: Ishibuchi
  fullname: Ishibuchi, Hisao
  email: hisao@sustech.edu.cn
  organization: Department of Computer Science and Engineering, Guangdong Provincial Key Laboratory of Brain-Inspired Intelligent Computation, Southern University of Science and Technology, Shenzhen, China
– sequence: 3
  givenname: Anupam
  orcidid: 0000-0002-3066-5578
  surname: Trivedi
  fullname: Trivedi, Anupam
  email: eleatr@nus.edu.sg
  organization: Department of Electrical and Computer Engineering, National University of Singapore, Singapore
– sequence: 4
  givenname: Handing
  orcidid: 0000-0002-4805-3780
  surname: Wang
  fullname: Wang, Handing
  email: hdwang@xidian.edu.cn
  organization: School of Artificial Intelligence, Xidian University, Xi'an, China
– sequence: 5
  givenname: Yang
  orcidid: 0000-0001-8396-294X
  surname: Nan
  fullname: Nan, Yang
  email: nany@mail.sustech.edu.cn
  organization: Department of Computer Science and Engineering, Guangdong Provincial Key Laboratory of Brain-Inspired Intelligent Computation, Southern University of Science and Technology, Shenzhen, China
– sequence: 6
  givenname: Dipti
  orcidid: 0000-0003-4877-3478
  surname: Srinivasan
  fullname: Srinivasan, Dipti
  email: dipti@nus.edu.sg
  organization: Department of Electrical and Computer Engineering, National University of Singapore, Singapore
BookMark eNp9kT9PwzAQxS0EEm3hAyCWSMwpdpzE8VhV5Y8oMFAQm-U4Z-oqjYvtVCqfnoRWDAxM93R67-70uyE6bmwDCF0QPCYE8-vF7G06TnBCxhSzPCPpERoQnpIY4yQ_7jQueMxY8X6Kht6vMCZpRvgAPUyil9ZtYRdZHT1Zt5a1-ZLB2CZ6hLC0lY9MJ9u6a5UrUMFsIZptbd32Hul20aT-sM6E5dqfoRMtaw_nhzpCrzezxfQunj_f3k8n81jRjIe4KlNWQUWYSitVpKpkTCU8k5DIApSmJaW54gWRmkpQSmMGkoDUBSNZpbWmI3S1n7tx9rMFH8TKtq7pVookxylPCOW8c5G9SznrvQMtNs6su4sFwaJnJnpmomcmDsy6DPuTUSb80AhOmvrf5OU-aQDgd1P3AI5ZQr8B65F92w
CODEN ITEVF5
CitedBy_id crossref_primary_10_1109_TEVC_2022_3192100
crossref_primary_10_1109_LWC_2025_3529082
crossref_primary_10_1016_j_ejor_2025_08_030
crossref_primary_10_1007_s40747_023_00969_w
crossref_primary_10_1109_MCI_2025_3563425
crossref_primary_10_1109_TIM_2022_3169551
crossref_primary_10_1145_3610536
crossref_primary_10_3390_bdcc7040174
crossref_primary_10_1080_15376494_2022_2088907
crossref_primary_10_1109_TEVC_2022_3211643
crossref_primary_10_1016_j_csite_2024_105062
crossref_primary_10_1016_j_asoc_2024_111296
crossref_primary_10_1109_ACCESS_2021_3139137
crossref_primary_10_1016_j_apenergy_2025_126284
crossref_primary_10_1016_j_engappai_2023_106868
crossref_primary_10_1016_j_asoc_2023_110693
crossref_primary_10_1016_j_jclepro_2024_144051
crossref_primary_10_1016_j_compeleceng_2022_108285
crossref_primary_10_1016_j_ins_2024_121079
crossref_primary_10_1016_j_asoc_2024_111646
crossref_primary_10_1016_j_knosys_2024_112524
crossref_primary_10_1109_TAES_2025_3560609
crossref_primary_10_1016_j_ins_2025_122649
crossref_primary_10_1109_TII_2023_3316183
crossref_primary_10_1016_j_ifacol_2022_10_100
crossref_primary_10_1016_j_energy_2025_136505
crossref_primary_10_1109_TAI_2024_3443790
crossref_primary_10_1155_2024_2311998
crossref_primary_10_1016_j_ijpe_2023_109077
crossref_primary_10_1109_TCYB_2022_3226744
crossref_primary_10_1016_j_ijhydene_2024_05_167
crossref_primary_10_1109_TEVC_2022_3219062
crossref_primary_10_1109_TEVC_2022_3233364
crossref_primary_10_1016_j_autcon_2025_106284
crossref_primary_10_1109_TEVC_2023_3319009
crossref_primary_10_1080_0305215X_2025_2466119
crossref_primary_10_1109_TPWRS_2022_3200838
crossref_primary_10_1109_TSMC_2022_3201685
crossref_primary_10_1109_JIOT_2024_3481637
crossref_primary_10_1109_TEVC_2023_3287399
crossref_primary_10_1016_j_swevo_2023_101305
crossref_primary_10_1080_00207543_2025_2502106
crossref_primary_10_1109_TII_2021_3128405
crossref_primary_10_3390_ijgi12040152
crossref_primary_10_1007_s40747_021_00590_9
crossref_primary_10_1016_j_asoc_2022_109720
crossref_primary_10_1080_00207543_2023_2237122
crossref_primary_10_1016_j_scs_2023_105039
Cites_doi 10.1109/ACCESS.2020.2990567
10.1109/TEVC.2018.2866854
10.1109/TCYB.2014.2360923
10.1016/j.asoc.2017.03.041
10.1162/evco_a_00276
10.1109/TEVC.2003.810758
10.1109/TEVC.2019.2899030
10.1109/CEC.2019.8790342
10.1109/TEVC.2015.2420112
10.1109/TCYB.2014.2367526
10.1109/CEC.2002.1007032
10.1016/j.asoc.2017.04.002
10.1109/SSCI44817.2019.9002760
10.1109/TEVC.2019.2958921
10.1109/CEC.2002.1007013
10.1109/TEVC.2013.2281533
10.1109/TCYB.2020.2971638
10.1007/3-540-44719-9_11
10.1109/MCI.2019.2937612
10.1109/TEVC.2014.2339823
10.1109/ICEC.1994.349965
10.1007/978-3-319-99253-2_25
10.1109/TEVC.2015.2443001
10.1109/TEVC.2017.2744674
10.1109/TEVC.2013.2281534
10.1109/TCYB.2017.2737554
10.1145/3071178.3071264
10.1109/CEC.2001.934293
10.1007/s10898-014-0214-y
10.1109/TEVC.2018.2882166
10.1007/978-3-642-17144-4_3
10.1109/TCYB.2017.2762701
10.1007/978-3-642-37140-0_32
10.1109/TEVC.2016.2519378
10.1109/TEVC.2007.892759
10.1109/TEVC.2019.2894743
10.1109/TCYB.2017.2739185
10.1016/j.ejor.2005.06.019
10.1109/TEVC.2007.910138
10.1109/TCYB.2014.2365354
10.1109/SMC.2013.110
10.1109/ACCESS.2020.3022164
10.1016/j.ejor.2010.02.041
10.1109/TEVC.2019.2909271
10.1109/TEVC.2018.2871362
10.1109/TEVC.2020.2964705
10.1109/ACCESS.2017.2751071
10.1109/CEC.2010.5586185
10.1145/1143997.1144113
10.1109/TEVC.2014.2373386
10.1145/2908812.2908856
10.1016/j.asoc.2020.106316
10.1109/TEVC.2013.2281535
10.1016/j.swevo.2019.02.003
10.1109/CEC.2016.7744174
10.1109/TEVC.2017.2749619
10.1109/TEVC.2019.2913831
10.1007/978-3-030-12598-1_8
10.1109/SSCI.2016.7850222
10.1016/j.asoc.2017.11.029
10.1007/978-3-030-12598-1_19
10.1109/TSMC.2017.2654301
10.1109/TEVC.2015.2459718
10.1109/MCI.2017.2742868
10.1145/3205651.3205702
10.1109/TCYB.2018.2819360
10.1007/978-3-319-99253-2_20
10.1007/978-3-319-45823-6_53
10.1109/TCYB.2016.2638902
10.1162/evco_a_00226
10.1162/106365602760234108
10.1109/TEVC.2016.2611642
10.1109/TCYB.2013.2247594
10.1109/SMC.2016.7844861
10.1016/j.asoc.2017.08.036
10.1007/978-3-030-12598-1_16
10.1007/s10589-009-9241-x
10.1109/TEVC.2012.2227145
10.1007/s00500-015-1940-x
10.1109/TEVC.2014.2343791
10.1109/TEVC.2016.2592479
10.1016/j.artint.2015.06.007
10.1109/TEVC.2018.2865590
10.1109/CEC.2019.8789953
10.1007/s10732-015-9301-6
10.1007/978-3-319-45823-6_92
10.1109/TEVC.2018.2791283
10.1109/TEVC.2016.2587749
10.1109/TMAG.2013.2243123
10.1109/TEVC.2014.2378512
10.1109/ICIICII.2015.103
10.1016/j.asoc.2020.106078
10.1109/CEC.2017.7969302
10.1109/TEVC.2010.2093579
10.1007/978-3-030-12598-1_23
10.1007/s11721-017-0133-x
10.1109/CEC48606.2020.9185849
10.1145/3321707.3321839
10.1145/2739480.2754776
10.1109/TEVC.2018.2855411
10.1109/TCYB.2017.2737519
10.1109/TEVC.2018.2848254
10.1109/TEVC.2016.2587808
10.1007/978-3-540-88908-3_14
10.1109/TEVC.2005.861417
10.1016/j.apm.2017.10.015
10.1109/TEVC.2019.2909636
10.1109/TEVC.2010.2041667
10.1016/j.ejor.2006.08.008
10.1137/S1052623496307510
10.1162/EVCO_a_00009
10.1109/SSCI.2016.7850230
10.1145/3377930.3390166
10.1007/3-540-36970-8_34
10.1109/TEVC.2018.2844286
10.1109/4235.996017
10.1109/TEVC.2018.2836912
10.1109/TEVC.2018.2883094
10.1109/TEVC.2014.2350987
10.1007/s40747-017-0061-9
10.1007/s40747-017-0039-7
10.1016/j.swevo.2019.100592
10.2514/1.16875
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TEVC.2021.3076514
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1941-0026
EndPage 1048
ExternalDocumentID 10_1109_TEVC_2021_3076514
9419072
Genre orig-research
GrantInformation_xml – fundername: Shenzhen Science and Technology Program
  grantid: KQTD2016112514355531
– fundername: Program for Guangdong Introducing Innovative and Enterpreneurial Teams
  grantid: 2017ZT07X386
– fundername: National Research Foundation Singapore under its AI Singapore Programme
  grantid: AISG-RP-2018-004
  funderid: 10.13039/501100001381
– fundername: National Natural Science Foundation of China
  grantid: 61876075
  funderid: 10.13039/501100001809
– fundername: Guangdong Provincial Key Laboratory
  grantid: 2020B121201001
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
5VS
6IF
6IK
6IL
6IN
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ADZIZ
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CHZPO
CS3
EBS
EJD
HZ~
H~9
IEGSK
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RIL
RNS
TN5
VH1
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c359t-db47ded17c4dc84cb77c295ae2a8ecf3b336c981af3aeccf07ea1eaf8715dfff3
IEDL.DBID RIE
ISICitedReferencesCount 60
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000724477500006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1089-778X
IngestDate Sun Nov 30 04:56:17 EST 2025
Sat Nov 29 03:13:48 EST 2025
Tue Nov 18 21:43:01 EST 2025
Wed Aug 27 05:11:49 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c359t-db47ded17c4dc84cb77c295ae2a8ecf3b336c981af3aeccf07ea1eaf8715dfff3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9186-6472
0000-0003-4877-3478
0000-0001-8396-294X
0000-0002-4805-3780
0000-0002-3066-5578
0000-0002-4255-2538
PQID 2604921399
PQPubID 85418
PageCount 21
ParticipantIDs proquest_journals_2604921399
ieee_primary_9419072
crossref_primary_10_1109_TEVC_2021_3076514
crossref_citationtrail_10_1109_TEVC_2021_3076514
PublicationCentury 2000
PublicationDate 2021-12-01
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-12-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on evolutionary computation
PublicationTitleAbbrev TEVC
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref56
ref59
ref58
ref53
ref52
ref55
ref54
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
steuer (ref113) 1986
ref44
ref43
ref49
ref8
ref7
ref9
knowles (ref123) 2002
ref4
ref6
ref5
ref100
ref101
ref40
ref35
ref34
ref37
ref31
ref30
ref33
ref32
ref39
ref38
he (ref36) 2019
ref24
ref23
cheng (ref116) 1997
ref26
ref25
ref20
zitzler (ref64) 2004; 3242
ref22
ref21
ref28
ref27
ref29
das (ref85) 1997
ref13
ref12
ref128
ref15
ref129
ref14
ref126
ref97
ref127
ref96
ref124
ref99
ref11
ref98
ref10
ref17
ref19
ref18
ref133
ref93
ref134
ref92
ref95
ref132
ref94
ref130
ref91
ref90
ref89
ref86
ref135
ref88
ref87
zitzler (ref125) 1999
zitzler (ref131) 2001
martínez (ref81) 2014; 8672
ref82
ref84
saxena (ref109) 2021
ref83
ref80
ref79
ref108
ref78
ref106
ref107
ref75
ref104
ref74
ref105
knowles (ref3) 2006
ref77
ref102
ref76
ref103
ref2
ref1
deb (ref16) 2009
ref71
ref111
ref70
ref112
ref73
ref72
ref110
ref68
ref119
ref67
ref117
ref69
ref118
ref115
ref63
ref66
ref65
ref114
ref60
ref122
ref62
ref120
ref61
ref121
References_xml – ident: ref23
  doi: 10.1109/ACCESS.2020.2990567
– ident: ref52
  doi: 10.1109/TEVC.2018.2866854
– ident: ref65
  doi: 10.1109/TCYB.2014.2360923
– ident: ref96
  doi: 10.1016/j.asoc.2017.03.041
– ident: ref50
  doi: 10.1162/evco_a_00276
– ident: ref114
  doi: 10.1109/TEVC.2003.810758
– ident: ref74
  doi: 10.1109/TEVC.2019.2899030
– ident: ref112
  doi: 10.1109/CEC.2019.8790342
– ident: ref26
  doi: 10.1109/TEVC.2015.2420112
– ident: ref130
  doi: 10.1109/TCYB.2014.2367526
– ident: ref11
  doi: 10.1109/CEC.2002.1007032
– ident: ref58
  doi: 10.1016/j.asoc.2017.04.002
– ident: ref60
  doi: 10.1109/SSCI44817.2019.9002760
– ident: ref88
  doi: 10.1109/TEVC.2019.2958921
– ident: ref126
  doi: 10.1109/CEC.2002.1007013
– ident: ref110
  doi: 10.1109/TEVC.2013.2281533
– ident: ref22
  doi: 10.1109/TCYB.2020.2971638
– ident: ref127
  doi: 10.1007/3-540-44719-9_11
– ident: ref63
  doi: 10.1109/MCI.2019.2937612
– ident: ref87
  doi: 10.1109/TEVC.2014.2339823
– ident: ref115
  doi: 10.1109/ICEC.1994.349965
– ident: ref34
  doi: 10.1007/978-3-319-99253-2_25
– ident: ref25
  doi: 10.1109/TEVC.2015.2443001
– start-page: 1
  year: 2009
  ident: ref16
  article-title: A review of nadir point estimation procedures using evolutionary approaches: A tale of dimensionality reduction
  publication-title: Proc Multiple Crit Decis Making Conf
– year: 1997
  ident: ref116
  publication-title: Genetic Algorithms and Engineering Design
– ident: ref51
  doi: 10.1109/TEVC.2017.2744674
– ident: ref5
  doi: 10.1109/TEVC.2013.2281534
– ident: ref69
  doi: 10.1109/TCYB.2017.2737554
– ident: ref134
  doi: 10.1145/3071178.3071264
– ident: ref41
  doi: 10.1109/CEC.2001.934293
– ident: ref76
  doi: 10.1007/s10898-014-0214-y
– ident: ref93
  doi: 10.1109/TEVC.2018.2882166
– ident: ref35
  doi: 10.1007/978-3-642-17144-4_3
– ident: ref24
  doi: 10.1109/TCYB.2017.2762701
– ident: ref94
  doi: 10.1007/978-3-642-37140-0_32
– ident: ref67
  doi: 10.1109/TEVC.2016.2519378
– ident: ref20
  doi: 10.1109/TEVC.2007.892759
– ident: ref118
  doi: 10.1109/TEVC.2019.2894743
– ident: ref68
  doi: 10.1109/TCYB.2017.2739185
– ident: ref19
  doi: 10.1016/j.ejor.2005.06.019
– year: 1999
  ident: ref125
  article-title: Evolutionary algorithms for multiobjective optimization: Methods and applications
– ident: ref42
  doi: 10.1109/TEVC.2007.910138
– ident: ref66
  doi: 10.1109/TCYB.2014.2365354
– ident: ref122
  doi: 10.1109/SMC.2013.110
– ident: ref117
  doi: 10.1109/ACCESS.2020.3022164
– ident: ref15
  doi: 10.1016/j.ejor.2010.02.041
– ident: ref133
  doi: 10.1109/TEVC.2019.2909271
– ident: ref97
  doi: 10.1109/TEVC.2018.2871362
– ident: ref75
  doi: 10.1109/TEVC.2020.2964705
– ident: ref14
  doi: 10.1109/ACCESS.2017.2751071
– ident: ref4
  doi: 10.1109/CEC.2010.5586185
– ident: ref59
  doi: 10.1145/1143997.1144113
– ident: ref38
  doi: 10.1109/TEVC.2014.2373386
– ident: ref83
  doi: 10.1145/2908812.2908856
– ident: ref121
  doi: 10.1016/j.asoc.2020.106316
– ident: ref21
  doi: 10.1109/TEVC.2013.2281535
– ident: ref10
  doi: 10.1016/j.swevo.2019.02.003
– year: 2002
  ident: ref123
  article-title: Local-search and hybrid evolutionary algorithms for Pareto optimization
– ident: ref37
  doi: 10.1109/CEC.2016.7744174
– ident: ref72
  doi: 10.1109/TEVC.2017.2749619
– ident: ref1
  doi: 10.1109/TEVC.2019.2913831
– ident: ref84
  doi: 10.1007/978-3-030-12598-1_8
– ident: ref80
  doi: 10.1109/SSCI.2016.7850222
– ident: ref106
  doi: 10.1016/j.asoc.2017.11.029
– ident: ref55
  doi: 10.1007/978-3-030-12598-1_19
– ident: ref27
  doi: 10.1109/TSMC.2017.2654301
– volume: 3242
  start-page: 832
  year: 2004
  ident: ref64
  article-title: Indicator-based selection in multiobjective search
  publication-title: Proc Int Conf Parallel Prob Solving Nat
– ident: ref79
  doi: 10.1109/TEVC.2015.2459718
– ident: ref99
  doi: 10.1109/MCI.2017.2742868
– ident: ref111
  doi: 10.1145/3205651.3205702
– year: 1997
  ident: ref85
  article-title: Nonlinear multicriteria optimization and robust optimality
– ident: ref40
  doi: 10.1109/TCYB.2018.2819360
– ident: ref71
  doi: 10.1007/978-3-319-99253-2_20
– ident: ref82
  doi: 10.1007/978-3-319-45823-6_53
– ident: ref33
  doi: 10.1109/TCYB.2016.2638902
– ident: ref135
  doi: 10.1162/evco_a_00226
– volume: 8672
  start-page: 682
  year: 2014
  ident: ref81
  article-title: Using a family of curves to approximate the Pareto front of a multi-objective optimization problem
  publication-title: Proc Int Conf Parallel Probl Solving Nat
– year: 2001
  ident: ref131
  article-title: SPEA2: Improving the strength Pareto evolutionary algorithm
– ident: ref48
  doi: 10.1162/106365602760234108
– ident: ref28
  doi: 10.1109/TEVC.2016.2611642
– start-page: 1834
  year: 2019
  ident: ref36
  article-title: A study of the Naïve objective space normalization method in MOEA/D
  publication-title: Proc IEEE Symp Comput Intell
– ident: ref100
  doi: 10.1109/TCYB.2013.2247594
– ident: ref57
  doi: 10.1109/SMC.2016.7844861
– ident: ref70
  doi: 10.1016/j.asoc.2017.08.036
– ident: ref108
  doi: 10.1007/978-3-030-12598-1_16
– ident: ref46
  doi: 10.1007/s10589-009-9241-x
– ident: ref31
  doi: 10.1109/TEVC.2012.2227145
– ident: ref18
  doi: 10.1007/s00500-015-1940-x
– ident: ref103
  doi: 10.1109/TEVC.2014.2343791
– ident: ref29
  doi: 10.1109/TEVC.2016.2592479
– year: 2006
  ident: ref3
  article-title: A tutorial on the performance assessment of stochastic multiobjective optimizers
– ident: ref43
  doi: 10.1016/j.artint.2015.06.007
– ident: ref53
  doi: 10.1109/TEVC.2018.2865590
– ident: ref2
  doi: 10.1109/CEC.2019.8789953
– ident: ref107
  doi: 10.1007/s10732-015-9301-6
– ident: ref95
  doi: 10.1007/978-3-319-45823-6_92
– ident: ref92
  doi: 10.1109/TEVC.2018.2791283
– ident: ref39
  doi: 10.1109/TEVC.2016.2587749
– ident: ref102
  doi: 10.1109/TMAG.2013.2243123
– ident: ref32
  doi: 10.1109/TEVC.2014.2378512
– ident: ref56
  doi: 10.1109/ICIICII.2015.103
– ident: ref6
  doi: 10.1016/j.asoc.2020.106078
– year: 1986
  ident: ref113
  publication-title: Multiple Criteria Optimization Theory Computation and Application
– ident: ref49
  doi: 10.1109/CEC.2017.7969302
– ident: ref98
  doi: 10.1109/TEVC.2010.2093579
– ident: ref73
  doi: 10.1007/978-3-030-12598-1_23
– ident: ref105
  doi: 10.1007/s11721-017-0133-x
– ident: ref120
  doi: 10.1109/CEC48606.2020.9185849
– ident: ref90
  doi: 10.1145/3321707.3321839
– ident: ref104
  doi: 10.1145/2739480.2754776
– ident: ref119
  doi: 10.1109/TEVC.2018.2855411
– ident: ref101
  doi: 10.1109/TCYB.2017.2737519
– ident: ref30
  doi: 10.1109/TEVC.2018.2848254
– ident: ref62
  doi: 10.1109/TEVC.2016.2587808
– ident: ref124
  doi: 10.1007/978-3-540-88908-3_14
– ident: ref7
  doi: 10.1109/TEVC.2005.861417
– ident: ref77
  doi: 10.1016/j.apm.2017.10.015
– ident: ref91
  doi: 10.1109/TEVC.2019.2909636
– ident: ref17
  doi: 10.1109/TEVC.2010.2041667
– ident: ref128
  doi: 10.1016/j.ejor.2006.08.008
– ident: ref86
  doi: 10.1137/S1052623496307510
– ident: ref129
  doi: 10.1162/EVCO_a_00009
– ident: ref47
  doi: 10.1109/SSCI.2016.7850230
– ident: ref44
  doi: 10.1145/3377930.3390166
– ident: ref13
  doi: 10.1007/3-540-36970-8_34
– ident: ref45
  doi: 10.1109/TEVC.2018.2844286
– ident: ref54
  doi: 10.1109/4235.996017
– ident: ref8
  doi: 10.1109/TEVC.2018.2836912
– ident: ref89
  doi: 10.1109/TEVC.2018.2883094
– ident: ref61
  doi: 10.1109/TEVC.2014.2350987
– ident: ref12
  doi: 10.1007/s40747-017-0061-9
– ident: ref9
  doi: 10.1007/s40747-017-0039-7
– ident: ref78
  doi: 10.1016/j.swevo.2019.100592
– year: 2021
  ident: ref109
  article-title: A localized high fidelity dominance based many-objective evolutionary algorithm
– ident: ref132
  doi: 10.2514/1.16875
SSID ssj0014519
Score 2.5694466
Snippet A real-world multiobjective optimization problem (MOP) usually has differently scaled objectives. Objective space normalization has been widely used in...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1028
SubjectTerms Dominance resistant solution (DRS)
Estimation
Evolutionary algorithms
Evolutionary computation
evolutionary multiobjective optimization (EMO)
Genetic algorithms
ideal point
Mopping
Multiple objective analysis
nadir point
objective space normalization
Optimization
Pareto optimization
Resistance
Search problems
Title A Survey of Normalization Methods in Multiobjective Evolutionary Algorithms
URI https://ieeexplore.ieee.org/document/9419072
https://www.proquest.com/docview/2604921399
Volume 25
WOSCitedRecordID wos000724477500006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0026
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014519
  issn: 1089-778X
  databaseCode: RIE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LS8MwGP9Q8aAH5xOnU3LwJFbbNG2a4xgTQR2CD3YraZroZK7SPcD_3i9tNhRF8JbDl1Dy-57N9wA44cg1klPjRbH0PTveGGWOY5RCuWEIuOJ1n9kb3usl_b64W4KzRS2M1rpKPtPndlm95eeFmtpfZReCofniqHCXOY_rWq3Fi4Ftk1In0wv0GJO-e8EMfHHx0H3qYCRIg3Nk6DgK2DcbVA1V-aGJK_Ny2fjfh23ChnMjSbvGfQuW9GgbGvMRDcRJ7Dasf-k3uAPXbXI_LWf6gxSG9Ky3OnRlmOS2miQ9JgNc2hzDInutVSHpzhx3yvKDtIfPRTmYvLyNd-HxsvvQufLcNAVPhZGYeHnGeK7zgCuWq4SpjHNFRSQ1lYlWJszCMFYiCaQJJeJqfK5loKXBiCrKjTHhHqyMipHeB8JiSv1M4QEsZEbnIkFyn-aJCSKD8VMT_Pn9psq1GrcTL4ZpFXL4IrWQpBaS1EHShNPFlve6z8ZfxDsWgwWhu_4mtOYgpk4SxynGa0xQ9HPFwe-7DmHNnl2nqLRgZVJO9RGsqtlkMC6PKyb7BONOz5Q
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED9EBfXBb3F-5sEnsdqm6dI8DpkoziE4ZW8lTROdzFW6D_C_99JmQ1EE3_JwaUt-d5e73hfACUeukZwaL6pL37PjjVHmOHoplBuGgCte9Zlt8XY77nbF_RyczWphtNZl8pk-t8sylp_lamx_lV0IhtcXR4W7EDFG_apaaxYzsI1SqnR6gTZj3HUxzMAXF53m0yX6gjQ4R5auRwH7dguVY1V-6OLygrla-9-nrcOqMyRJo0J-A-b0YBPWpkMaiJPZTVj50nFwC24b5GFcTPQHyQ1pW3u17woxyV05S3pIeri0WYZ5-lopQ9KcOP6UxQdp9J_zojd6eRtuw-NVs3N57bl5Cp4KIzHyspTxTGcBVyxTMVMp54qKSGoqY61MmIZhXYk4kCaUiKzxuZaBlgZ9qigzxoQ7MD_IB3oXCKtT6qcKH8BCZnQmYiT3aRabIDLoQdXAn55volyzcTvzop-UTocvEgtJYiFJHCQ1OJ1tea86bfxFvGUxmBG646_BwRTExMniMEGPjQmKlq7Y-33XMSxdd-5aSeumfbsPy_Y9VcLKAcyPirE-hEU1GfWGxVHJcJ_VetLb
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Survey+of+Normalization+Methods+in+Multiobjective+Evolutionary+Algorithms&rft.jtitle=IEEE+transactions+on+evolutionary+computation&rft.au=He%2C+Linjun&rft.au=Ishibuchi%2C+Hisao&rft.au=Trivedi%2C+Anupam&rft.au=Wang%2C+Handing&rft.date=2021-12-01&rft.issn=1089-778X&rft.eissn=1941-0026&rft.volume=25&rft.issue=6&rft.spage=1028&rft.epage=1048&rft_id=info:doi/10.1109%2FTEVC.2021.3076514&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TEVC_2021_3076514
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-778X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-778X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-778X&client=summon