Jointly Optimizing Client Selection and Resource Management in Wireless Federated Learning for Internet of Things

Federated learning (FL) has been proposed to efficiently and privacy-preserving distributed machine learning architecture for the Internet of Things (IoT). In a wireless FL system, clients in IoT devices train their local models over the local data sets. The derived local models are uploaded to an F...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE internet of things journal Ročník 9; číslo 6; s. 4385 - 4395
Hlavní autoři: Yu, Liangkun, Albelaihi, Rana, Sun, Xiang, Ansari, Nirwan, Devetsikiotis, Michael
Médium: Journal Article
Jazyk:angličtina
Vydáno: Piscataway IEEE 15.03.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:2327-4662, 2327-4662
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Federated learning (FL) has been proposed to efficiently and privacy-preserving distributed machine learning architecture for the Internet of Things (IoT). In a wireless FL system, clients in IoT devices train their local models over the local data sets. The derived local models are uploaded to an FL server to generate a global model, broadcasted to the clients in the next global iteration for further training. Owing to the heterogeneous feature of the clients, client selection is critical to determine the overall training time. Traditionally, the objective of client selection is to select the maximum number of clients who can derive and upload their local models before the deadline in each global iteration. However, selecting more clients increases the energy consumption of the clients. Moreover, selecting the maximum number of clients is unnecessary as having fewer clients in early global iterations and more clients in later global iterations have been proved to achieve higher model accuracy. Hence, this article proposes to dynamically adjust and optimize the tradeoff between maximizing the number of selected clients and minimizing the total energy consumption of the clients by selecting suitable clients and allocating appropriate resources in terms of CPU frequency and transmission power. We formulate the joint client selection and resource management problem and design the energy and latency-aware resource management and client selection (ELASTIC) algorithm to efficiently solve the problem. Extensive simulations are conducted to demonstrate the performance of ELASTIC.
AbstractList Federated learning (FL) has been proposed to efficiently and privacy-preserving distributed machine learning architecture for the Internet of Things (IoT). In a wireless FL system, clients in IoT devices train their local models over the local data sets. The derived local models are uploaded to an FL server to generate a global model, broadcasted to the clients in the next global iteration for further training. Owing to the heterogeneous feature of the clients, client selection is critical to determine the overall training time. Traditionally, the objective of client selection is to select the maximum number of clients who can derive and upload their local models before the deadline in each global iteration. However, selecting more clients increases the energy consumption of the clients. Moreover, selecting the maximum number of clients is unnecessary as having fewer clients in early global iterations and more clients in later global iterations have been proved to achieve higher model accuracy. Hence, this article proposes to dynamically adjust and optimize the tradeoff between maximizing the number of selected clients and minimizing the total energy consumption of the clients by selecting suitable clients and allocating appropriate resources in terms of CPU frequency and transmission power. We formulate the joint client selection and resource management problem and design the energy and latency-aware resource management and client selection (ELASTIC) algorithm to efficiently solve the problem. Extensive simulations are conducted to demonstrate the performance of ELASTIC.
Author Devetsikiotis, Michael
Ansari, Nirwan
Albelaihi, Rana
Yu, Liangkun
Sun, Xiang
Author_xml – sequence: 1
  givenname: Liangkun
  orcidid: 0000-0003-4062-2499
  surname: Yu
  fullname: Yu, Liangkun
  email: liangkun@unm.edu
  organization: SECNet Lab, University of New Mexico, Albuquerque, NM, USA
– sequence: 2
  givenname: Rana
  surname: Albelaihi
  fullname: Albelaihi, Rana
  email: ralbelaihi@unm.edu
  organization: SECNet Lab, University of New Mexico, Albuquerque, NM, USA
– sequence: 3
  givenname: Xiang
  orcidid: 0000-0002-6954-7018
  surname: Sun
  fullname: Sun, Xiang
  email: sunxiang@unm.edu
  organization: SECNet Lab, University of New Mexico, Albuquerque, NM, USA
– sequence: 4
  givenname: Nirwan
  orcidid: 0000-0001-8541-3565
  surname: Ansari
  fullname: Ansari, Nirwan
  email: nirwan.ansari@njit.edu
  organization: Department of Electrical and Computer Engineering, Advanced Networking Laboratory, New Jersey Institute of Technology, Newark, NJ, USA
– sequence: 5
  givenname: Michael
  orcidid: 0000-0001-5053-4105
  surname: Devetsikiotis
  fullname: Devetsikiotis, Michael
  email: mdevets@unm.edu
  organization: Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, NM, USA
BookMark eNp9kEFPwjAUgBuDiYj8AOOliWewXdnWHg0RhWBIFONxebZvWDI6aMsBf71bIMZ48NSm-b730u-SdFztkJBrzoacM3U3my6Ww4QlfCg4EzlPz0g3EUk-GGVZ0vl1vyD9ENaMsUZLucq6ZDerrYvVgS620W7sl3UrOq4sukhfsUIdbe0oOENfMNR7r5E-g4MVblrCOvpufYOFQCdo0ENEQ-cI3rVzytrTqYvoHUZal3T52byGK3JeQhWwfzp75G3ysBw_DeaLx-n4fj7QIlVxYCQYo1EBSKO51gpkqVCPIBFKApdpxk1qlIaGUKbUUgn5kY2MzHIQQhjRI7fHuVtf7_YYYrFuPuCalUWSiXwkZK5YQ_EjpX0dgsey2Hq7AX8oOCvauEUbt2jjFqe4jZP_cbSN0JaKHmz1r3lzNC0i_mxSKVN5ysU3mNSLHA
CODEN IITJAU
CitedBy_id crossref_primary_10_1109_TCOMM_2024_3420733
crossref_primary_10_1109_TCOMM_2024_3443731
crossref_primary_10_1109_JIOT_2024_3462722
crossref_primary_10_1016_j_comnet_2024_110914
crossref_primary_10_1109_JSAC_2022_3229436
crossref_primary_10_1109_JSYST_2022_3206404
crossref_primary_10_1109_TMC_2025_3541191
crossref_primary_10_1109_TMC_2024_3484493
crossref_primary_10_1016_j_future_2025_108114
crossref_primary_10_1007_s10922_024_09857_1
crossref_primary_10_1109_JPROC_2024_3437365
crossref_primary_10_1016_j_resourpol_2023_104250
crossref_primary_10_1109_JIOT_2023_3324666
crossref_primary_10_1145_3638052
crossref_primary_10_1016_j_sysarc_2024_103280
crossref_primary_10_1109_JIOT_2023_3265564
crossref_primary_10_1016_j_future_2024_03_019
crossref_primary_10_3390_fi17030109
crossref_primary_10_1002_spe_3300
crossref_primary_10_1109_JIOT_2022_3194546
crossref_primary_10_1109_JIOT_2025_3545006
crossref_primary_10_1016_j_jfranklin_2025_107857
crossref_primary_10_1109_JIOT_2024_3514864
crossref_primary_10_1109_JIOT_2025_3563614
crossref_primary_10_1109_TCOMM_2023_3253718
crossref_primary_10_3390_electronics12071706
crossref_primary_10_1016_j_eswa_2025_128590
crossref_primary_10_1109_TMC_2021_3136611
crossref_primary_10_1016_j_comnet_2024_110358
crossref_primary_10_1109_JIOT_2023_3264463
crossref_primary_10_1109_COMST_2023_3316615
crossref_primary_10_3390_s23167235
crossref_primary_10_3390_s23020806
crossref_primary_10_1109_JIOT_2022_3194833
crossref_primary_10_1109_ACCESS_2024_3482388
crossref_primary_10_3390_s23177358
crossref_primary_10_1109_OJVT_2025_3573647
crossref_primary_10_1016_j_future_2025_108138
crossref_primary_10_3390_rs16091640
crossref_primary_10_1016_j_ipm_2022_103150
crossref_primary_10_3390_e25081183
crossref_primary_10_1109_JIOT_2024_3425757
crossref_primary_10_3390_math10203751
crossref_primary_10_1016_j_comnet_2025_111233
crossref_primary_10_1109_JIOT_2024_3421991
crossref_primary_10_1016_j_iot_2024_101287
crossref_primary_10_1109_JIOT_2024_3370964
crossref_primary_10_1109_JIOT_2023_3279983
crossref_primary_10_1109_JIOT_2025_3558910
crossref_primary_10_1016_j_ins_2024_121552
crossref_primary_10_1016_j_ins_2024_120344
crossref_primary_10_1109_JIOT_2022_3188556
crossref_primary_10_1109_ACCESS_2023_3280411
crossref_primary_10_1109_TMC_2025_3570018
crossref_primary_10_3390_fi15110352
crossref_primary_10_3390_electronics13234744
crossref_primary_10_1109_JIOT_2024_3350241
crossref_primary_10_1109_TCC_2023_3285534
crossref_primary_10_1007_s11831_023_10011_4
crossref_primary_10_3390_electronics13234585
crossref_primary_10_1016_j_cosrev_2024_100697
crossref_primary_10_1109_ACCESS_2022_3216710
crossref_primary_10_1109_JPROC_2024_3417528
crossref_primary_10_1109_TVT_2023_3333329
crossref_primary_10_3390_math12060920
crossref_primary_10_1109_JIOT_2022_3233595
crossref_primary_10_1109_JIOT_2024_3414472
crossref_primary_10_1109_JIOT_2023_3301019
crossref_primary_10_1109_COMST_2024_3352910
crossref_primary_10_1109_TMC_2025_3532204
Cites_doi 10.1109/TWC.2020.3042530
10.1109/JIOT.2019.2914947
10.1109/COMST.2015.2388550
10.1109/TWC.2019.2961673
10.1109/MSP.2020.2975749
10.1109/TCOMM.2019.2944169
10.1109/RTSS46320.2019.00043
10.1109/TWC.2021.3052681
10.1109/ICC40277.2020.9149138
10.1109/JSAC.2015.2478718
10.1109/TVT.2019.2915270
10.1109/INFOCOM.2019.8737464
10.1007/978-3-642-73778-7_148
10.1145/990308.990310
10.1109/TWC.2020.3024629
10.1109/MCOM.2016.1600492CM
10.1109/WCSP49889.2020.9299815
10.1109/COMST.2021.3075439
10.1017/S0962492901000071
10.1109/MCOM.001.2000410
10.1109/LCOMM.2017.2690678
10.1109/JIOT.2021.3080078
10.1109/COMST.2019.2924243
10.1109/ICC.2019.8761315
10.1109/4.126534
10.1093/imanum/8.1.141
10.1109/TWC.2020.3031503
10.1109/TWC.2020.3037554
10.1109/ACCESS.2021.3050172
10.1109/ACCESS.2021.3056919
10.1109/JIOT.2020.3022590
10.1109/JSAC.2019.2904348
10.1109/ICC40277.2020.9148625
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/JIOT.2021.3103715
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2327-4662
EndPage 4395
ExternalDocumentID 10_1109_JIOT_2021_3103715
9509751
Genre orig-research
GrantInformation_xml – fundername: National Science Foundation
  grantid: OIA-1757207
  funderid: 10.13039/100000001
GroupedDBID 0R~
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
IFIPE
IPLJI
JAVBF
M43
OCL
PQQKQ
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c359t-d8addce9aa8dc1cc9a8f9ec4a2398a18561d5d9ca9aa9dfc8938b64d867a333d3
IEDL.DBID RIE
ISICitedReferencesCount 94
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000766683600033&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2327-4662
IngestDate Mon Jun 30 13:41:01 EDT 2025
Tue Nov 18 22:23:49 EST 2025
Sat Nov 29 06:17:00 EST 2025
Wed Aug 27 02:49:22 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 6
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c359t-d8addce9aa8dc1cc9a8f9ec4a2398a18561d5d9ca9aa9dfc8938b64d867a333d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5053-4105
0000-0002-6954-7018
0000-0003-4062-2499
0000-0001-8541-3565
PQID 2637438790
PQPubID 2040421
PageCount 11
ParticipantIDs crossref_primary_10_1109_JIOT_2021_3103715
crossref_citationtrail_10_1109_JIOT_2021_3103715
ieee_primary_9509751
proquest_journals_2637438790
PublicationCentury 2000
PublicationDate 2022-03-15
PublicationDateYYYYMMDD 2022-03-15
PublicationDate_xml – month: 03
  year: 2022
  text: 2022-03-15
  day: 15
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE internet of things journal
PublicationTitleAbbrev JIoT
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References Li (ref10) 2018
ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref36
ref30
ref11
ref33
ref32
ref2
ref1
ref17
ref16
ref19
ref18
Yang (ref28) 2020
Nocedal (ref31) 2006
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref27
McMahan (ref7)
ref29
ref8
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref20
  doi: 10.1109/TWC.2020.3042530
– ident: ref5
  doi: 10.1109/JIOT.2019.2914947
– ident: ref6
  doi: 10.1109/COMST.2015.2388550
– ident: ref21
  doi: 10.1109/TWC.2019.2961673
– ident: ref9
  doi: 10.1109/MSP.2020.2975749
– volume-title: Federated optimization in heterogeneous networks
  year: 2018
  ident: ref10
– ident: ref11
  doi: 10.1109/TCOMM.2019.2944169
– ident: ref14
  doi: 10.1109/RTSS46320.2019.00043
– ident: ref27
  doi: 10.1109/TWC.2021.3052681
– ident: ref22
  doi: 10.1109/ICC40277.2020.9149138
– ident: ref33
  doi: 10.1109/JSAC.2015.2478718
– ident: ref34
  doi: 10.1109/TVT.2019.2915270
– ident: ref24
  doi: 10.1109/INFOCOM.2019.8737464
– ident: ref36
  doi: 10.1007/978-3-642-73778-7_148
– volume-title: Numerical Optimization
  year: 2006
  ident: ref31
– ident: ref37
  doi: 10.1145/990308.990310
– ident: ref26
  doi: 10.1109/TWC.2020.3024629
– ident: ref2
  doi: 10.1109/MCOM.2016.1600492CM
– ident: ref16
  doi: 10.1109/WCSP49889.2020.9299815
– ident: ref1
  doi: 10.1109/COMST.2021.3075439
– ident: ref30
  doi: 10.1017/S0962492901000071
– ident: ref8
  doi: 10.1109/MCOM.001.2000410
– ident: ref4
  doi: 10.1109/LCOMM.2017.2690678
– ident: ref18
  doi: 10.1109/JIOT.2021.3080078
– ident: ref3
  doi: 10.1109/COMST.2019.2924243
– ident: ref12
  doi: 10.1109/ICC.2019.8761315
– start-page: 1273
  volume-title: Proc. 20th Int. Conf. Artif. Intell. Stat.
  ident: ref7
  article-title: Communication-efficient learning of deep networks from decentralized data
– ident: ref29
  doi: 10.1109/4.126534
– ident: ref32
  doi: 10.1093/imanum/8.1.141
– ident: ref17
  doi: 10.1109/TWC.2020.3031503
– ident: ref25
  doi: 10.1109/TWC.2020.3037554
– ident: ref13
  doi: 10.1109/ACCESS.2021.3050172
– ident: ref19
  doi: 10.1109/ACCESS.2021.3056919
– ident: ref23
  doi: 10.1109/JIOT.2020.3022590
– ident: ref35
  doi: 10.1109/JSAC.2019.2904348
– ident: ref15
  doi: 10.1109/ICC40277.2020.9148625
– volume-title: Delay minimization for federated learning over wireless communication networks
  year: 2020
  ident: ref28
SSID ssj0001105196
Score 2.5324178
Snippet Federated learning (FL) has been proposed to efficiently and privacy-preserving distributed machine learning architecture for the Internet of Things (IoT). In...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 4385
SubjectTerms Algorithms
Client selection
Clients
Computational modeling
Data models
Energy consumption
Federated learning
federated learning (FL)
Internet of Things
Iterative methods
Machine learning
Model accuracy
Network latency
Optimization
Resource management
Servers
Training
waiting time
Wireless communication
Title Jointly Optimizing Client Selection and Resource Management in Wireless Federated Learning for Internet of Things
URI https://ieeexplore.ieee.org/document/9509751
https://www.proquest.com/docview/2637438790
Volume 9
WOSCitedRecordID wos000766683600033&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore
  customDbUrl:
  eissn: 2327-4662
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001105196
  issn: 2327-4662
  databaseCode: RIE
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA61ePDiW6xWmYMncWt2s4_kKMWiRVrBB70taZKVQt2q3Qr6653spq2gCN72kMCy32bmm8nMfIScmKE0GfdDTxuuvRBB94Z-xD0ZGpZxGlFVygE93iS9Hh8MxG2NnC16YYwxZfGZadnH8i5fT9TMpsrOBXq3xPZLryRJUvVqLfMpviUjsbu49Kk471737zEADPyW1dJKrPDtN9dTaqn8MMClV-ls_O99Nsm6Y49wUcG9RWom3yYbc2UGcAd1h7x2J6O8GH9AHy3C8-gT_RO0x7b1Ee5K4RtEA2SuYZ69h2UZDIxysDWxY7SB0LGzJpCOanCDWJ8AWS5UeURTwCSDSvlzlzx0Lu_bV54TV_AUi0ThaY6WTRkhJdfKV0pIngmjQmkHAkr04rGvIy2UxBVCZwp5DR_GoeZxIhljmu2Rej7JzT4BGmRUoDHQGXKFjAXSaIw7JKPa1xhg8wah8--eKjd53ApgjNMyAqEitVClFqrUQdUgp4stL9XYjb8W71hsFgsdLA3SnIObuoM5TYOYIWfiiaAHv-86JGuB7XCwJXtRk9SLt5k5IqvqvRhN347Lf-4LeMXXpA
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fSxwxEB5EhfZFq7Z4Vtt58Em6mmz2R_Io4qH2egqexbcll2Tl4NzTcxXqX-9kN3cKlULf9iGBZb_NzDeTmfkAdt1Qu1LyJLJO2igh0KMhT2WkEydKyVJmGjmg372835fX1-piAX7Me2Gcc03xmdv3j81dvp2YR58qO1Dk3XLfL72UJknM226t14wK93QkC1eXnKmDs9PzAYWAMd_3alq5l75943waNZW_THDjV7qr__dGn2Al8Ec8bAFfgwVXrcPqTJsBw1HdgPuzyaiqx3_wnGzC7eiZPBQejX3zI1420jeEB-rK4ix_j6-FMDiq0FfFjskKYtdPmyBCajGMYr1B4rnYZhJdjZMSW-3Pz3DVPR4cnURBXiEyIlV1ZCXZNuOU1tIabozSslTOJNqPBNTkxzNuU6uMphXKloaYjRxmiZVZroUQVnyBxWpSuU1AFpdMkTmwJbGFUsTaWYo8tGCWWwqxZQfY7LsXJswe9xIY46KJQZgqPFSFh6oIUHVgb77lrh288a_FGx6b-cIASwe2Z-AW4Wg-FHEmiDXJXLGt93d9hw8ng1-9onfa__kVPsa-38EX8KXbsFhPH90OLJunevQw_db8fy_Twtrr
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Jointly+Optimizing+Client+Selection+and+Resource+Management+in+Wireless+Federated+Learning+for+Internet+of+Things&rft.jtitle=IEEE+internet+of+things+journal&rft.au=Yu%2C+Liangkun&rft.au=Rana+Albelaihi&rft.au=Sun%2C+Xiang&rft.au=Ansari%2C+Nirwan&rft.date=2022-03-15&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.eissn=2327-4662&rft.volume=9&rft.issue=6&rft.spage=4385&rft_id=info:doi/10.1109%2FJIOT.2021.3103715&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2327-4662&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2327-4662&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2327-4662&client=summon