Nonlinear Transform Source-Channel Coding for Semantic Communications
In this paper, we propose a class of high-efficiency deep joint source-channel coding methods that can closely adapt to the source distribution under the nonlinear transform, it can be collected under the name nonlinear transform source-channel coding (NTSCC). In the considered model, the transmitte...
Uloženo v:
| Vydáno v: | IEEE journal on selected areas in communications Ročník 40; číslo 8; s. 2300 - 2316 |
|---|---|
| Hlavní autoři: | , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
IEEE
01.08.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 0733-8716, 1558-0008 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | In this paper, we propose a class of high-efficiency deep joint source-channel coding methods that can closely adapt to the source distribution under the nonlinear transform, it can be collected under the name nonlinear transform source-channel coding (NTSCC). In the considered model, the transmitter first learns a nonlinear analysis transform to map the source data into latent space, then transmits the latent representation to the receiver via deep joint source-channel coding. Our model incorporates the nonlinear transform as a strong prior to effectively extract the source semantic features and provide side information for source-channel coding. Unlike existing conventional deep joint source-channel coding methods, the proposed NTSCC essentially learns both the source latent representation and an entropy model as the prior on the latent representation. Accordingly, novel adaptive rate transmission and hyperprior-aided codec refinement mechanisms are developed to upgrade deep joint source-channel coding. The whole system design is formulated as an optimization problem whose goal is to minimize the end-to-end transmission rate-distortion performance under established perceptual quality metrics. Across test image sources with various resolutions, we find that the proposed NTSCC transmission method generally outperforms both the analog transmission using the standard deep joint source-channel coding and the classical separation-based digital transmission. Notably, the proposed NTSCC method can potentially support future semantic communications due to its content-aware ability and perceptual optimization goal. |
|---|---|
| AbstractList | In this paper, we propose a class of high-efficiency deep joint source-channel coding methods that can closely adapt to the source distribution under the nonlinear transform, it can be collected under the name nonlinear transform source-channel coding (NTSCC). In the considered model, the transmitter first learns a nonlinear analysis transform to map the source data into latent space, then transmits the latent representation to the receiver via deep joint source-channel coding. Our model incorporates the nonlinear transform as a strong prior to effectively extract the source semantic features and provide side information for source-channel coding. Unlike existing conventional deep joint source-channel coding methods, the proposed NTSCC essentially learns both the source latent representation and an entropy model as the prior on the latent representation. Accordingly, novel adaptive rate transmission and hyperprior-aided codec refinement mechanisms are developed to upgrade deep joint source-channel coding. The whole system design is formulated as an optimization problem whose goal is to minimize the end-to-end transmission rate-distortion performance under established perceptual quality metrics. Across test image sources with various resolutions, we find that the proposed NTSCC transmission method generally outperforms both the analog transmission using the standard deep joint source-channel coding and the classical separation-based digital transmission. Notably, the proposed NTSCC method can potentially support future semantic communications due to its content-aware ability and perceptual optimization goal. |
| Author | Wang, Sixian Tan, Kailin Si, Zhongwei Niu, Kai Dai, Jincheng Zhang, Ping Qin, Xiaoqi |
| Author_xml | – sequence: 1 givenname: Jincheng orcidid: 0000-0002-0310-568X surname: Dai fullname: Dai, Jincheng email: daijincheng@bupt.edu.cn organization: Key Laboratory of Universal Wireless Communications, Ministry of Education, Beijing University of Posts and Telecommunications, Beijing, China – sequence: 2 givenname: Sixian orcidid: 0000-0002-0621-1285 surname: Wang fullname: Wang, Sixian email: sixian@bupt.edu.cn organization: Key Laboratory of Universal Wireless Communications, Ministry of Education, Beijing University of Posts and Telecommunications, Beijing, China – sequence: 3 givenname: Kailin surname: Tan fullname: Tan, Kailin email: tankailin@bupt.edu.cn organization: Key Laboratory of Universal Wireless Communications, Ministry of Education, Beijing University of Posts and Telecommunications, Beijing, China – sequence: 4 givenname: Zhongwei orcidid: 0000-0002-8286-2872 surname: Si fullname: Si, Zhongwei email: sizhongwei@bupt.edu.cn organization: Key Laboratory of Universal Wireless Communications, Ministry of Education, Beijing University of Posts and Telecommunications, Beijing, China – sequence: 5 givenname: Xiaoqi orcidid: 0000-0002-5788-0657 surname: Qin fullname: Qin, Xiaoqi email: xiaoqiqin@bupt.edu.cn organization: State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing, China – sequence: 6 givenname: Kai orcidid: 0000-0002-8076-1867 surname: Niu fullname: Niu, Kai email: niukai@bupt.edu.cn organization: Key Laboratory of Universal Wireless Communications, Ministry of Education, Beijing University of Posts and Telecommunications, Beijing, China – sequence: 7 givenname: Ping orcidid: 0000-0002-0269-104X surname: Zhang fullname: Zhang, Ping email: pzhang@bupt.edu.cn organization: State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing, China |
| BookMark | eNp9kDFPwzAQhS1UJNrCD0AskZhTznGc2GMVlQKqYGh3y3VscJXYxU4H_j0urRgYmE66e-_u3TdBI-edRugWwwxj4A8v63kzK6AoZgQzYFBcoDGmlOUAwEZoDDUhOatxdYUmMe4AcFmyYowWr9511mkZsk2QLhof-mztD0HpvPmQzukua3xr3XuWRtla99INVqVe3x-cVXKw3sVrdGlkF_XNuU7R5nGxaZ7y1dvyuZmvckUoH_K2koaXBEytoObbFEBLyRRgTYGCYpIrqiqDjdSwZRpajtMPtDUllopvyRTdn9bug_886DiIXUrq0kVRVIwzTNPapKpPKhV8jEEboezwk3MI0nYCgzgiE0dk4ohMnJElJ_7j3Afby_D1r-fu5LFa6189rzkmnJFvLy15Kw |
| CODEN | ISACEM |
| CitedBy_id | crossref_primary_10_1109_JIOT_2023_3293154 crossref_primary_10_1109_TWC_2024_3520870 crossref_primary_10_1109_COMST_2024_3443193 crossref_primary_10_1109_LCOMM_2025_3544882 crossref_primary_10_1109_TWC_2024_3371775 crossref_primary_10_1109_ACCESS_2023_3291405 crossref_primary_10_1109_MCOM_001_2200099 crossref_primary_10_1109_TCOMM_2024_3386577 crossref_primary_10_1109_JIOT_2024_3444450 crossref_primary_10_3390_rs16214044 crossref_primary_10_1109_COMST_2024_3412852 crossref_primary_10_1117_1_JEI_34_2_023052 crossref_primary_10_1109_LSP_2024_3415967 crossref_primary_10_3390_electronics12224637 crossref_primary_10_1109_JSAC_2025_3559128 crossref_primary_10_1109_JSTARS_2024_3495023 crossref_primary_10_1109_JIOT_2025_3581393 crossref_primary_10_1109_TWC_2025_3543373 crossref_primary_10_1109_ACCESS_2025_3607699 crossref_primary_10_1109_MCOM_001_2300807 crossref_primary_10_1109_TNSM_2025_3563257 crossref_primary_10_1109_JSAC_2025_3531406 crossref_primary_10_1109_TWC_2024_3427675 crossref_primary_10_1109_TGCN_2023_3275199 crossref_primary_10_1109_JLT_2024_3485065 crossref_primary_10_1016_j_dcan_2025_08_005 crossref_primary_10_1109_JPROC_2024_3437730 crossref_primary_10_1109_JSAC_2022_3221948 crossref_primary_10_1109_TWC_2025_3553851 crossref_primary_10_1109_JIOT_2025_3529492 crossref_primary_10_1109_ACCESS_2023_3269848 crossref_primary_10_1109_TVT_2024_3443136 crossref_primary_10_1109_ACCESS_2024_3516814 crossref_primary_10_1109_TCOMM_2025_3529221 crossref_primary_10_1109_JIOT_2025_3586038 crossref_primary_10_1364_OE_568127 crossref_primary_10_1109_LWC_2024_3515656 crossref_primary_10_1109_MCOM_001_2400529 crossref_primary_10_1109_TWC_2023_3339239 crossref_primary_10_1109_JIOT_2024_3352737 crossref_primary_10_1109_TCCN_2024_3375506 crossref_primary_10_1038_s41598_024_70619_9 crossref_primary_10_1109_LWC_2023_3340657 crossref_primary_10_1109_TVT_2024_3456099 crossref_primary_10_1109_JSAC_2025_3531579 crossref_primary_10_1109_JSAC_2025_3531575 crossref_primary_10_1109_LCOMM_2023_3293805 crossref_primary_10_1109_LWC_2025_3554517 crossref_primary_10_3390_electronics14081666 crossref_primary_10_1109_JLT_2023_3328311 crossref_primary_10_1007_s11760_025_03826_0 crossref_primary_10_1109_ACCESS_2025_3532797 crossref_primary_10_1109_LCOMM_2025_3568427 crossref_primary_10_1109_TWC_2025_3543167 crossref_primary_10_1007_s11432_024_4415_7 crossref_primary_10_1109_JIOT_2025_3545667 crossref_primary_10_1109_JSAC_2024_3460084 crossref_primary_10_3390_e27040429 crossref_primary_10_1109_COMST_2024_3416309 crossref_primary_10_1109_JSTSP_2024_3405853 crossref_primary_10_1109_MWC_005_2300574 crossref_primary_10_1109_TWC_2024_3415363 crossref_primary_10_1109_TMC_2024_3418881 crossref_primary_10_1109_MWC_007_2200503 crossref_primary_10_1109_TCOMM_2024_3511949 crossref_primary_10_1186_s13634_022_00958_0 crossref_primary_10_1109_TGRS_2025_3576382 crossref_primary_10_1016_j_comnet_2025_111531 crossref_primary_10_1109_TCCN_2023_3306852 crossref_primary_10_1109_TMC_2024_3456856 crossref_primary_10_1016_j_iot_2024_101384 crossref_primary_10_1109_TCCN_2024_3511960 crossref_primary_10_1007_s11277_024_11517_1 crossref_primary_10_1109_JSTSP_2023_3304140 crossref_primary_10_1109_TCOMM_2024_3450877 crossref_primary_10_1109_TWC_2025_3535714 crossref_primary_10_1109_MWC_013_2300372 crossref_primary_10_1109_JSAC_2025_3559160 crossref_primary_10_1016_j_phycom_2025_102832 crossref_primary_10_1016_j_fmre_2023_06_003 crossref_primary_10_1109_LCOMM_2024_3391909 crossref_primary_10_1109_TVT_2023_3333350 crossref_primary_10_1109_JSAC_2023_3288246 crossref_primary_10_1631_FITEE_2300196 crossref_primary_10_1109_TMC_2024_3406375 crossref_primary_10_1109_TWC_2023_3349330 crossref_primary_10_3390_s24216772 crossref_primary_10_1109_TWC_2024_3422794 crossref_primary_10_1109_JSAC_2022_3223408 crossref_primary_10_1109_JSTSP_2023_3300509 crossref_primary_10_1109_ACCESS_2024_3418900 crossref_primary_10_1109_JSAC_2025_3559158 crossref_primary_10_1109_MCOM_021_2300269 crossref_primary_10_1109_JIOT_2024_3409271 crossref_primary_10_1109_TCCN_2024_3384500 crossref_primary_10_1109_TWC_2024_3388329 crossref_primary_10_1109_TWC_2025_3539526 crossref_primary_10_1016_j_phycom_2025_102709 crossref_primary_10_1109_TCCN_2024_3392803 crossref_primary_10_1109_JSAC_2023_3288252 crossref_primary_10_1109_TCCN_2024_3438371 crossref_primary_10_1109_TWC_2024_3409735 crossref_primary_10_1109_JSAC_2025_3536557 crossref_primary_10_1109_LWC_2025_3584370 crossref_primary_10_1109_JSAC_2022_3221977 crossref_primary_10_1109_JSAC_2025_3531537 crossref_primary_10_1109_TCCN_2023_3294754 crossref_primary_10_1109_TWC_2024_3386052 crossref_primary_10_1109_TWC_2025_3532501 crossref_primary_10_1109_JIOT_2025_3553504 crossref_primary_10_1109_JSAC_2025_3559149 crossref_primary_10_3390_electronics12132755 crossref_primary_10_1109_JSEN_2025_3542396 crossref_primary_10_1109_JPROC_2024_3520707 crossref_primary_10_1109_COMST_2023_3300664 crossref_primary_10_1109_JSAC_2025_3531546 crossref_primary_10_32604_cmes_2023_046837 crossref_primary_10_1109_LWC_2025_3547527 crossref_primary_10_1109_TWC_2024_3384421 crossref_primary_10_1109_TWC_2024_3379244 crossref_primary_10_1109_LWC_2025_3526962 crossref_primary_10_1109_LWC_2025_3561012 |
| Cites_doi | 10.1109/TIT.2009.2021379 10.1109/MSP.2010.938080 10.1109/JSAC.2021.3078489 10.1155/2007/47517 10.1002/0471219282.eot142 10.1109/MCOM.2018.1700839 10.1007/s11263-020-01419-7 10.1109/ICCV48922.2021.00986 10.1109/TPAMI.2020.2988453 10.1002/j.1538-7305.1948.tb01338.x 10.1145/214762.214771 10.1109/JSAIT.2020.2987203 10.1109/ACSSC.2003.1292216 10.1016/j.eng.2021.11.003 10.1109/ICASSP.2018.8461983 10.1109/JSTSP.2020.3034501 10.1109/TCOMM.2018.2814603 10.1093/oso/9780198503682.001.0001 10.1109/TCSVT.2021.3082521 10.1109/CVPR.2018.00068 10.1109/TCCN.2019.2919300 10.1007/s11263-020-01316-z 10.1109/JSAC.2020.3036955 10.1109/49.947033 10.1109/TWC.2021.3090048 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD L7M |
| DOI | 10.1109/JSAC.2022.3180802 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1558-0008 |
| EndPage | 2316 |
| ExternalDocumentID | 10_1109_JSAC_2022_3180802 9791398 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 92067202; 62001049; 62071058; 61971062 funderid: 10.13039/501100001809 – fundername: Major Key Project of PCL grantid: PCL2021A15 – fundername: Beijing Natural Science Foundation grantid: 4222012 funderid: 10.13039/501100004826 |
| GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 41~ 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT ADRHT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 IBMZZ ICLAB IES IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TN5 VH1 AAYXX CITATION 7SP 8FD L7M |
| ID | FETCH-LOGICAL-c359t-d6af9430f7c079b482eaa8c01e5050c8a9c5c6f1fae0b8e0d911555df41ac9b3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 187 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000838527500008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0733-8716 |
| IngestDate | Mon Jun 30 10:26:22 EDT 2025 Sat Nov 29 03:23:04 EST 2025 Tue Nov 18 22:42:23 EST 2025 Wed Aug 27 02:28:04 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c359t-d6af9430f7c079b482eaa8c01e5050c8a9c5c6f1fae0b8e0d911555df41ac9b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-5788-0657 0000-0002-0310-568X 0000-0002-8076-1867 0000-0002-8286-2872 0000-0002-0269-104X 0000-0002-0621-1285 |
| PQID | 2689815079 |
| PQPubID | 85481 |
| PageCount | 17 |
| ParticipantIDs | crossref_citationtrail_10_1109_JSAC_2022_3180802 ieee_primary_9791398 proquest_journals_2689815079 crossref_primary_10_1109_JSAC_2022_3180802 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-08-01 |
| PublicationDateYYYYMMDD | 2022-08-01 |
| PublicationDate_xml | – month: 08 year: 2022 text: 2022-08-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE journal on selected areas in communications |
| PublicationTitleAbbrev | J-SAC |
| PublicationYear | 2022 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 Kingma (ref17) 2013 ref12 ref15 Ballé (ref20) 2018 ref31 Bjontegaard (ref45) ref11 Han (ref36) 2021 ref10 ref2 Choi (ref8) ref1 ref16 ref38 ref18 (ref35) 2021 Kingma (ref43) 2014 (ref37) 1993 Ballé (ref19) 2016 Krizhevsky (ref14) 2009 Mirza (ref42) 2014 Paszke (ref44); 32 ref24 Raffel (ref33) 2020; 21 ref26 Hendrycks (ref34) 2016 ref25 ref41 ref22 Minnen (ref27) ref28 Li (ref23); 34 ref29 ref7 Mentzer (ref21); 33 Bellard (ref39) 2018 ref9 ref4 ref3 ref6 Dosovitskiy (ref30) 2020 ref5 Lei Ba (ref32) 2016 ref40 |
| References_xml | – volume: 33 start-page: 11913 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref21 article-title: High-fidelity generative image compression – ident: ref29 doi: 10.1109/TIT.2009.2021379 – volume: 32 start-page: 8026 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref44 article-title: PyTorch: An imperative style, high-performance deep learning library – ident: ref3 doi: 10.1109/MSP.2010.938080 – ident: ref18 doi: 10.1109/JSAC.2021.3078489 – year: 2014 ident: ref42 article-title: Conditional generative adversarial nets publication-title: arXiv:1411.1784 – ident: ref5 doi: 10.1155/2007/47517 – ident: ref25 doi: 10.1002/0471219282.eot142 – start-page: 1182 volume-title: Proc. Int. Conf. Mach. Learn. ident: ref8 article-title: Neural joint source-channel coding – year: 2016 ident: ref34 article-title: Gaussian error linear units (GELUs) publication-title: arXiv:1606.08415 – ident: ref28 doi: 10.1109/MCOM.2018.1700839 – volume: 21 start-page: 1 issue: 140 year: 2020 ident: ref33 article-title: Exploring the limits of transfer learning with a unified text-to-text transformer publication-title: J. Mach. Learn. Res. – year: 2009 ident: ref14 article-title: Learning multiple layers of features from tiny images – ident: ref41 doi: 10.1007/s11263-020-01419-7 – year: 2020 ident: ref30 article-title: An image is worth $16\times16$ words: Transformers for image recognition at scale publication-title: arXiv:2010.11929 – ident: ref31 doi: 10.1109/ICCV48922.2021.00986 – ident: ref22 doi: 10.1109/TPAMI.2020.2988453 – ident: ref2 doi: 10.1002/j.1538-7305.1948.tb01338.x – ident: ref24 doi: 10.1145/214762.214771 – ident: ref10 doi: 10.1109/JSAIT.2020.2987203 – ident: ref40 doi: 10.1109/ACSSC.2003.1292216 – ident: ref1 doi: 10.1016/j.eng.2021.11.003 – ident: ref7 doi: 10.1109/ICASSP.2018.8461983 – ident: ref15 doi: 10.1109/JSTSP.2020.3034501 – year: 2014 ident: ref43 article-title: Adam: A method for stochastic optimization publication-title: arXiv:1412.6980 – ident: ref6 doi: 10.1109/TCOMM.2018.2814603 – year: 2016 ident: ref32 article-title: Layer normalization publication-title: arXiv:1607.06450 – ident: ref26 doi: 10.1093/oso/9780198503682.001.0001 – volume-title: Proc. VCEG-M33 ident: ref45 article-title: Calculation of average PSNR differences between RD-curves – volume-title: BPG Image Format year: 2018 ident: ref39 – ident: ref13 doi: 10.1109/TCSVT.2021.3082521 – year: 2016 ident: ref19 article-title: End-to-end optimized image compression publication-title: arXiv:1611.01704 – ident: ref16 doi: 10.1109/CVPR.2018.00068 – ident: ref9 doi: 10.1109/TCCN.2019.2919300 – start-page: 10771 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref27 article-title: Joint autoregressive and hierarchical priors for learned image compression – ident: ref38 doi: 10.1007/s11263-020-01316-z – ident: ref12 doi: 10.1109/JSAC.2020.3036955 – volume-title: Kodak PhotoCD Dataset year: 1993 ident: ref37 – year: 2018 ident: ref20 article-title: Variational image compression with a scale hyperprior publication-title: arXiv:1802.01436 – volume-title: CLIC 2021: Challenge on Learned Image Compression year: 2021 ident: ref35 – volume: 34 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref23 article-title: Deep contextual video compression – ident: ref4 doi: 10.1109/49.947033 – ident: ref11 doi: 10.1109/TWC.2021.3090048 – year: 2013 ident: ref17 article-title: Auto-encoding variational Bayes publication-title: arXiv:1312.6114 – year: 2021 ident: ref36 article-title: Dynamic neural networks: A survey publication-title: arXiv:2102.04906 |
| SSID | ssj0014482 |
| Score | 2.7276733 |
| Snippet | In this paper, we propose a class of high-efficiency deep joint source-channel coding methods that can closely adapt to the source distribution under the... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 2300 |
| SubjectTerms | Channel coding Codec Coding Design optimization Digital transmission Encoding Entropy Feature extraction Image coding Image quality joint source-channel coding Nonlinear analysis nonlinear transform perceptual loss rate-distortion Representations Semantic communications Semantics Systems design Transforms |
| Title | Nonlinear Transform Source-Channel Coding for Semantic Communications |
| URI | https://ieeexplore.ieee.org/document/9791398 https://www.proquest.com/docview/2689815079 |
| Volume | 40 |
| WOSCitedRecordID | wos000838527500008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-0008 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014482 issn: 0733-8716 databaseCode: RIE dateStart: 19830101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFH_M4UEPfk1xOiUHT2Jc2zRNchxjQzwMYTvsVtL0FQZzk33495ukXXEogrdCk1B-6fvKy_s9gIeEK6sDMbSSJjSNheFUWS-WKoa60LFgush8swkxGsnpVL014KmuhUFEf_kMn92jz-XnS7N1R2VdJRyJpTyAAyFEWatVZwxsmOEzBoIx6oKAKoMZBqr7Ou71bSQYRTZAdTSK0Z4N8k1Vfmhib16Gp__7sDM4qdxI0iv3_RwauLiA42_kgi0YjEoWDL0ik513Ssb-rJ66moIFzkl_6UwXsa_IGN8tyDND9kpG1pcwGQ4m_RdaNU2ghnG1oXmiC0epXggTCJVZVFBraYIQra8TGKmV4SYpwkJjkEkMcqvtOOd5EYfaqIxdQXOxXOA1kDi0lgpzxpHl1mpJtwi3gTizTlduRbkNwQ7F1FSE4q6vxTz1gUWgUgd86oBPK-Db8FhP-SjZNP4a3HJI1wMrkNvQ2W1VWsnbOo0SqaTzbdXN77Nu4citXV7d60Bzs9riHRyaz81svbr3v9IXScfFJg |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFH_MKagHv8Xp1Bw8iXVt07TNcYyNqbMI62G3kqWvMJid7MO_3yTtikMRvBWatOWXvq-8vN8DuPMZVzoQHSVpgbC8QDKLKy_W4hRFJryAimxsmk0EURSORvytBg9VLQwimsNn-KgvTS4_ncmV3ipr8UCTWIZbsM08z3WKaq0qZ6ACDZMzCCi1dBhQ5jAdm7eeh-2OigVdV4WomkjR3bBCpq3KD11sDEzv8H-fdgQHpSNJ2sXKH0MN8xPY_0YveArdqODBEHMSr_1TMjS79ZauKshxSjozbbyIukWG-K5gnkiyUTSyOIO41407fatsm2BJyvjSSn2RaVL1LJB2wMcKFRQilLaDytuxZSi4ZNLPnEygPQ7RTpW-Y4ylmecIycf0HOr5LMcLIJ6jbBWmlCFNld0K9UOYCsWpcrtSJcwNsNcoJrKkFNedLaaJCS1snmjgEw18UgLfgPtqykfBp_HX4FONdDWwBLkBzfVSJaXELRLXD3movVt--fusW9jtx6-DZPAUvVzBnn5PcZCvCfXlfIXXsCM_l5PF_Mb8Vl-3Gsht |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nonlinear+Transform+Source-Channel+Coding+for+Semantic+Communications&rft.jtitle=IEEE+journal+on+selected+areas+in+communications&rft.au=Dai%2C+Jincheng&rft.au=Wang%2C+Sixian&rft.au=Tan%2C+Kailin&rft.au=Si%2C+Zhongwei&rft.date=2022-08-01&rft.issn=0733-8716&rft.eissn=1558-0008&rft.volume=40&rft.issue=8&rft.spage=2300&rft.epage=2316&rft_id=info:doi/10.1109%2FJSAC.2022.3180802&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JSAC_2022_3180802 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0733-8716&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0733-8716&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0733-8716&client=summon |