Robust Support Vector Machine With Asymmetric Truncated Generalized Pinball Loss

The support vector machine (SVM) with pinball loss (Pin-SVM) can handle noise sensitivity and instability to re-sampling but loses sparsity. To solve this limitation, SVM with a generalized pinball loss that incorporates an insensitive zone (GP-SVM) was proposed. The GP-SVM can handle sparsity by op...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access Vol. 12; pp. 155696 - 155717
Main Authors: Suppalap, Siwakon, Wangkeeree, Rabian
Format: Journal Article
Language:English
Published: Piscataway IEEE 2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:2169-3536, 2169-3536
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The support vector machine (SVM) with pinball loss (Pin-SVM) can handle noise sensitivity and instability to re-sampling but loses sparsity. To solve this limitation, SVM with a generalized pinball loss that incorporates an insensitive zone (GP-SVM) was proposed. The GP-SVM can handle sparsity by optimizing the asymmetric spread of the insensitive zone. Despite these improvements, the unboundedness of the loss functions can result in a lack of robustness to outliers. In this paper, we introduce a novel robust support vector classification based on an <inline-formula> <tex-math notation="LaTeX">(\alpha _{1}, \alpha _{2}) </tex-math></inline-formula>-asymmetric bounded loss function, an asymmetric truncated generalized pinball loss (called <inline-formula> <tex-math notation="LaTeX">L_{tgp}^{\alpha _{1}, \alpha _{2}} </tex-math></inline-formula>). A characteristic of SVM with <inline-formula> <tex-math notation="LaTeX">L_{tgp}^{\alpha _{1}, \alpha _{2}} </tex-math></inline-formula> (ATGP-SVM) is its ability to balance generalization and sparsity while minimizing the impact of outliers. However, <inline-formula> <tex-math notation="LaTeX">L_{tgp}^{\alpha _{1}, \alpha _{2}} </tex-math></inline-formula> is a non-convex function, ATGP-SVM is difficult to solve. Therefore, we formulated the ATGP-SVM utilizing DC (difference of convex functions) programming and subsequently resolved it through the DC algorithm (DCA). The experimental results obtained from diverse benchmark datasets underscore the effectiveness of our proposed formulation when compared to other state-of-the-art classification models.
AbstractList The support vector machine (SVM) with pinball loss (Pin-SVM) can handle noise sensitivity and instability to re-sampling but loses sparsity. To solve this limitation, SVM with a generalized pinball loss that incorporates an insensitive zone (GP-SVM) was proposed. The GP-SVM can handle sparsity by optimizing the asymmetric spread of the insensitive zone. Despite these improvements, the unboundedness of the loss functions can result in a lack of robustness to outliers. In this paper, we introduce a novel robust support vector classification based on an <inline-formula> <tex-math notation="LaTeX">(\alpha _{1}, \alpha _{2}) </tex-math></inline-formula>-asymmetric bounded loss function, an asymmetric truncated generalized pinball loss (called <inline-formula> <tex-math notation="LaTeX">L_{tgp}^{\alpha _{1}, \alpha _{2}} </tex-math></inline-formula>). A characteristic of SVM with <inline-formula> <tex-math notation="LaTeX">L_{tgp}^{\alpha _{1}, \alpha _{2}} </tex-math></inline-formula> (ATGP-SVM) is its ability to balance generalization and sparsity while minimizing the impact of outliers. However, <inline-formula> <tex-math notation="LaTeX">L_{tgp}^{\alpha _{1}, \alpha _{2}} </tex-math></inline-formula> is a non-convex function, ATGP-SVM is difficult to solve. Therefore, we formulated the ATGP-SVM utilizing DC (difference of convex functions) programming and subsequently resolved it through the DC algorithm (DCA). The experimental results obtained from diverse benchmark datasets underscore the effectiveness of our proposed formulation when compared to other state-of-the-art classification models.
The support vector machine (SVM) with pinball loss (Pin-SVM) can handle noise sensitivity and instability to re-sampling but loses sparsity. To solve this limitation, SVM with a generalized pinball loss that incorporates an insensitive zone (GP-SVM) was proposed. The GP-SVM can handle sparsity by optimizing the asymmetric spread of the insensitive zone. Despite these improvements, the unboundedness of the loss functions can result in a lack of robustness to outliers. In this paper, we introduce a novel robust support vector classification based on an [Formula Omitted]-asymmetric bounded loss function, an asymmetric truncated generalized pinball loss (called [Formula Omitted]). A characteristic of SVM with [Formula Omitted] (ATGP-SVM) is its ability to balance generalization and sparsity while minimizing the impact of outliers. However, [Formula Omitted] is a non-convex function, ATGP-SVM is difficult to solve. Therefore, we formulated the ATGP-SVM utilizing DC (difference of convex functions) programming and subsequently resolved it through the DC algorithm (DCA). The experimental results obtained from diverse benchmark datasets underscore the effectiveness of our proposed formulation when compared to other state-of-the-art classification models.
The support vector machine (SVM) with pinball loss (Pin-SVM) can handle noise sensitivity and instability to re-sampling but loses sparsity. To solve this limitation, SVM with a generalized pinball loss that incorporates an insensitive zone (GP-SVM) was proposed. The GP-SVM can handle sparsity by optimizing the asymmetric spread of the insensitive zone. Despite these improvements, the unboundedness of the loss functions can result in a lack of robustness to outliers. In this paper, we introduce a novel robust support vector classification based on an <tex-math notation="LaTeX">$(\alpha _{1}, \alpha _{2})$ </tex-math>-asymmetric bounded loss function, an asymmetric truncated generalized pinball loss (called <tex-math notation="LaTeX">$L_{tgp}^{\alpha _{1}, \alpha _{2}}$ </tex-math>). A characteristic of SVM with <tex-math notation="LaTeX">$L_{tgp}^{\alpha _{1}, \alpha _{2}}$ </tex-math> (ATGP-SVM) is its ability to balance generalization and sparsity while minimizing the impact of outliers. However, <tex-math notation="LaTeX">$L_{tgp}^{\alpha _{1}, \alpha _{2}}$ </tex-math> is a non-convex function, ATGP-SVM is difficult to solve. Therefore, we formulated the ATGP-SVM utilizing DC (difference of convex functions) programming and subsequently resolved it through the DC algorithm (DCA). The experimental results obtained from diverse benchmark datasets underscore the effectiveness of our proposed formulation when compared to other state-of-the-art classification models.
Author Wangkeeree, Rabian
Suppalap, Siwakon
Author_xml – sequence: 1
  givenname: Siwakon
  surname: Suppalap
  fullname: Suppalap, Siwakon
  organization: Department of Mathematics, Faculty of Science, Naresuan University, Phitsanulok, Thailand
– sequence: 2
  givenname: Rabian
  orcidid: 0000-0002-5715-3804
  surname: Wangkeeree
  fullname: Wangkeeree, Rabian
  email: rabianw@nu.ac.th
  organization: Department of Mathematics, Faculty of Science, Naresuan University, Phitsanulok, Thailand
BookMark eNpNUU1PGzEQtSqQytcvgMNKnJN6xvZ6fYwiSJFSFTW0HC3H9oKjzTp4vQf49TVdVDGXGT3Ne29G75Qc9bH3hFwCnQNQ9W2xXN5sNnOkyOeMNwKBfyEnCLWaMcHqo0_zV3IxDDtaqimQkCfk_lfcjkOuNuPhEFOu_nibY6p-GPscel89hvxcLYbX_d7nFGz1kMbemuxdtfK9T6YLb2W-D_3WdF21jsNwTo5b0w3-4qOfkd-3Nw_L77P1z9XdcrGeWSZUnjkmLPdGoGfUCQfWIEqBQiJrXS0BJSpZW7CyQWypZFZxVivD6RbaRll2Ru4mXRfNTh9S2Jv0qqMJ-h8Q05M2KQfbeW05lcVDOqTAQXnTKkdV7cC5YiFd0bqetA4pvox-yHoXx9SX8zUDRFQ1SF622LRlU_kz-fa_K1D9noSektDvSeiPJArramIF7_0nhmTQNMD-Am8KhR0
CODEN IAECCG
Cites_doi 10.1036/1097-8542.387500
10.1007/978-1-4757-2440-0
10.1016/j.chemolab.2018.04.003
10.1016/j.neucom.2023.126458
10.1109/ACCESS.2022.3212535
10.1016/j.ins.2009.12.010
10.1016/j.ejor.2023.09.027
10.1109/TPAMI.2013.178
10.1007/s40314-023-02402-x
10.1016/j.patcog.2017.03.011
10.1109/ACCESS.2023.3262270
10.1016/j.ins.2023.01.075
10.1016/j.frl.2024.105014
10.1198/016214507000000617
10.1016/j.patcog.2023.109987
10.1016/j.eswa.2024.123480
10.1016/j.engappai.2016.04.003
10.1007/s10479-004-5022-1
10.1007/s00466-023-02394-9
10.1007/s11063-013-9336-3
10.1109/tpwrs.2024.3378200
10.1007/s00500-023-09622-7
10.1007/s13369-023-08269-8
10.1109/TSP.2004.831018
10.1109/JSTARS.2020.3026724
10.1109/CVPR.2006.164
10.1016/j.neucom.2014.11.051
10.1016/j.neucom.2018.08.079
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2024.3485214
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL) - NZ
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Materials Research Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL) - NZ
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 155717
ExternalDocumentID oai_doaj_org_article_c407d5d7d201419eaf9d096d1dd76c7d
10_1109_ACCESS_2024_3485214
10731881
Genre orig-research
GrantInformation_xml – fundername: Naresuan University (NU), National Science, Research and Innovation Fund (NSRF)
  grantid: R2567B003
  funderid: 10.13039/501100017170
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c359t-d35c4ea52e30d5d1ca227525723fd671272976c1c7822f073c94369a40b1f89c3
IEDL.DBID DOA
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001346096800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2169-3536
IngestDate Fri Oct 03 12:44:28 EDT 2025
Mon Jun 30 14:54:36 EDT 2025
Sat Nov 29 04:27:09 EST 2025
Wed Aug 27 02:59:34 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c359t-d35c4ea52e30d5d1ca227525723fd671272976c1c7822f073c94369a40b1f89c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5715-3804
OpenAccessLink https://doaj.org/article/c407d5d7d201419eaf9d096d1dd76c7d
PQID 3122296174
PQPubID 4845423
PageCount 22
ParticipantIDs proquest_journals_3122296174
crossref_primary_10_1109_ACCESS_2024_3485214
ieee_primary_10731881
doaj_primary_oai_doaj_org_article_c407d5d7d201419eaf9d096d1dd76c7d
PublicationCentury 2000
PublicationDate 20240000
2024-00-00
20240101
2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 20240000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref37
Chicco (ref32) 2020
ref30
ref11
Wang (ref23) 2015; 41
ref10
ref2
ref1
ref17
ref16
Lou (ref15) 2023; 549
ref18
Patrcio (ref33)
Smith (ref28); 10
Antal (ref29)
Sejnowski (ref31) 1988
ref24
Sigillito (ref27)
ref26
ref25
ref20
ref22
ref21
Cinar (ref34) 2019
Wolberg (ref35)
ref8
ref7
Lou (ref14) 2024; 248
ref9
ref4
ref3
ref6
ref5
Wu (ref19) 2007; 102
Na (ref36)
References_xml – ident: ref30
  doi: 10.1036/1097-8542.387500
– ident: ref16
  doi: 10.1007/978-1-4757-2440-0
– ident: ref21
  doi: 10.1016/j.chemolab.2018.04.003
– ident: ref33
  article-title: Breast cancer Coimbra
  publication-title: UCI Machine Learning Repository
– ident: ref35
  article-title: Breast cancer Wisconsin (diagnostic)
  publication-title: UCI Machine Learning Repository
– ident: ref27
  article-title: Ionosphere
  publication-title: UCI Machine Learning Repository
– volume: 549
  year: 2023
  ident: ref15
  article-title: Multi-view intuitionistic fuzzy support vector machines with insensitive pinball loss for classification of noisy data
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2023.126458
– ident: ref3
  doi: 10.1109/ACCESS.2022.3212535
– ident: ref37
  doi: 10.1016/j.ins.2009.12.010
– ident: ref8
  doi: 10.1016/j.ejor.2023.09.027
– ident: ref17
  doi: 10.1109/TPAMI.2013.178
– ident: ref29
  article-title: Diabetic retinopathy Debrecen
  publication-title: UCI Machine Learning Repository
– ident: ref22
  doi: 10.1007/s40314-023-02402-x
– ident: ref20
  doi: 10.1016/j.patcog.2017.03.011
– ident: ref2
  doi: 10.1109/ACCESS.2023.3262270
– volume-title: Rice (Cammeo and Osmancik)
  year: 2019
  ident: ref34
– volume: 10
  start-page: 261
  volume-title: Proc. Annu. Symp. Comput. Appl. Med. Care
  ident: ref28
  article-title: Using the ADAP learning algorithm to forecast the onset of diabetes mellitus
– ident: ref5
  doi: 10.1016/j.ins.2023.01.075
– ident: ref13
  doi: 10.1016/j.frl.2024.105014
– volume: 102
  start-page: 974
  issue: 479
  year: 2007
  ident: ref19
  article-title: Robust truncated Hinge loss support vector machines
  publication-title: J. Amer. Stat. Assoc.
  doi: 10.1198/016214507000000617
– ident: ref11
  doi: 10.1016/j.patcog.2023.109987
– volume: 248
  year: 2024
  ident: ref14
  article-title: Multi-view universum support vector machines with insensitive pinball loss
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2024.123480
– ident: ref26
  doi: 10.1016/j.engappai.2016.04.003
– ident: ref25
  doi: 10.1007/s10479-004-5022-1
– ident: ref12
  doi: 10.1007/s00466-023-02394-9
– volume: 41
  start-page: 89
  issue: 1
  year: 2015
  ident: ref23
  article-title: Robust support vector regression with generalized loss function and applications
  publication-title: Neural Process. Lett.
  doi: 10.1007/s11063-013-9336-3
– ident: ref1
  doi: 10.1109/tpwrs.2024.3378200
– volume-title: Heart failure clinical records
  year: 2020
  ident: ref32
– ident: ref9
  doi: 10.1007/s00500-023-09622-7
– ident: ref10
  doi: 10.1007/s13369-023-08269-8
– ident: ref4
  doi: 10.1109/TSP.2004.831018
– ident: ref6
  doi: 10.1109/JSTARS.2020.3026724
– ident: ref7
  doi: 10.1109/CVPR.2006.164
– ident: ref24
  doi: 10.1016/j.neucom.2014.11.051
– volume-title: Connectionist bench (sonar, mines vs. rocks)
  year: 1988
  ident: ref31
– ident: ref36
  article-title: National health and nutrition health survey 2013–2014 (NHANES) age prediction subset
  publication-title: UCI Machine Learning Repository
– ident: ref18
  doi: 10.1016/j.neucom.2018.08.079
SSID ssj0000816957
Score 2.2997346
Snippet The support vector machine (SVM) with pinball loss (Pin-SVM) can handle noise sensitivity and instability to re-sampling but loses sparsity. To solve this...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage 155696
SubjectTerms Algorithms
Asymmetry
Classification
Convex functions
difference of convex functions programming
Fasteners
generalized pinball loss
Noise
Noise sensitivity
Optimization methods
pinball loss
Programming
Robustness
Sensitivity
Sparsity
Support vector machine
Support vector machines
Training
Vectors
SummonAdditionalLinks – databaseName: IEEE Electronic Library (IEL) - NZ
  dbid: RIE
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELYAMcDAG1Fe8sBIoI6dOB5LBWIoqEK8NsuxHVEJWtSmSPDruXNMBUIMbFGUKGd_fnx38X1HyJEBlmt4XiawOppEWMUSYCFp4irkc6ZUPuTC3Pfk9XXx-Kj6MVk95MJ478PhM3-Cl-FfvhvZKYbKYIZLGIKYaD0vZd4ka80CKlhBQmUyKguxtjrtdLvQCPABU3HCRQEblfix-wSR_lhV5ddSHPaXi9V_WrZGViKRpJ0G-XUy54cbZPmbvOAm6d-Myumkpli5E1g2vQ8RenoVzk96-jCon2hn8v7yglW1LL0dT1Eh1jsatagHH3DdHwxL8_xMe9CeLXJ3cX7bvUxiBYXE8kzVieOZFd5kqedtlzlmTZpK1D9NeeVyyVKg1jK3zCJPqKANVgmeKyPaJasKZfk2WRiOhn6H0BKXRmYyVign8sqUGXPgixSlMVwYxlvk-Ktn9WsjlKGDg9FWugFCIxA6AtEiZ9j7s0dR5TrcgG7VcdJoC94mmC1disdRlTeVcuByOeYcWC1di2whFN--16DQIvtfYOo4JSeaMyxdDoRN7P7x2h5ZQhObAMs-WajHU39AFu1bPZiMD8No-wQ9FNGn
  priority: 102
  providerName: IEEE
Title Robust Support Vector Machine With Asymmetric Truncated Generalized Pinball Loss
URI https://ieeexplore.ieee.org/document/10731881
https://www.proquest.com/docview/3122296174
https://doaj.org/article/c407d5d7d201419eaf9d096d1dd76c7d
Volume 12
WOSCitedRecordID wos001346096800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS8MwFA4iHvQg_sTqHDl4tNo0adMc59jw4MaQ-eMW0iTFgm6ydYIe_Nt9STuZePDipZQSSPK95uV74eV7CJ0pYLmKpnkI3lGFTAsSAguJQ1M4PqdyYf1dmPsbPhxmj49itFLqy-WE1fLANXCXGiIOkxhuYpeSKKwqhAHabYgxPNXcOO8bcbESTHkfnJFUJLyRGSKRuOx0uzAjCAhjdkFZBrsW-7EVecX-psTKL7_sN5v-DtpuWCLu1KPbRWt2soe2VrQD99Hodpov5hV2ZTmBQuN7f_yOBz450uKHsnrCnfn7y4srmaXxeLZw8q_W4EZouvyA91E5ydXzM76B8R2gu35v3L0Om_IIoaaJqEJDE82sSmJLI0CIaBXH3ImbxrQwKScx8GaAiGhHAgpYylowmgrFopwUmdD0EK1PphN7hHDu_B5RCcmEYWmh8oQYCDSyXCnKFKEBOl8iJV9rFQzpo4dIyBpY6YCVDbABunJofjd1Etb-AxhWNoaVfxk2QAfOFiv9cfA_GQlQa2kc2ay3uaTE1SUHNsaO_6PvE7Tp5lMftbTQejVb2FO0od-qcj5r-18NnoPPXttfGPwCXrDWvQ
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6hthJwKAVadWkBHziSEj_y8HFZURWxXa3QUnqzHNtRV2p30W4WCX59Zxy3KkIcuEVRooz9-fHNxPMNwDuLLNfKsslwdbSZcppnyEJE5lvic7bRIebCXIyryaS-vNTTlKwec2FCCPHwWTihy_gv3y_dhkJlOMMrHIKUaL1dKCXyPl3rPqRCNSR0USVtIZ7rD8PRCJuBXqBQJ1LVuFWpP_afKNOf6qr8tRjHHeb02X_atge7iUqyYY_9c3gUFi_g6QOBwZcw_bpsNuuOUe1O5NnsIsbo2Xk8QRnY93l3xYbrXzc3VFfLsdlqQxqxwbOkRj3_jdfT-aKx19dsjO3Zh2-nn2ajsyzVUMicLHSXeVk4FWwhgsx94bmzQlSkgCpk68uKCyTXVem4I6bQYhucVrLUVuUNb2vt5AFsLZaLcAisocWR24LX2quytU3BPXojdWOtVJbLAby_61nzo5fKMNHFyLXpgTAEhElADOAj9f79o6RzHW9gt5o0bYxDfxPNrrygA6k62FZ7dLo89x6trvwA9gmKB9_rURjA8R2YJk3KtZGcipcjZVOv_vHaW3h8Njsfm_HnyZcjeELm9uGWY9jqVpvwGnbcz26-Xr2JI-8WTYHU7g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+Support+Vector+Machine+With+Asymmetric+Truncated+Generalized+Pinball+Loss&rft.jtitle=IEEE+access&rft.au=Suppalap%2C+Siwakon&rft.au=Wangkeeree%2C+Rabian&rft.date=2024&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=12&rft.spage=155696&rft.epage=155717&rft_id=info:doi/10.1109%2FACCESS.2024.3485214&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2024_3485214
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon