Robust Support Vector Machine With Asymmetric Truncated Generalized Pinball Loss
The support vector machine (SVM) with pinball loss (Pin-SVM) can handle noise sensitivity and instability to re-sampling but loses sparsity. To solve this limitation, SVM with a generalized pinball loss that incorporates an insensitive zone (GP-SVM) was proposed. The GP-SVM can handle sparsity by op...
Gespeichert in:
| Veröffentlicht in: | IEEE access Jg. 12; S. 155696 - 155717 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Piscataway
IEEE
2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 2169-3536, 2169-3536 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | The support vector machine (SVM) with pinball loss (Pin-SVM) can handle noise sensitivity and instability to re-sampling but loses sparsity. To solve this limitation, SVM with a generalized pinball loss that incorporates an insensitive zone (GP-SVM) was proposed. The GP-SVM can handle sparsity by optimizing the asymmetric spread of the insensitive zone. Despite these improvements, the unboundedness of the loss functions can result in a lack of robustness to outliers. In this paper, we introduce a novel robust support vector classification based on an <inline-formula> <tex-math notation="LaTeX">(\alpha _{1}, \alpha _{2}) </tex-math></inline-formula>-asymmetric bounded loss function, an asymmetric truncated generalized pinball loss (called <inline-formula> <tex-math notation="LaTeX">L_{tgp}^{\alpha _{1}, \alpha _{2}} </tex-math></inline-formula>). A characteristic of SVM with <inline-formula> <tex-math notation="LaTeX">L_{tgp}^{\alpha _{1}, \alpha _{2}} </tex-math></inline-formula> (ATGP-SVM) is its ability to balance generalization and sparsity while minimizing the impact of outliers. However, <inline-formula> <tex-math notation="LaTeX">L_{tgp}^{\alpha _{1}, \alpha _{2}} </tex-math></inline-formula> is a non-convex function, ATGP-SVM is difficult to solve. Therefore, we formulated the ATGP-SVM utilizing DC (difference of convex functions) programming and subsequently resolved it through the DC algorithm (DCA). The experimental results obtained from diverse benchmark datasets underscore the effectiveness of our proposed formulation when compared to other state-of-the-art classification models. |
|---|---|
| AbstractList | The support vector machine (SVM) with pinball loss (Pin-SVM) can handle noise sensitivity and instability to re-sampling but loses sparsity. To solve this limitation, SVM with a generalized pinball loss that incorporates an insensitive zone (GP-SVM) was proposed. The GP-SVM can handle sparsity by optimizing the asymmetric spread of the insensitive zone. Despite these improvements, the unboundedness of the loss functions can result in a lack of robustness to outliers. In this paper, we introduce a novel robust support vector classification based on an <inline-formula> <tex-math notation="LaTeX">(\alpha _{1}, \alpha _{2}) </tex-math></inline-formula>-asymmetric bounded loss function, an asymmetric truncated generalized pinball loss (called <inline-formula> <tex-math notation="LaTeX">L_{tgp}^{\alpha _{1}, \alpha _{2}} </tex-math></inline-formula>). A characteristic of SVM with <inline-formula> <tex-math notation="LaTeX">L_{tgp}^{\alpha _{1}, \alpha _{2}} </tex-math></inline-formula> (ATGP-SVM) is its ability to balance generalization and sparsity while minimizing the impact of outliers. However, <inline-formula> <tex-math notation="LaTeX">L_{tgp}^{\alpha _{1}, \alpha _{2}} </tex-math></inline-formula> is a non-convex function, ATGP-SVM is difficult to solve. Therefore, we formulated the ATGP-SVM utilizing DC (difference of convex functions) programming and subsequently resolved it through the DC algorithm (DCA). The experimental results obtained from diverse benchmark datasets underscore the effectiveness of our proposed formulation when compared to other state-of-the-art classification models. The support vector machine (SVM) with pinball loss (Pin-SVM) can handle noise sensitivity and instability to re-sampling but loses sparsity. To solve this limitation, SVM with a generalized pinball loss that incorporates an insensitive zone (GP-SVM) was proposed. The GP-SVM can handle sparsity by optimizing the asymmetric spread of the insensitive zone. Despite these improvements, the unboundedness of the loss functions can result in a lack of robustness to outliers. In this paper, we introduce a novel robust support vector classification based on an [Formula Omitted]-asymmetric bounded loss function, an asymmetric truncated generalized pinball loss (called [Formula Omitted]). A characteristic of SVM with [Formula Omitted] (ATGP-SVM) is its ability to balance generalization and sparsity while minimizing the impact of outliers. However, [Formula Omitted] is a non-convex function, ATGP-SVM is difficult to solve. Therefore, we formulated the ATGP-SVM utilizing DC (difference of convex functions) programming and subsequently resolved it through the DC algorithm (DCA). The experimental results obtained from diverse benchmark datasets underscore the effectiveness of our proposed formulation when compared to other state-of-the-art classification models. The support vector machine (SVM) with pinball loss (Pin-SVM) can handle noise sensitivity and instability to re-sampling but loses sparsity. To solve this limitation, SVM with a generalized pinball loss that incorporates an insensitive zone (GP-SVM) was proposed. The GP-SVM can handle sparsity by optimizing the asymmetric spread of the insensitive zone. Despite these improvements, the unboundedness of the loss functions can result in a lack of robustness to outliers. In this paper, we introduce a novel robust support vector classification based on an <tex-math notation="LaTeX">$(\alpha _{1}, \alpha _{2})$ </tex-math>-asymmetric bounded loss function, an asymmetric truncated generalized pinball loss (called <tex-math notation="LaTeX">$L_{tgp}^{\alpha _{1}, \alpha _{2}}$ </tex-math>). A characteristic of SVM with <tex-math notation="LaTeX">$L_{tgp}^{\alpha _{1}, \alpha _{2}}$ </tex-math> (ATGP-SVM) is its ability to balance generalization and sparsity while minimizing the impact of outliers. However, <tex-math notation="LaTeX">$L_{tgp}^{\alpha _{1}, \alpha _{2}}$ </tex-math> is a non-convex function, ATGP-SVM is difficult to solve. Therefore, we formulated the ATGP-SVM utilizing DC (difference of convex functions) programming and subsequently resolved it through the DC algorithm (DCA). The experimental results obtained from diverse benchmark datasets underscore the effectiveness of our proposed formulation when compared to other state-of-the-art classification models. |
| Author | Wangkeeree, Rabian Suppalap, Siwakon |
| Author_xml | – sequence: 1 givenname: Siwakon surname: Suppalap fullname: Suppalap, Siwakon organization: Department of Mathematics, Faculty of Science, Naresuan University, Phitsanulok, Thailand – sequence: 2 givenname: Rabian orcidid: 0000-0002-5715-3804 surname: Wangkeeree fullname: Wangkeeree, Rabian email: rabianw@nu.ac.th organization: Department of Mathematics, Faculty of Science, Naresuan University, Phitsanulok, Thailand |
| BookMark | eNpNUU1PGzEQtSqQytcvgMNKnJN6xvZ6fYwiSJFSFTW0HC3H9oKjzTp4vQf49TVdVDGXGT3Ne29G75Qc9bH3hFwCnQNQ9W2xXN5sNnOkyOeMNwKBfyEnCLWaMcHqo0_zV3IxDDtaqimQkCfk_lfcjkOuNuPhEFOu_nibY6p-GPscel89hvxcLYbX_d7nFGz1kMbemuxdtfK9T6YLb2W-D_3WdF21jsNwTo5b0w3-4qOfkd-3Nw_L77P1z9XdcrGeWSZUnjkmLPdGoGfUCQfWIEqBQiJrXS0BJSpZW7CyQWypZFZxVivD6RbaRll2Ru4mXRfNTh9S2Jv0qqMJ-h8Q05M2KQfbeW05lcVDOqTAQXnTKkdV7cC5YiFd0bqetA4pvox-yHoXx9SX8zUDRFQ1SF622LRlU_kz-fa_K1D9noSektDvSeiPJArramIF7_0nhmTQNMD-Am8KhR0 |
| CODEN | IAECCG |
| Cites_doi | 10.1036/1097-8542.387500 10.1007/978-1-4757-2440-0 10.1016/j.chemolab.2018.04.003 10.1016/j.neucom.2023.126458 10.1109/ACCESS.2022.3212535 10.1016/j.ins.2009.12.010 10.1016/j.ejor.2023.09.027 10.1109/TPAMI.2013.178 10.1007/s40314-023-02402-x 10.1016/j.patcog.2017.03.011 10.1109/ACCESS.2023.3262270 10.1016/j.ins.2023.01.075 10.1016/j.frl.2024.105014 10.1198/016214507000000617 10.1016/j.patcog.2023.109987 10.1016/j.eswa.2024.123480 10.1016/j.engappai.2016.04.003 10.1007/s10479-004-5022-1 10.1007/s00466-023-02394-9 10.1007/s11063-013-9336-3 10.1109/tpwrs.2024.3378200 10.1007/s00500-023-09622-7 10.1007/s13369-023-08269-8 10.1109/TSP.2004.831018 10.1109/JSTARS.2020.3026724 10.1109/CVPR.2006.164 10.1016/j.neucom.2014.11.051 10.1016/j.neucom.2018.08.079 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
| DOI | 10.1109/ACCESS.2024.3485214 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library (IEL) (UW System Shared) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Materials Research Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE/IET Electronic Library (IEL) (UW System Shared) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2169-3536 |
| EndPage | 155717 |
| ExternalDocumentID | oai_doaj_org_article_c407d5d7d201419eaf9d096d1dd76c7d 10_1109_ACCESS_2024_3485214 10731881 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Naresuan University (NU), National Science, Research and Innovation Fund (NSRF) grantid: R2567B003 funderid: 10.13039/501100017170 |
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c359t-d35c4ea52e30d5d1ca227525723fd671272976c1c7822f073c94369a40b1f89c3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001346096800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2169-3536 |
| IngestDate | Fri Oct 03 12:44:28 EDT 2025 Mon Jun 30 14:54:36 EDT 2025 Sat Nov 29 04:27:09 EST 2025 Wed Aug 27 02:59:34 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://creativecommons.org/licenses/by-nc-nd/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c359t-d35c4ea52e30d5d1ca227525723fd671272976c1c7822f073c94369a40b1f89c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-5715-3804 |
| OpenAccessLink | https://ieeexplore.ieee.org/document/10731881 |
| PQID | 3122296174 |
| PQPubID | 4845423 |
| PageCount | 22 |
| ParticipantIDs | proquest_journals_3122296174 crossref_primary_10_1109_ACCESS_2024_3485214 ieee_primary_10731881 doaj_primary_oai_doaj_org_article_c407d5d7d201419eaf9d096d1dd76c7d |
| PublicationCentury | 2000 |
| PublicationDate | 20240000 2024-00-00 20240101 2024-01-01 |
| PublicationDateYYYYMMDD | 2024-01-01 |
| PublicationDate_xml | – year: 2024 text: 20240000 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE access |
| PublicationTitleAbbrev | Access |
| PublicationYear | 2024 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref37 Chicco (ref32) 2020 ref30 ref11 Wang (ref23) 2015; 41 ref10 ref2 ref1 ref17 ref16 Lou (ref15) 2023; 549 ref18 Patrcio (ref33) Smith (ref28); 10 Antal (ref29) Sejnowski (ref31) 1988 ref24 Sigillito (ref27) ref26 ref25 ref20 ref22 ref21 Cinar (ref34) 2019 Wolberg (ref35) ref8 ref7 Lou (ref14) 2024; 248 ref9 ref4 ref3 ref6 ref5 Wu (ref19) 2007; 102 Na (ref36) |
| References_xml | – ident: ref30 doi: 10.1036/1097-8542.387500 – ident: ref16 doi: 10.1007/978-1-4757-2440-0 – ident: ref21 doi: 10.1016/j.chemolab.2018.04.003 – ident: ref33 article-title: Breast cancer Coimbra publication-title: UCI Machine Learning Repository – ident: ref35 article-title: Breast cancer Wisconsin (diagnostic) publication-title: UCI Machine Learning Repository – ident: ref27 article-title: Ionosphere publication-title: UCI Machine Learning Repository – volume: 549 year: 2023 ident: ref15 article-title: Multi-view intuitionistic fuzzy support vector machines with insensitive pinball loss for classification of noisy data publication-title: Neurocomputing doi: 10.1016/j.neucom.2023.126458 – ident: ref3 doi: 10.1109/ACCESS.2022.3212535 – ident: ref37 doi: 10.1016/j.ins.2009.12.010 – ident: ref8 doi: 10.1016/j.ejor.2023.09.027 – ident: ref17 doi: 10.1109/TPAMI.2013.178 – ident: ref29 article-title: Diabetic retinopathy Debrecen publication-title: UCI Machine Learning Repository – ident: ref22 doi: 10.1007/s40314-023-02402-x – ident: ref20 doi: 10.1016/j.patcog.2017.03.011 – ident: ref2 doi: 10.1109/ACCESS.2023.3262270 – volume-title: Rice (Cammeo and Osmancik) year: 2019 ident: ref34 – volume: 10 start-page: 261 volume-title: Proc. Annu. Symp. Comput. Appl. Med. Care ident: ref28 article-title: Using the ADAP learning algorithm to forecast the onset of diabetes mellitus – ident: ref5 doi: 10.1016/j.ins.2023.01.075 – ident: ref13 doi: 10.1016/j.frl.2024.105014 – volume: 102 start-page: 974 issue: 479 year: 2007 ident: ref19 article-title: Robust truncated Hinge loss support vector machines publication-title: J. Amer. Stat. Assoc. doi: 10.1198/016214507000000617 – ident: ref11 doi: 10.1016/j.patcog.2023.109987 – volume: 248 year: 2024 ident: ref14 article-title: Multi-view universum support vector machines with insensitive pinball loss publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2024.123480 – ident: ref26 doi: 10.1016/j.engappai.2016.04.003 – ident: ref25 doi: 10.1007/s10479-004-5022-1 – ident: ref12 doi: 10.1007/s00466-023-02394-9 – volume: 41 start-page: 89 issue: 1 year: 2015 ident: ref23 article-title: Robust support vector regression with generalized loss function and applications publication-title: Neural Process. Lett. doi: 10.1007/s11063-013-9336-3 – ident: ref1 doi: 10.1109/tpwrs.2024.3378200 – volume-title: Heart failure clinical records year: 2020 ident: ref32 – ident: ref9 doi: 10.1007/s00500-023-09622-7 – ident: ref10 doi: 10.1007/s13369-023-08269-8 – ident: ref4 doi: 10.1109/TSP.2004.831018 – ident: ref6 doi: 10.1109/JSTARS.2020.3026724 – ident: ref7 doi: 10.1109/CVPR.2006.164 – ident: ref24 doi: 10.1016/j.neucom.2014.11.051 – volume-title: Connectionist bench (sonar, mines vs. rocks) year: 1988 ident: ref31 – ident: ref36 article-title: National health and nutrition health survey 2013–2014 (NHANES) age prediction subset publication-title: UCI Machine Learning Repository – ident: ref18 doi: 10.1016/j.neucom.2018.08.079 |
| SSID | ssj0000816957 |
| Score | 2.2997346 |
| Snippet | The support vector machine (SVM) with pinball loss (Pin-SVM) can handle noise sensitivity and instability to re-sampling but loses sparsity. To solve this... |
| SourceID | doaj proquest crossref ieee |
| SourceType | Open Website Aggregation Database Index Database Publisher |
| StartPage | 155696 |
| SubjectTerms | Algorithms Asymmetry Classification Convex functions difference of convex functions programming Fasteners generalized pinball loss Noise Noise sensitivity Optimization methods pinball loss Programming Robustness Sensitivity Sparsity Support vector machine Support vector machines Training Vectors |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS8MwGA0yPOhB_DFxOiUHj9Y1Tdo0xzkcHnQMmbpbaH4UB1snWyfoX--XtJOJBy_eSltI8r4k3_tCeA-hS51aTok1gVZQorCQqiBTkQqIMrmOrdA0zL3ZBB8M0vFYDDesvtydsEoeuAKuo6HiMLHhJnJXEoXNcmGAdhtiDE80N273DbnYKKb8HpySRMS8lhkioeh0ez0YERSEEbumLIWsxX6kIq_YX1us_NqXfbLp76O9miXibtW7A7Rli0O0u6EdeISGj3O1WpbY2XIChcbP_vgdP_jLkRa_TMpX3F1-zGbOMkvj0WLl5F-twbXQ9OQTnoeTQmXTKb6H_jXRU_921LsLanuEQNNYlIGhsWY2iyNLQ0CI6CyKuBM3jWhuEk4i4M0AEdGOBOSwlLVgNBEZCxXJU4jCMWoU88KeIAzfEpWwGL5Atsrj1OUtIRQFPqHCxLTQ1Rop-VapYEhfPYRCVsBKB6ysgW2hG4fm969Owtq_gMDKOrDyr8C2UNPFYqM9mFRpSlqovQ6OrNfbUlLifMmBjbHT_2j7DO248VRHLW3UKBcre4629Xs5WS4u_FT7Ai3z1SA priority: 102 providerName: Directory of Open Access Journals |
| Title | Robust Support Vector Machine With Asymmetric Truncated Generalized Pinball Loss |
| URI | https://ieeexplore.ieee.org/document/10731881 https://www.proquest.com/docview/3122296174 https://doaj.org/article/c407d5d7d201419eaf9d096d1dd76c7d |
| Volume | 12 |
| WOSCitedRecordID | wos001346096800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT-MwELYAcWAPvFcUCvJhj4SNYyeOj6UCcQBUIRa4WfEj2kqlRW2KBAd-OzOOi1ihPXCJrDiJx_7izCP2N4T8sqWXnHmXWAMuiki5SSqTmYQZV9vcK8vTOiSbkNfX5cODGsTN6mEvjPc-LD7zJ1gM__LdxM4xVAYzHJ5b4kbrZSmLdrPWR0AFM0ioXEZmIZaq371-HzoBPmAmTrgoQVGJf7RPIOmPWVW-fIqDfjnf-KZkm2Q9GpK01yK_RZb8eJv8-EQvuEMGNxMznzUUM3eClU3vQoSeXoX1k57eD5u_tDd7eXzErFqW3k7nyBDrHY1c1MNXKA-GY1ONRvQS-rNL_pyf3fYvkphBIbE8V03ieG6Fr_LM89TljtkqyyTyn2a8doVkGZjWsrDMop1QQx-sErxQlUgNq0sA6idZGU_Gfo9QqCtMIXKoAYVW5yWqNqUMB5PDpIXrkOPFyOqnlihDBwcjVboFQiMQOgLRIac4-h-XIst1OAHDquOk0Ra8TRBbugyXoypf1cqBy-WYcyC1hDZ3EYpP7bUodEh3AaaOU3KmOcPU5WCwif3_3HZA1lDENsDSJSvNdO4Pyap9boaz6VHw1uF49XZ2FN68dwnf1GI |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTxsxELYqqER7oC0FNTxaH3pk6fq1uz6GqIiqIYqqtOVmrR8rIoUEJRuk9tcz4zUIVHHozdqXx_7WO4_1fEPIZ1eFUrDgM2fBRZG5sFltuc2Y9Y1TQTuRN7HYRDkaVZeXepyS1WMuTAghbj4LJ9iM__L9wq0xVAYrHJ5bYaL1ppKS51261kNIBWtIaFUmbiGW6y_9wQCGAV4glydCVqCq5BP9E2n6U12Vfz7GUcOcvflP2d6S7WRK0n6H_TvyIsx3yOtHBIPvyfjHwq5XLcXanWBn018xRk8v4g7KQH9P2yvaX_25vsa6Wo5OlmvkiA2eJjbq6V9oj6dzW89mdAjj2SU_z75OBudZqqGQOaF0m3mhnAy14kHkXnnmas5LZEDlovFFyTgY12XhmENLoYExOC1FoWuZW9ZUANUe2Zgv5uEDoXCusIVUcAZUWqMqVG5aWwFGh80L3yPH9zNrbjqqDBNdjFybDgiDQJgERI-c4uw_XIo81_EATKtJy8Y48DdB7NJz3JCqQ91oD06XZ96D1CX0uYtQPOqvQ6FHDu_BNGlRroxgWLwcTDa5_8xtn8jW-eRiaIbfRt8PyCsUtwu3HJKNdrkOR-Slu22nq-XH-ObdATyH1YM |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+Support+Vector+Machine+With+Asymmetric+Truncated+Generalized+Pinball+Loss&rft.jtitle=IEEE+access&rft.au=Suppalap%2C+Siwakon&rft.au=Wangkeeree%2C+Rabian&rft.date=2024&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=12&rft.spage=155696&rft.epage=155717&rft_id=info:doi/10.1109%2FACCESS.2024.3485214&rft.externalDocID=10731881 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |