Uncertainty in Projection of Climate Extremes: A Comparison of CMIP5 and CMIP6

Climate projections by global climate models (GCMs) are subject to considerable and multi-source uncertainties. This study aims to compare the uncertainty in projection of precipitation and temperature extremes between Coupled Model Intercomparison Project (CMIP) phase 5 (CMIP5) and phase 6 (CMIP6),...

Full description

Saved in:
Bibliographic Details
Published in:Journal of Meteorological Research Vol. 35; no. 4; pp. 646 - 662
Main Authors: Zhang, Shaobo, Chen, Jie
Format: Journal Article
Language:English
Published: Beijing The Chinese Meteorological Society 01.08.2021
State Key Laboratory of Water Resources&Hydropower Engineering Science,Wuhan University,299 Bayi Road,Wuchang District,Wuhan 430072
Hubei Provincial Key Lab of Water System Science for Sponge City Construction,Wuhan University,Wuhan 430072
Subjects:
ISSN:2095-6037, 2198-0934
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Climate projections by global climate models (GCMs) are subject to considerable and multi-source uncertainties. This study aims to compare the uncertainty in projection of precipitation and temperature extremes between Coupled Model Intercomparison Project (CMIP) phase 5 (CMIP5) and phase 6 (CMIP6), using 24 GCMs forced by 3 emission scenarios in each phase of CMIP. In this study, the total uncertainty ( T ) of climate projections is decomposed into the greenhouse gas emission scenario uncertainty ( S , mean inter-scenario variance of the signals over all the models), GCM uncertainty ( M , mean inter-model variance of signals over all emission scenarios), and internal climate variability uncertainty ( V , variance in noises over all models, emission scenarios, and projection lead times); namely, T = S + M + V . The results of analysis demonstrate that the magnitudes of S, M , and T present similarly increasing trends over the 21st century. The magnitudes of S, M, V , and T in CMIP6 are 0.94–0.96, 1.38–2.07, 1.04–1.69, and 1.20–1.93 times as high as those in CMIP5. Both CMIP5 and CMIP6 exhibit similar spatial variation patterns of uncertainties and similar ranks of contributions from different sources of uncertainties. The uncertainty for precipitation is lower in midlatitudes and parts of the equatorial region, but higher in low latitudes and the polar region. The uncertainty for temperature is higher over land areas than oceans, and higher in the Northern Hemisphere than the Southern Hemisphere. For precipitation, T is mainly determined by M and V in the early 21st century, by M and S at the end of the 21st century; and the turning point will appear in the 2070s. For temperature, T is dominated by M in the early 21st century, and by S at the end of the 21st century, with the turning point occuring in the 2060s. The relative contributions of S to T in CMIP6 (12.5%–14.3% for precipitation and 31.6%–36.2% for temperature) are lower than those in CMIP5 (15.1%–17.5% for precipitation and 38.6%–43.8% for temperature). By contrast, the relative contributions of M in CMIP6 (50.6%–59.8% for precipitation and 59.4%–60.3% for temperature) are higher than those in CMIP5 (47.5%–57.9% for precipitation and 51.7%–53.6% for temperature). The higher magnitude and relative contributions of M in CMIP6 indicate larger difference among projections of various GCMs. Therefore, more GCMs are needed to ensure the robustness of climate projections.
AbstractList Climate projections by global climate models (GCMs) are subject to considerable and multi-source uncertainties. This study aims to compare the uncertainty in projection of precipitation and temperature extremes between Coupled Model Intercomparison Project (CMIP) phase 5 (CMIP5) and phase 6 (CMIP6), using 24 GCMs forced by 3 emis-sion scenarios in each phase of CMIP. In this study, the total uncertainty (T) of climate projections is decomposed in-to the greenhouse gas emission scenario uncertainty (S, mean inter-scenario variance of the signals over all the mod-els), GCM uncertainty (M, mean inter-model variance of signals over all emission scenarios), and internal climate variability uncertainty (V, variance in noises over all models, emission scenarios, and projection lead times); namely, T = S + M + V. The results of analysis demonstrate that the magnitudes of S, M, and T present similarly increasing trends over the 21st century. The magnitudes of S, M, V, and T in CMIP6 are 0.94–0.96, 1.38–2.07, 1.04–1.69, and 1.20–1.93 times as high as those in CMIP5. Both CMIP5 and CMIP6 exhibit similar spatial variation patterns of un-certainties and similar ranks of contributions from different sources of uncertainties. The uncertainty for precipitation is lower in midlatitudes and parts of the equatorial region, but higher in low latitudes and the polar region. The uncer-tainty for temperature is higher over land areas than oceans, and higher in the Northern Hemisphere than the South-ern Hemisphere. For precipitation, T is mainly determined by M and V in the early 21st century, by M and S at the end of the 21st century; and the turning point will appear in the 2070s. For temperature, T is dominated by M in the early 21st century, and by S at the end of the 21st century, with the turning point occuring in the 2060s. The relative contributions of S to T in CMIP6 (12.5%–14.3% for precipitation and 31.6%–36.2% for temperature) are lower than those in CMIP5 (15.1%–17.5% for precipitation and 38.6%–43.8% for temperature). By contrast, the relative contri-butions of M in CMIP6 (50.6%–59.8% for precipitation and 59.4%–60.3% for temperature) are higher than those in CMIP5 (47.5%–57.9% for precipitation and 51.7%–53.6% for temperature). The higher magnitude and relative con-tributions of M in CMIP6 indicate larger difference among projections of various GCMs. Therefore, more GCMs are needed to ensure the robustness of climate projections.
Climate projections by global climate models (GCMs) are subject to considerable and multi-source uncertainties. This study aims to compare the uncertainty in projection of precipitation and temperature extremes between Coupled Model Intercomparison Project (CMIP) phase 5 (CMIP5) and phase 6 (CMIP6), using 24 GCMs forced by 3 emission scenarios in each phase of CMIP. In this study, the total uncertainty ( T ) of climate projections is decomposed into the greenhouse gas emission scenario uncertainty ( S , mean inter-scenario variance of the signals over all the models), GCM uncertainty ( M , mean inter-model variance of signals over all emission scenarios), and internal climate variability uncertainty ( V , variance in noises over all models, emission scenarios, and projection lead times); namely, T = S + M + V . The results of analysis demonstrate that the magnitudes of S, M , and T present similarly increasing trends over the 21st century. The magnitudes of S, M, V , and T in CMIP6 are 0.94–0.96, 1.38–2.07, 1.04–1.69, and 1.20–1.93 times as high as those in CMIP5. Both CMIP5 and CMIP6 exhibit similar spatial variation patterns of uncertainties and similar ranks of contributions from different sources of uncertainties. The uncertainty for precipitation is lower in midlatitudes and parts of the equatorial region, but higher in low latitudes and the polar region. The uncertainty for temperature is higher over land areas than oceans, and higher in the Northern Hemisphere than the Southern Hemisphere. For precipitation, T is mainly determined by M and V in the early 21st century, by M and S at the end of the 21st century; and the turning point will appear in the 2070s. For temperature, T is dominated by M in the early 21st century, and by S at the end of the 21st century, with the turning point occuring in the 2060s. The relative contributions of S to T in CMIP6 (12.5%–14.3% for precipitation and 31.6%–36.2% for temperature) are lower than those in CMIP5 (15.1%–17.5% for precipitation and 38.6%–43.8% for temperature). By contrast, the relative contributions of M in CMIP6 (50.6%–59.8% for precipitation and 59.4%–60.3% for temperature) are higher than those in CMIP5 (47.5%–57.9% for precipitation and 51.7%–53.6% for temperature). The higher magnitude and relative contributions of M in CMIP6 indicate larger difference among projections of various GCMs. Therefore, more GCMs are needed to ensure the robustness of climate projections.
Author Chen, Jie
Zhang, Shaobo
AuthorAffiliation State Key Laboratory of Water Resources&Hydropower Engineering Science,Wuhan University,299 Bayi Road,Wuchang District,Wuhan 430072;Hubei Provincial Key Lab of Water System Science for Sponge City Construction,Wuhan University,Wuhan 430072
AuthorAffiliation_xml – name: State Key Laboratory of Water Resources&Hydropower Engineering Science,Wuhan University,299 Bayi Road,Wuchang District,Wuhan 430072;Hubei Provincial Key Lab of Water System Science for Sponge City Construction,Wuhan University,Wuhan 430072
Author_xml – sequence: 1
  givenname: Shaobo
  surname: Zhang
  fullname: Zhang, Shaobo
  organization: State Key Laboratory of Water Resources & Hydropower Engineering Science, Wuhan University, Hubei Provincial Key Lab of Water System Science for Sponge City Construction, Wuhan University
– sequence: 2
  givenname: Jie
  surname: Chen
  fullname: Chen, Jie
  email: jiechen@whu.edu.cn
  organization: State Key Laboratory of Water Resources & Hydropower Engineering Science, Wuhan University, Hubei Provincial Key Lab of Water System Science for Sponge City Construction, Wuhan University
BookMark eNp9kE9LwzAYh4NMcM59AG-9eYq-SZqm8TbK1MHUHdw5pGk6OrZ0JhW3b29mB4Kgp7yE3_P-eS7RwLXOInRN4JYAiLtAGOMEAyWYAKGYnaEhJTLHIFk6iDVIjjNg4gKNQ1gDAJWUC0qH6GXpjPWdblx3SBqXLHy7tqZrWpe0dVJsmq3ubDLdd95ubbhPJknRbnfaN-GUeJ4teKJd9V1lV-i81ptgx6d3hJYP07fiCc9fH2fFZI4N47LDpoa81LwqLS8FVIYJTjPBCQfDKlaWhooqlTZuLExNci4llzYtrbVZFb9TNkI3fd9P7WrtVmrdfngXJ6r3_b5UlkYXkALkMSn6pPFtCN7WyjSdPh7Yed1sFAF1dKh6hypy6uhQsUiSX-TORx3-8C9DeybErFtZ_7PY39AXv36DVw
CitedBy_id crossref_primary_10_1088_2515_7620_ad85c5
crossref_primary_10_3389_feart_2023_1102633
crossref_primary_10_1007_s13351_024_3059_4
crossref_primary_10_3724_j_1006_8775_2024_044
crossref_primary_10_1002_joc_70019
crossref_primary_10_1088_2752_5295_acc08a
crossref_primary_10_1016_j_accre_2024_03_005
crossref_primary_10_1016_j_ecolind_2025_114150
crossref_primary_10_1016_j_jhydrol_2022_128646
crossref_primary_10_1371_journal_pone_0301759
crossref_primary_10_3390_atmos15030357
crossref_primary_10_3390_rs17081362
crossref_primary_10_1175_JHM_D_21_0158_1
crossref_primary_10_1002_joc_8543
crossref_primary_10_1002_met_2144
crossref_primary_10_2166_nh_2023_108
crossref_primary_10_1002_joc_7650
crossref_primary_10_1016_j_jhydrol_2022_128851
crossref_primary_10_3389_fclim_2022_980035
crossref_primary_10_3389_fenvs_2023_1127265
crossref_primary_10_1088_2515_7620_ae009b
crossref_primary_10_3389_fenvs_2022_847475
crossref_primary_10_1007_s10584_025_03910_x
crossref_primary_10_3390_fishes10070337
crossref_primary_10_3390_w16152082
crossref_primary_10_1016_j_scitotenv_2023_167136
crossref_primary_10_1029_2022EF002963
crossref_primary_10_1016_j_jhydrol_2025_133260
crossref_primary_10_1038_s41612_023_00372_9
crossref_primary_10_1002_joc_8677
crossref_primary_10_1175_JAMC_D_22_0022_1
crossref_primary_10_1139_cjfas_2025_0070
crossref_primary_10_3390_forecast6040055
crossref_primary_10_1016_j_scitotenv_2024_172350
crossref_primary_10_3389_fclim_2024_1344868
crossref_primary_10_1088_1748_9326_adae23
crossref_primary_10_3390_atmos13050799
crossref_primary_10_1007_s40333_024_0070_7
crossref_primary_10_1038_s41586_024_07887_y
crossref_primary_10_1016_j_wace_2023_100573
crossref_primary_10_3390_w14182800
crossref_primary_10_1038_s41598_023_33856_y
crossref_primary_10_2166_nh_2023_130
crossref_primary_10_1007_s00704_025_05564_2
crossref_primary_10_3389_feart_2021_751974
crossref_primary_10_1016_j_heliyon_2024_e29416
crossref_primary_10_1016_j_jenvman_2025_125378
crossref_primary_10_1029_2022EF003315
crossref_primary_10_1016_j_scitotenv_2022_153817
Cites_doi 10.1175/JCLI-D-12-00567.1
10.1038/35036559
10.1038/nclimate2051
10.1175/2007JCLI2119.1
10.1175/JHM-D-17-0180.1
10.5194/esd-11-491-2020
10.1038/nclimate1562
10.1007/BF00208987
10.1007/s00382-010-0810-6
10.1175/JCLI-D-12-00788.1
10.1007/s10584-011-0345-9
10.1175/JCLI-D-18-0606.1
10.1007/s10584-011-0148-z
10.1029/2019GL085782
10.1007/s00382-014-2312-4
10.1175/2010JCLI3484.1
10.1002/2015JD023656
10.1007/s00382-010-0977-x
10.5194/gmdd-8-10539-2015
10.1016/j.gloenvcha.2015.01.004
10.1007/s00382-016-3030-x
10.1002/joc.6590
10.1007/s10584-011-0156-z
10.1175/JCLI-D-16-0428.1
10.1029/2019GL086902
10.1016/j.jhydrol.2020.125760
10.1029/96JD00822
10.1126/science.1145956
10.1007/BF00231106
10.1029/91JD01786
10.1038/416723a
10.1098/rsta.2007.2074
10.1007/s10687-010-0105-7
10.5194/hess-22-3739-2018
10.1175/2011JCLI4085.1
10.1175/JCLI-D-16-0491.1
10.3878/j.issn.1006-9895.1901.18235
10.1175/JCLI-D-13-00629.1
10.1002/joc.5920
10.1007/s10584-007-9388-3
10.1007/s00382-012-1489-7
10.1007/s00382-003-0310-z
10.1175/2009BAMS2607.1
10.1038/nature08823
10.1175/BAMS-D-11-00094.1
10.1002/2015EF000336
10.1111/gcb.13724
10.1126/sciadv.aaz9549
10.2166/nh.2018.059
10.5194/hess-16-4343-2012
10.1080/14693062.2020.1852068
10.1016/j.atmosres.2019.04.018
10.1175/1520-0442(1989)002<0816:LSHPFA>2.0.CO;2
10.1029/JD095iD10p16601
10.1007/s10584-012-0441-5
10.1029/2020GL088415
10.1029/2020EF001602
10.1029/2005JD006119
10.5194/esd-4-95-2013
10.1007/s00704-013-0934-9
ContentType Journal Article
Copyright The Chinese Meteorological Society and Springer-Verlag Berlin Heidelberg 2021
Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: The Chinese Meteorological Society and Springer-Verlag Berlin Heidelberg 2021
– notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID AAYXX
CITATION
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.1007/s13351-021-1012-3
DatabaseName CrossRef
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
EISSN 2198-0934
EndPage 662
ExternalDocumentID qxxb_e202104008
10_1007_s13351_021_1012_3
GrantInformation_xml – fundername: (Supported by the National Key Research and Development Program of China); (National Natural Science Founda-tion of China); (and China 111 Project)
  funderid: (Supported by the National Key Research and Development Program of China); (National Natural Science Founda-tion of China); (and China 111 Project)
GroupedDBID -01
-0A
-EM
-SA
-S~
06D
0R~
2KG
2KM
4.4
406
5VR
5XA
5XB
92M
96X
9D9
9DA
AAAVM
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAXDM
AAYIU
AAYQN
AAYTO
AAYZH
AAZMS
ABAKF
ABDZT
ABECU
ABFTV
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACKNC
ACMDZ
ACMLO
ACOKC
ACPIV
ACZOJ
ADHIR
ADINQ
ADKNI
ADRFC
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETCA
AEVLU
AEXYK
AFBBN
AFLOW
AFQWF
AFUIB
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
ANMIH
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
BGNMA
CAJEA
CCEZO
CCVFK
CHBEP
DDRTE
DNIVK
DPUIP
EBLON
EBS
EDH
EIOEI
EJD
ESBYG
FA0
FERAY
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYJPI
GGCAI
GGRSB
GJIRD
H13
IAO
IEP
IGS
IKXTQ
ITC
IWAJR
J-C
JUIAU
JZLTJ
KOV
L8X
LLZTM
M4Y
NPVJJ
NQJWS
NU0
O9J
OK1
PT4
Q--
Q-0
R-A
RLLFE
ROL
RSV
RT1
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
T8Q
TSG
U1F
U1G
U5A
U5K
UG4
UOJIU
UTJUX
UZXMN
VFIZW
W48
ZMTXR
~LG
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
BANNL
CITATION
2B.
4A8
92I
93N
PSX
TCJ
ID FETCH-LOGICAL-c359t-cf08ba5dbe5b70dc3752675150c3d3bbc27d49e0377cf1859959e4beee6d9e043
IEDL.DBID RSV
ISICitedReferencesCount 57
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000695144600008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2095-6037
IngestDate Thu May 29 04:06:29 EDT 2025
Tue Nov 18 21:00:23 EST 2025
Sat Nov 29 02:09:58 EST 2025
Fri Feb 21 02:47:32 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Coupled Model Intercomparison Project (CMIP) phase 5 (CMIP5) and phase 6 (CMIP6)
uncertainty contribution
climate projection uncertainty
extreme precipitation and temperature
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c359t-cf08ba5dbe5b70dc3752675150c3d3bbc27d49e0377cf1859959e4beee6d9e043
PageCount 17
ParticipantIDs wanfang_journals_qxxb_e202104008
crossref_citationtrail_10_1007_s13351_021_1012_3
crossref_primary_10_1007_s13351_021_1012_3
springer_journals_10_1007_s13351_021_1012_3
PublicationCentury 2000
PublicationDate 2021-08-01
PublicationDateYYYYMMDD 2021-08-01
PublicationDate_xml – month: 08
  year: 2021
  text: 2021-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Beijing
PublicationPlace_xml – name: Beijing
PublicationTitle Journal of Meteorological Research
PublicationTitleAbbrev J Meteorol Res
PublicationTitle_FL Journal of Meteorological Research(JMR)
PublicationYear 2021
Publisher The Chinese Meteorological Society
State Key Laboratory of Water Resources&Hydropower Engineering Science,Wuhan University,299 Bayi Road,Wuchang District,Wuhan 430072
Hubei Provincial Key Lab of Water System Science for Sponge City Construction,Wuhan University,Wuhan 430072
Publisher_xml – name: The Chinese Meteorological Society
– name: State Key Laboratory of Water Resources&Hydropower Engineering Science,Wuhan University,299 Bayi Road,Wuchang District,Wuhan 430072
– name: Hubei Provincial Key Lab of Water System Science for Sponge City Construction,Wuhan University,Wuhan 430072
References Nakicenovic, Alcamo, Grubler (CR39) 2000
Slingo, Sperber, Boyle (CR44) 1996; 12
Chu, Chen, Schroeder (CR12) 2010; 23
Yao, Chen, Chen (CR59) 2020; 598
Cess, Potter, Blanchet (CR7) 1990; 95
Wang, Chen, Cannon (CR52) 2018; 22
Cox, Stephenson (CR14) 2007; 317
Wood, Lettenmaier, Zartarian (CR55) 1992; 97
Evin, Hingray, Blanchet (CR19) 2019; 32
van Pelt, Beersma, Buishand (CR50) 2015; 44
Entekhabi, Eagleson (CR18) 1989; 2
Wehner (CR54) 2010; 13
Schneider, Kinter (CR43) 1994; 10
Tokarska, Stolpe, Sippel (CR48) 2020; 6
Lu, Zhou, Huang (CR35) 2020; 44
Moss, Edmonds, Hibbard (CR37) 2010; 463
Zhuan, Chen, Xu (CR65) 2019; 39
Wang, Chen, Xu (CR53) 2020; 8
O’Neill, Kriegler, Ebi (CR41) 2017; 42
Olonscheck, Notz (CR42) 2017; 30
(CR28) 2007
Taylor, Stouffer, Meehl (CR47) 2012; 93
Yang, Wood, Sheffield (CR58) 2018; 19
Brekke, Dettinger, Maurer (CR6) 2008; 89
Herrera-Estrada, Sheffield (CR25) 2017; 30
Knutson, Zeng, Wittenberg (CR31) 2013; 26
Cess, Zhang, Ingram (CR8) 1996; 101
Zhou, Zhang, Chen (CR63) 2020; 40
Chen, Zhou, Zhang (CR10) 2020; 47
Hawkins, Sutton (CR24) 2011; 37
Chou, Suarez (CR11) 1994
Fischer, Beyerle, Knutti (CR22) 2013; 3
Aguilar, Peterson, Obando (CR1) 2005; 110
Hewitt, Cremades, Kovalevsky (CR26) 2020; 21
Knutti, Allen, Friedlingstein (CR32) 2008; 21
Chen, Brissette, Lucas-Picher (CR9) 2016; 47
Kang, Deser, Polvani (CR30) 2013; 26
Deser, Phillips, Bourdette (CR15) 2012; 38
Hawkins, Sutton (CR23) 2009; 90
Aloysius, Sheffield, Saiers (CR3) 2016; 121
Yip, Ferro, Stephenson (CR60) 2011; 24
Xu, Xu, Ju (CR57) 2019; 226
Dobler, Hagemann, Wilby (CR17) 2012; 16
Neumann, Mues, Moreno (CR40) 2017; 23
Hingray, Saïd (CR27) 2014; 27
Allen, Stott, Mitchell (CR2) 2000; 407
van Vuuren, Edmonds, Kainuma (CR51) 2011; 109
Booth, Bernie, McNeall (CR5) 2013; 4
Meinshausen, Smith, Calvin (CR36) 2011; 109
Colman (CR13) 2003; 20
Zhuan, Chen, Shen (CR64) 2018; 49
Fatichi, Ivanov, Paschalis (CR21) 2016; 4
Zhou, Lu, Zhang (CR62) 2020; 47
Eyring, Bony, Meehl (CR20) 2015; 8
Stott, Kettleborough (CR46) 2002; 416
Deser, Knutti, Solomon (CR16) 2012; 2
Xin, Wu, Zhang (CR56) 2020; 40
Trenberth (CR49) 2012; 115
Blázquez, Nuñez (CR4) 2013; 41
Lee, Ho, Kim (CR33) 2012; 113
Nakaegawa, Kitoh, Murakami (CR38) 2014; 116
Stainforth, Allen, Tredger (CR45) 2007; 365
Zelinka, Myers, McCoy (CR61) 2020; 47
Lehner, Deser, Maher (CR34) 2020; 11
(CR29) 2013
N Nakicenovic (1012_CR39) 2000
B B B Booth (1012_CR5) 2013; 4
M-J Zhuan (1012_CR64) 2018; 49
M R Allen (1012_CR2) 2000; 407
E Hawkins (1012_CR23) 2009; 90
M Wehner (1012_CR54) 2010; 13
D A Stainforth (1012_CR45) 2007; 365
D Olonscheck (1012_CR42) 2017; 30
J M Slingo (1012_CR44) 1996; 12
S Yip (1012_CR60) 2011; 24
R Colman (1012_CR13) 2003; 20
P Cox (1012_CR14) 2007; 317
K E Trenberth (1012_CR49) 2012; 115
X G Xin (1012_CR56) 2020; 40
H-M Wang (1012_CR52) 2018; 22
R D Cess (1012_CR7) 1990; 95
D P van Vuuren (1012_CR51) 2011; 109
B Hingray (1012_CR27) 2014; 27
J Blázquez (1012_CR4) 2013; 41
T R Knutson (1012_CR31) 2013; 26
S C van Pelt (1012_CR50) 2015; 44
T J Zhou (1012_CR62) 2020; 47
V Eyring (1012_CR20) 2015; 8
E F Wood (1012_CR55) 1992; 97
S M Kang (1012_CR30) 2013; 26
D Entekhabi (1012_CR18) 1989; 2
Z M Chen (1012_CR10) 2020; 47
R J Hewitt (1012_CR26) 2020; 21
M-D Chou (1012_CR11) 1994
E Hawkins (1012_CR24) 2011; 37
G Evin (1012_CR19) 2019; 32
S Fatichi (1012_CR21) 2016; 4
K B Tokarska (1012_CR48) 2020; 6
C Deser (1012_CR15) 2012; 38
R D Cess (1012_CR8) 1996; 101
IPCC (1012_CR28) 2007
R H Moss (1012_CR37) 2010; 463
L D Brekke (1012_CR6) 2008; 89
B C O’Neill (1012_CR41) 2017; 42
E M Fischer (1012_CR22) 2013; 3
T J Zhou (1012_CR63) 2020; 40
H-M Wang (1012_CR53) 2020; 8
M J Zhuan (1012_CR65) 2019; 39
P-S Chu (1012_CR12) 2010; 23
T Nakaegawa (1012_CR38) 2014; 116
E K Schneider (1012_CR43) 1994; 10
J Chen (1012_CR9) 2016; 47
F Lehner (1012_CR34) 2020; 11
J Q Yao (1012_CR59) 2020; 598
R Knutti (1012_CR32) 2008; 21
X Yang (1012_CR58) 2018; 19
C Deser (1012_CR16) 2012; 2
E Aguilar (1012_CR1) 2005; 110
K Xu (1012_CR57) 2019; 226
N R Aloysius (1012_CR3) 2016; 121
K E Taylor (1012_CR47) 2012; 93
M-H Lee (1012_CR33) 2012; 113
M Neumann (1012_CR40) 2017; 23
IPCC (1012_CR29) 2013
M Meinshausen (1012_CR36) 2011; 109
P A Stott (1012_CR46) 2002; 416
C Dobler (1012_CR17) 2012; 16
M D Zelinka (1012_CR61) 2020; 47
J W Lu (1012_CR35) 2020; 44
J E Herrera-Estrada (1012_CR25) 2017; 30
References_xml – volume: 116
  start-page: 155
  year: 2014
  end-page: 168
  ident: CR38
  article-title: Annual maximum 5-day rainfall total and maximum number of consecutive dry days over Central America and the Caribbean in the late twenty-first century projected by an atmospheric general circulation model with three different horizontal resolutions
  publication-title: Theor. Appl. Climatol.
– volume: 97
  start-page: 2717
  year: 1992
  end-page: 2728
  ident: CR55
  article-title: A land-surface hydrology parameterization with subgrid variability for general circulation models
  publication-title: J. Geophys. Res. Atmos.
– volume: 21
  start-page: 2651
  year: 2008
  end-page: 2663
  ident: CR32
  article-title: A review of uncertainties in global temperature projections over the twenty-first century
  publication-title: J. Climate
– volume: 47
  start-page: e2019GL086902
  year: 2020
  ident: CR10
  article-title: Global land monsoon precipitation changes in CMIP6 projections
  publication-title: Geophys. Res. Lett.
– volume: 10
  start-page: 181
  year: 1994
  end-page: 204
  ident: CR43
  article-title: An examination of internally generated variability in long climate simulations
  publication-title: Climate Dyn.
– volume: 12
  start-page: 325
  year: 1996
  end-page: 357
  ident: CR44
  article-title: Intraseasonal oscillations in 15 atmospheric general circulation models: results from an AMIP diagnostic subproject
  publication-title: Climate Dyn.
– volume: 598
  start-page: 125760
  year: 2020
  ident: CR59
  article-title: Intensification of extreme precipitation in arid Central Asia
  publication-title: J. Hydrol.
– volume: 40
  start-page: 697
  year: 2020
  end-page: 710
  ident: CR63
  article-title: The near-term, mid-term and long-term projections of temperature and precipitation changes over the Tibetan Plateau and the sources of uncertainties
  publication-title: J. Meteor. Sci.
– volume: 32
  start-page: 2423
  year: 2019
  end-page: 2440
  ident: CR19
  article-title: Partitioning uncertainty components of an incomplete ensemble of climate projections using data augmentation
  publication-title: J. Climate
– volume: 416
  start-page: 723
  year: 2002
  end-page: 726
  ident: CR46
  article-title: Origins and estimates of uncertainty in predictions of twenty-first century temperature rise
  publication-title: Nature
– volume: 20
  start-page: 865
  year: 2003
  end-page: 873
  ident: CR13
  article-title: A comparison of climate feedbacks in general circulation models
  publication-title: Climate Dyn.
– volume: 109
  start-page: 213
  year: 2011
  ident: CR36
  article-title: The RCP greenhouse gas concentrations and their extensions from 1765 to 2300
  publication-title: Climatic Change
– volume: 19
  start-page: 609
  year: 2018
  end-page: 623
  ident: CR58
  article-title: Bias correction of historical and future simulations of precipitation and temperature for China from CMIP5 models
  publication-title: J. Hydrometeorol.
– volume: 365
  start-page: 2145
  year: 2007
  end-page: 2161
  ident: CR45
  article-title: Confidence, uncertainty and decision-support relevance in climate predictions
  publication-title: Philos. Trans. R. Soc. Lond. A: Math., Phys. Eng. Sci.
– year: 2007
  ident: CR28
  publication-title: Climate Change 2007: The Physical Science Basis: Working Group I Contribution to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change
– volume: 44
  start-page: 1789
  year: 2015
  end-page: 1800
  ident: CR50
  article-title: Uncertainty in the future change of extreme precipitation over the Rhine basin: the role of internal climate variability
  publication-title: Climate Dyn.
– volume: 26
  start-page: 7541
  year: 2013
  end-page: 7554
  ident: CR30
  article-title: Uncertainty in climate change projections of the Hadley circulation: The role of internal variability
  publication-title: J. Climate
– volume: 49
  start-page: 421
  year: 2018
  end-page: 437
  ident: CR64
  article-title: Timing of human-induced climate change emergence from internal climate variability for hydrological impact studies
  publication-title: Hydrol. Res.
– volume: 121
  start-page: 130
  year: 2016
  end-page: 152
  ident: CR3
  article-title: Evaluation of historical and future simulations of precipitation and temperature in central Africa from CMIP5 climate models
  publication-title: J. Geophys. Res. Atmos.
– volume: 23
  start-page: 4788
  year: 2017
  end-page: 4797
  ident: CR40
  article-title: Climate variability drives recent tree mortality in Europe
  publication-title: Glob. Change Biol.
– volume: 26
  start-page: 8709
  year: 2013
  end-page: 8743
  ident: CR31
  article-title: Multimodel assessment of regional surface temperature trends: CMIP3 and CMIP5 twentieth-century simulations
  publication-title: J. Climate
– volume: 109
  start-page: 5
  year: 2011
  ident: CR51
  article-title: The representative concentration pathways: an overview
  publication-title: Climatic Change
– volume: 39
  start-page: 1853
  year: 2019
  end-page: 1871
  ident: CR65
  article-title: A method for investigating the relative importance of three components in overall uncertainty of climate projections
  publication-title: Int. J. Climatol.
– volume: 47
  start-page: 3359
  year: 2016
  end-page: 3372
  ident: CR9
  article-title: Transferability of optimally-selected climate models in the quantification of climate change impacts on hydrology
  publication-title: Climate Dyn.
– volume: 37
  start-page: 407
  year: 2011
  end-page: 418
  ident: CR24
  article-title: The potential to narrow uncertainty in projections of regional precipitation change
  publication-title: Climate Dyn.
– volume: 317
  start-page: 207
  year: 2007
  end-page: 208
  ident: CR14
  article-title: A changing climate for prediction
  publication-title: Science
– volume: 21
  start-page: 434
  year: 2020
  end-page: 454
  ident: CR26
  article-title: Beyond shared socioeconomic pathways (SSPs) and representative concentration pathways (RCPs): climate policy implementation scenarios for Europe, the US and China
  publication-title: Climate Policy
– volume: 47
  start-page: e2020GL088415
  year: 2020
  ident: CR62
  article-title: The sources of uncertainty in the projection of global land monsoon precipitation
  publication-title: Geophys. Res. Lett.
– year: 2013
  ident: CR29
  publication-title: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change
– volume: 41
  start-page: 1039
  year: 2013
  end-page: 1056
  ident: CR4
  article-title: Analysis of uncertainties in future climate projections for South America: comparison of WCRP-CMIP3 and WCRP-CMIP5 models
  publication-title: Climate Dyn.
– volume: 30
  start-page: 9555
  year: 2017
  end-page: 9573
  ident: CR42
  article-title: Consistently estimating internal climate variability from climate model simulations
  publication-title: J. Climate
– volume: 40
  start-page: 6423
  year: 2020
  end-page: 6440
  ident: CR56
  article-title: Comparison of CMIP6 and CMIP5 simulations of precipitation in China and the East Asian summer monsoon
  publication-title: Int. J. Climatol.
– volume: 226
  start-page: 122
  year: 2019
  end-page: 137
  ident: CR57
  article-title: Projection and uncertainty of precipitation extremes in the CMIP5 multimodel ensembles over nine major basins in China
  publication-title: Atmos. Res.
– volume: 95
  start-page: 16,601
  year: 1990
  end-page: 16,615
  ident: CR7
  article-title: Intercomparison and interpretation of climate feedback processes in 19 atmospheric general circulation models
  publication-title: J. Geophys. Res. Atmos.
– volume: 90
  start-page: 1095
  year: 2009
  end-page: 1108
  ident: CR23
  article-title: The potential to narrow uncertainty in regional climate predictions
  publication-title: Bull. Amer. Meteor. Soc.
– year: 1994
  ident: CR11
  publication-title: An Efficient Thermal Infrared Radiation Parameterization for Use in General Circulation Models
– volume: 110
  start-page: D23107
  year: 2005
  ident: CR1
  article-title: Changes in precipitation and temperature extremes in Central America and northern South America, 1961–2003
  publication-title: J. Geophys. Res. Atmos.
– volume: 101
  start-page: 12,791
  year: 1996
  end-page: 12,794
  ident: CR8
  article-title: Cloud feedback in atmospheric general circulation models: An update
  publication-title: J. Geophys. Res. Atmos.
– volume: 8
  start-page: e2020EF001602
  year: 2020
  ident: CR53
  article-title: A framework to quantify the uncertainty contribution of GCMs over multiple sources in hydrological impacts of climate change
  publication-title: Earth’s Future
– volume: 47
  start-page: e2019GL085782
  year: 2020
  ident: CR61
  article-title: Causes of higher climate sensitivity in CMIP6 models
  publication-title: Geophys. Res. Lett.
– volume: 24
  start-page: 4634
  year: 2011
  end-page: 4643
  ident: CR60
  article-title: A simple, coherent framework for partitioning uncertainty in climate predictions
  publication-title: J. Climate
– volume: 89
  start-page: 371
  year: 2008
  end-page: 394
  ident: CR6
  article-title: Significance of model credibility in estimating climate projection distributions for regional hydroclimatological risk assessments
  publication-title: Climatic Change
– volume: 4
  start-page: 240
  year: 2016
  end-page: 251
  ident: CR21
  article-title: Uncertainty partition challenges the predictability of vital details of climate change
  publication-title: Earth’s Future
– volume: 22
  start-page: 3739
  year: 2018
  end-page: 3759
  ident: CR52
  article-title: Transferability of climate simulation uncertainty to hydrological impacts
  publication-title: Hydrol. Earth Syst. Sci.
– volume: 38
  start-page: 527
  year: 2012
  end-page: 546
  ident: CR15
  article-title: Uncertainty in climate change projections: the role of internal variability
  publication-title: Climate Dyn.
– volume: 115
  start-page: 283
  year: 2012
  end-page: 290
  ident: CR49
  article-title: Framing the way to relate climate extremes to climate change
  publication-title: Climatic Change
– volume: 42
  start-page: 169
  year: 2017
  end-page: 180
  ident: CR41
  article-title: The roads ahead: Narratives for shared socioeconomic pathways describing world futures in the 21st century
  publication-title: Glob. Environ. Change
– volume: 113
  start-page: 301
  year: 2012
  end-page: 321
  ident: CR33
  article-title: Assessment of the changes in extreme vulnerability over East Asia due to global warming
  publication-title: Climatic Change
– volume: 463
  start-page: 747
  year: 2010
  end-page: 756
  ident: CR37
  article-title: The next generation of scenarios for climate change research and assessment
  publication-title: Nature
– year: 2000
  ident: CR39
  publication-title: Special Reporton Emissions Scenarios: A Special Report of Working Group III of the Intergovernmental Panel on Climate Change
– volume: 30
  start-page: 6225
  year: 2017
  end-page: 6246
  ident: CR25
  article-title: Uncertainties in future projections of summer droughts and heat waves over the contiguous United States
  publication-title: J. Climate
– volume: 11
  start-page: 491
  year: 2020
  end-page: 508
  ident: CR34
  article-title: Partitioning climate projection uncertainty with multiple large ensembles and CMIP5/6
  publication-title: Earth Syst. Dyn.
– volume: 2
  start-page: 775
  year: 2012
  end-page: 779
  ident: CR16
  article-title: Communication of the role of natural variability in future North American climate
  publication-title: Nat. Climate Change
– volume: 407
  start-page: 617
  year: 2000
  end-page: 620
  ident: CR2
  article-title: Quantifying the uncertainty in forecasts of anthropogenic climate change
  publication-title: Nature
– volume: 93
  start-page: 485
  year: 2012
  end-page: 498
  ident: CR47
  article-title: An overview of CMIP5 and the experiment design
  publication-title: Bull. Amer. Meteor. Soc.
– volume: 23
  start-page: 4881
  year: 2010
  end-page: 4900
  ident: CR12
  article-title: Changes in precipitation extremes in the Hawaiian Islands in a warming climate
  publication-title: J. Climate
– volume: 44
  start-page: 105
  year: 2020
  end-page: 121
  ident: CR35
  article-title: A comparison of three methods for estimating internal variability of near-surface air temperature
  publication-title: Chinese J. Atmos. Sci.
– volume: 2
  start-page: 816
  year: 1989
  end-page: 831
  ident: CR18
  article-title: Land surface hydrology parameterization for atmospheric general circulation models including subgrid scale spatial variability
  publication-title: J. Climate
– volume: 16
  start-page: 4343
  year: 2012
  end-page: 4360
  ident: CR17
  article-title: Quantifying different sources of uncertainty in hydrological projections in an Alpine watershed
  publication-title: Hydrol. Earth Syst. Sci.
– volume: 3
  start-page: 1033
  year: 2013
  end-page: 1038
  ident: CR22
  article-title: Robust spatially aggregated projections of climate extremes
  publication-title: Nat. Climate Change
– volume: 13
  start-page: 205
  year: 2010
  end-page: 217
  ident: CR54
  article-title: Sources of uncertainty in the extreme value statistics of climate data
  publication-title: Extremes
– volume: 6
  start-page: eaaz9549
  year: 2020
  ident: CR48
  article-title: Past warming trend constrains future warming in CMIP6 models
  publication-title: Sci. Adv.
– volume: 8
  start-page: 10,539
  year: 2015
  end-page: 10,583
  ident: CR20
  article-title: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organisation
  publication-title: Geosci. Model Dev. Discuss.
– volume: 27
  start-page: 6779
  year: 2014
  end-page: 6798
  ident: CR27
  article-title: Partitioning internal variability and model uncertainty components in a multimember multimodel ensemble of climate projections
  publication-title: J. Climate
– volume: 4
  start-page: 95
  year: 2013
  end-page: 108
  ident: CR5
  article-title: Scenario and modelling uncertainty in global mean temperature change derived from emission-driven global climate models
  publication-title: Earth Syst. Dyn.
– volume: 26
  start-page: 8709
  year: 2013
  ident: 1012_CR31
  publication-title: J. Climate
  doi: 10.1175/JCLI-D-12-00567.1
– volume: 407
  start-page: 617
  year: 2000
  ident: 1012_CR2
  publication-title: Nature
  doi: 10.1038/35036559
– volume: 3
  start-page: 1033
  year: 2013
  ident: 1012_CR22
  publication-title: Nat. Climate Change
  doi: 10.1038/nclimate2051
– volume: 21
  start-page: 2651
  year: 2008
  ident: 1012_CR32
  publication-title: J. Climate
  doi: 10.1175/2007JCLI2119.1
– volume: 19
  start-page: 609
  year: 2018
  ident: 1012_CR58
  publication-title: J. Hydrometeorol.
  doi: 10.1175/JHM-D-17-0180.1
– volume: 11
  start-page: 491
  year: 2020
  ident: 1012_CR34
  publication-title: Earth Syst. Dyn.
  doi: 10.5194/esd-11-491-2020
– volume: 40
  start-page: 697
  year: 2020
  ident: 1012_CR63
  publication-title: J. Meteor. Sci.
– volume: 2
  start-page: 775
  year: 2012
  ident: 1012_CR16
  publication-title: Nat. Climate Change
  doi: 10.1038/nclimate1562
– volume: 10
  start-page: 181
  year: 1994
  ident: 1012_CR43
  publication-title: Climate Dyn.
  doi: 10.1007/BF00208987
– volume: 37
  start-page: 407
  year: 2011
  ident: 1012_CR24
  publication-title: Climate Dyn.
  doi: 10.1007/s00382-010-0810-6
– volume: 26
  start-page: 7541
  year: 2013
  ident: 1012_CR30
  publication-title: J. Climate
  doi: 10.1175/JCLI-D-12-00788.1
– volume: 113
  start-page: 301
  year: 2012
  ident: 1012_CR33
  publication-title: Climatic Change
  doi: 10.1007/s10584-011-0345-9
– volume: 32
  start-page: 2423
  year: 2019
  ident: 1012_CR19
  publication-title: J. Climate
  doi: 10.1175/JCLI-D-18-0606.1
– volume: 109
  start-page: 5
  year: 2011
  ident: 1012_CR51
  publication-title: Climatic Change
  doi: 10.1007/s10584-011-0148-z
– volume: 47
  start-page: e2019GL085782
  year: 2020
  ident: 1012_CR61
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2019GL085782
– volume: 44
  start-page: 1789
  year: 2015
  ident: 1012_CR50
  publication-title: Climate Dyn.
  doi: 10.1007/s00382-014-2312-4
– volume-title: An Efficient Thermal Infrared Radiation Parameterization for Use in General Circulation Models
  year: 1994
  ident: 1012_CR11
– volume: 23
  start-page: 4881
  year: 2010
  ident: 1012_CR12
  publication-title: J. Climate
  doi: 10.1175/2010JCLI3484.1
– volume: 121
  start-page: 130
  year: 2016
  ident: 1012_CR3
  publication-title: J. Geophys. Res. Atmos.
  doi: 10.1002/2015JD023656
– volume: 38
  start-page: 527
  year: 2012
  ident: 1012_CR15
  publication-title: Climate Dyn.
  doi: 10.1007/s00382-010-0977-x
– volume: 8
  start-page: 10,539
  year: 2015
  ident: 1012_CR20
  publication-title: Geosci. Model Dev. Discuss.
  doi: 10.5194/gmdd-8-10539-2015
– volume: 42
  start-page: 169
  year: 2017
  ident: 1012_CR41
  publication-title: Glob. Environ. Change
  doi: 10.1016/j.gloenvcha.2015.01.004
– volume: 47
  start-page: 3359
  year: 2016
  ident: 1012_CR9
  publication-title: Climate Dyn.
  doi: 10.1007/s00382-016-3030-x
– volume: 40
  start-page: 6423
  year: 2020
  ident: 1012_CR56
  publication-title: Int. J. Climatol.
  doi: 10.1002/joc.6590
– volume: 109
  start-page: 213
  year: 2011
  ident: 1012_CR36
  publication-title: Climatic Change
  doi: 10.1007/s10584-011-0156-z
– volume: 30
  start-page: 9555
  year: 2017
  ident: 1012_CR42
  publication-title: J. Climate
  doi: 10.1175/JCLI-D-16-0428.1
– volume: 47
  start-page: e2019GL086902
  year: 2020
  ident: 1012_CR10
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2019GL086902
– volume: 598
  start-page: 125760
  year: 2020
  ident: 1012_CR59
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2020.125760
– volume: 101
  start-page: 12,791
  year: 1996
  ident: 1012_CR8
  publication-title: J. Geophys. Res. Atmos.
  doi: 10.1029/96JD00822
– volume: 317
  start-page: 207
  year: 2007
  ident: 1012_CR14
  publication-title: Science
  doi: 10.1126/science.1145956
– volume-title: Special Reporton Emissions Scenarios: A Special Report of Working Group III of the Intergovernmental Panel on Climate Change
  year: 2000
  ident: 1012_CR39
– volume: 12
  start-page: 325
  year: 1996
  ident: 1012_CR44
  publication-title: Climate Dyn.
  doi: 10.1007/BF00231106
– volume: 97
  start-page: 2717
  year: 1992
  ident: 1012_CR55
  publication-title: J. Geophys. Res. Atmos.
  doi: 10.1029/91JD01786
– volume: 416
  start-page: 723
  year: 2002
  ident: 1012_CR46
  publication-title: Nature
  doi: 10.1038/416723a
– volume: 365
  start-page: 2145
  year: 2007
  ident: 1012_CR45
  publication-title: Philos. Trans. R. Soc. Lond. A: Math., Phys. Eng. Sci.
  doi: 10.1098/rsta.2007.2074
– volume: 13
  start-page: 205
  year: 2010
  ident: 1012_CR54
  publication-title: Extremes
  doi: 10.1007/s10687-010-0105-7
– volume: 22
  start-page: 3739
  year: 2018
  ident: 1012_CR52
  publication-title: Hydrol. Earth Syst. Sci.
  doi: 10.5194/hess-22-3739-2018
– volume: 24
  start-page: 4634
  year: 2011
  ident: 1012_CR60
  publication-title: J. Climate
  doi: 10.1175/2011JCLI4085.1
– volume: 30
  start-page: 6225
  year: 2017
  ident: 1012_CR25
  publication-title: J. Climate
  doi: 10.1175/JCLI-D-16-0491.1
– volume: 44
  start-page: 105
  year: 2020
  ident: 1012_CR35
  publication-title: Chinese J. Atmos. Sci.
  doi: 10.3878/j.issn.1006-9895.1901.18235
– volume: 27
  start-page: 6779
  year: 2014
  ident: 1012_CR27
  publication-title: J. Climate
  doi: 10.1175/JCLI-D-13-00629.1
– volume: 39
  start-page: 1853
  year: 2019
  ident: 1012_CR65
  publication-title: Int. J. Climatol.
  doi: 10.1002/joc.5920
– volume: 89
  start-page: 371
  year: 2008
  ident: 1012_CR6
  publication-title: Climatic Change
  doi: 10.1007/s10584-007-9388-3
– volume: 41
  start-page: 1039
  year: 2013
  ident: 1012_CR4
  publication-title: Climate Dyn.
  doi: 10.1007/s00382-012-1489-7
– volume: 20
  start-page: 865
  year: 2003
  ident: 1012_CR13
  publication-title: Climate Dyn.
  doi: 10.1007/s00382-003-0310-z
– volume-title: Climate Change 2007: The Physical Science Basis: Working Group I Contribution to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change
  year: 2007
  ident: 1012_CR28
– volume: 90
  start-page: 1095
  year: 2009
  ident: 1012_CR23
  publication-title: Bull. Amer. Meteor. Soc.
  doi: 10.1175/2009BAMS2607.1
– volume: 463
  start-page: 747
  year: 2010
  ident: 1012_CR37
  publication-title: Nature
  doi: 10.1038/nature08823
– volume: 93
  start-page: 485
  year: 2012
  ident: 1012_CR47
  publication-title: Bull. Amer. Meteor. Soc.
  doi: 10.1175/BAMS-D-11-00094.1
– volume: 4
  start-page: 240
  year: 2016
  ident: 1012_CR21
  publication-title: Earth’s Future
  doi: 10.1002/2015EF000336
– volume: 23
  start-page: 4788
  year: 2017
  ident: 1012_CR40
  publication-title: Glob. Change Biol.
  doi: 10.1111/gcb.13724
– volume: 6
  start-page: eaaz9549
  year: 2020
  ident: 1012_CR48
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aaz9549
– volume: 49
  start-page: 421
  year: 2018
  ident: 1012_CR64
  publication-title: Hydrol. Res.
  doi: 10.2166/nh.2018.059
– volume: 16
  start-page: 4343
  year: 2012
  ident: 1012_CR17
  publication-title: Hydrol. Earth Syst. Sci.
  doi: 10.5194/hess-16-4343-2012
– volume-title: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change
  year: 2013
  ident: 1012_CR29
– volume: 21
  start-page: 434
  year: 2020
  ident: 1012_CR26
  publication-title: Climate Policy
  doi: 10.1080/14693062.2020.1852068
– volume: 226
  start-page: 122
  year: 2019
  ident: 1012_CR57
  publication-title: Atmos. Res.
  doi: 10.1016/j.atmosres.2019.04.018
– volume: 2
  start-page: 816
  year: 1989
  ident: 1012_CR18
  publication-title: J. Climate
  doi: 10.1175/1520-0442(1989)002<0816:LSHPFA>2.0.CO;2
– volume: 95
  start-page: 16,601
  year: 1990
  ident: 1012_CR7
  publication-title: J. Geophys. Res. Atmos.
  doi: 10.1029/JD095iD10p16601
– volume: 115
  start-page: 283
  year: 2012
  ident: 1012_CR49
  publication-title: Climatic Change
  doi: 10.1007/s10584-012-0441-5
– volume: 47
  start-page: e2020GL088415
  year: 2020
  ident: 1012_CR62
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2020GL088415
– volume: 8
  start-page: e2020EF001602
  year: 2020
  ident: 1012_CR53
  publication-title: Earth’s Future
  doi: 10.1029/2020EF001602
– volume: 110
  start-page: D23107
  year: 2005
  ident: 1012_CR1
  publication-title: J. Geophys. Res. Atmos.
  doi: 10.1029/2005JD006119
– volume: 4
  start-page: 95
  year: 2013
  ident: 1012_CR5
  publication-title: Earth Syst. Dyn.
  doi: 10.5194/esd-4-95-2013
– volume: 116
  start-page: 155
  year: 2014
  ident: 1012_CR38
  publication-title: Theor. Appl. Climatol.
  doi: 10.1007/s00704-013-0934-9
SSID ssj0002925722
ssib060478651
Score 2.4521513
Snippet Climate projections by global climate models (GCMs) are subject to considerable and multi-source uncertainties. This study aims to compare the uncertainty in...
SourceID wanfang
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 646
SubjectTerms Atmospheric Protection/Air Quality Control/Air Pollution
Atmospheric Sciences
Earth and Environmental Science
Earth Sciences
Geophysics and Environmental Physics
Meteorology
Original Paper
Title Uncertainty in Projection of Climate Extremes: A Comparison of CMIP5 and CMIP6
URI https://link.springer.com/article/10.1007/s13351-021-1012-3
https://d.wanfangdata.com.cn/periodical/qxxb-e202104008
Volume 35
WOSCitedRecordID wos000695144600008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 2198-0934
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002925722
  issn: 2095-6037
  databaseCode: RSV
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1dS8MwMOj0wRc_UHF-kQeflMBM0ib1bYwNBR1DneytNB-VgXS6Vpn_3kvabgoy0LdSLmm5u-S-7xA6kzwJjeGSsCQVxI3XJoqHKaEmNJdGWJka32f2VvT7cjSKBlUdd15nu9chSX9TL4rdGAvA9KUuBct12ltFayDtpJvXcP_wNHes0Ai40EcPKKgPJGwxUUczf9vlpzyqv-xLeLI0yZ6_SZve1r_-cxttVsolbpfcsINWbLaL-kOgq4_7F594nOFB6XsBeuBJijsvY9BZLe7OCucpzK9wG3fmswk9xN3NIMBJZvxTuIeGve5j55pUUxSIZkFUEJ22pEoCo2ygRMtoJgIKVgIogpoZppSmwvDIApqETkF6uwZklitrbWjgNWf7qJFNMnuAcGQjmTAJWo1V3EolpVFGAhzofVwntolaNS5jXbUYd5MuXuJFc2SHnBiQ43LLaMya6Hy-5LXsr7EM-KJGeVwdtXwZNK5ouAB-m81UbKkzdOHykod_2vAIbbiVZfrfMWoU03d7gtb1RzHOp6eeC78A0MfTtA
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF60CnrxgYr1uQdPykLMbpKNt1JaKrahaCu9hewjUiipNlHqv3c2j1ZBCnoLYbIJM5udb2dmv0HoirPIVYpxQqPYI6a9NhHMjYmtXHWrPM1jlfPMdr0g4KOR3y_PcadVtXuVksxX6uVhN0od2PrapgTLMO2tow0GDssQ5j8-PS8CK7YPszDPHtgAH4hrUa_KZv42yk9_VL05P8KTxFHy8s3btHf_9Z17aKcEl7hRzIZ9tKaTAxQMwa553j_7xOME94vYC9gDT2PcnIwBs2rcmmcmUpje4QZuLnoT5hK9-76Do0TlV-4hGrZbg2aHlF0UiKSOnxEZW1xEjhLaEZ6lJPUcG3YJAAQlVVQIaXuK-RrU5MkYvLchINNMaK1dBbcZPUK1ZJroY4R97fOIckA1WjDNBedKKA5ygPuYjHQdWZUuQ1lSjJtOF5NwSY5slBOCckxtmR3SOrpePPJa8GusEr6pVB6Wv1q6ShqXNlwKv83nItS22ejC4sVP_jTgJdrqDHrdsHsfPJyibTNKUQp4hmrZ7F2fo035kY3T2UU-I78AxnbWmA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwEA86RXzxAxXnZx58UsJmkrapb2NuOJyloJO9leajMhjZXKvM_96kH5uCCOJbKZcQ7q7N75K73wFwwWjsSkkZInHiIdteG3HqJghLV15LT7FE5jyzfS8I2HDoh2Wf07TKdq-uJIuaBsvSpLPGVCaNZeEbIY4Jg7FNx7Kse6tgjdo8ehuuPz4vDlmwbzwyv0nABkogt0m86mbzp1m-703VKvJyHp3E-uXLztPd_vead8BWCTphq_CSXbCi9B4IBsbeeT5A9gFHGobFmYyxE5wksD0eGSyrYGee2RPE9Aa2YHvRszCXeOiFDoy1zJ_cfTDodp7ad6jsroAEcfwMiaTJeOxIrhzuNaUgnoNN9GAAoiCScC6wJ6mvjMo8kZhd3RKTKcqVUq40ryk5ADU90eoQQF_5LCbMoB3FqWKcMcklM3IGD1IRqzpoVnqNREk9bjtgjKMlabJVTmSUY3POcETq4HIxZFrwbvwmfFWpPyo_wfQ3aVjacyn8Op_zSGEbAJufGjv604TnYCO87Ub9XnB_DDbtJEWG4AmoZbM3dQrWxXs2SmdnuXN-Am6x33w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Uncertainty+in+Projection+of+Climate+Extremes%3A+A+Comparison+of+CMIP5+and+CMIP6&rft.jtitle=Journal+of+Meteorological+Research&rft.au=Zhang%2C+Shaobo&rft.au=Chen%2C+Jie&rft.date=2021-08-01&rft.issn=2095-6037&rft.eissn=2198-0934&rft.volume=35&rft.issue=4&rft.spage=646&rft.epage=662&rft_id=info:doi/10.1007%2Fs13351-021-1012-3&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s13351_021_1012_3
thumbnail_s http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fqxxb-e%2Fqxxb-e.jpg