Uncertainty in Projection of Climate Extremes: A Comparison of CMIP5 and CMIP6
Climate projections by global climate models (GCMs) are subject to considerable and multi-source uncertainties. This study aims to compare the uncertainty in projection of precipitation and temperature extremes between Coupled Model Intercomparison Project (CMIP) phase 5 (CMIP5) and phase 6 (CMIP6),...
Saved in:
| Published in: | Journal of Meteorological Research Vol. 35; no. 4; pp. 646 - 662 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Beijing
The Chinese Meteorological Society
01.08.2021
State Key Laboratory of Water Resources&Hydropower Engineering Science,Wuhan University,299 Bayi Road,Wuchang District,Wuhan 430072 Hubei Provincial Key Lab of Water System Science for Sponge City Construction,Wuhan University,Wuhan 430072 |
| Subjects: | |
| ISSN: | 2095-6037, 2198-0934 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Climate projections by global climate models (GCMs) are subject to considerable and multi-source uncertainties. This study aims to compare the uncertainty in projection of precipitation and temperature extremes between Coupled Model Intercomparison Project (CMIP) phase 5 (CMIP5) and phase 6 (CMIP6), using 24 GCMs forced by 3 emission scenarios in each phase of CMIP. In this study, the total uncertainty (
T
) of climate projections is decomposed into the greenhouse gas emission scenario uncertainty (
S
, mean inter-scenario variance of the signals over all the models), GCM uncertainty (
M
, mean inter-model variance of signals over all emission scenarios), and internal climate variability uncertainty (
V
, variance in noises over all models, emission scenarios, and projection lead times); namely,
T
=
S
+
M
+
V
. The results of analysis demonstrate that the magnitudes of
S, M
, and
T
present similarly increasing trends over the 21st century. The magnitudes of
S, M, V
, and
T
in CMIP6 are 0.94–0.96, 1.38–2.07, 1.04–1.69, and 1.20–1.93 times as high as those in CMIP5. Both CMIP5 and CMIP6 exhibit similar spatial variation patterns of uncertainties and similar ranks of contributions from different sources of uncertainties. The uncertainty for precipitation is lower in midlatitudes and parts of the equatorial region, but higher in low latitudes and the polar region. The uncertainty for temperature is higher over land areas than oceans, and higher in the Northern Hemisphere than the Southern Hemisphere. For precipitation,
T
is mainly determined by
M
and
V
in the early 21st century, by
M
and
S
at the end of the 21st century; and the turning point will appear in the 2070s. For temperature,
T
is dominated by
M
in the early 21st century, and by
S
at the end of the 21st century, with the turning point occuring in the 2060s. The relative contributions of
S
to
T
in CMIP6 (12.5%–14.3% for precipitation and 31.6%–36.2% for temperature) are lower than those in CMIP5 (15.1%–17.5% for precipitation and 38.6%–43.8% for temperature). By contrast, the relative contributions of
M
in CMIP6 (50.6%–59.8% for precipitation and 59.4%–60.3% for temperature) are higher than those in CMIP5 (47.5%–57.9% for precipitation and 51.7%–53.6% for temperature). The higher magnitude and relative contributions of
M
in CMIP6 indicate larger difference among projections of various GCMs. Therefore, more GCMs are needed to ensure the robustness of climate projections. |
|---|---|
| AbstractList | Climate projections by global climate models (GCMs) are subject to considerable and multi-source uncertainties. This study aims to compare the uncertainty in projection of precipitation and temperature extremes between Coupled Model Intercomparison Project (CMIP) phase 5 (CMIP5) and phase 6 (CMIP6), using 24 GCMs forced by 3 emis-sion scenarios in each phase of CMIP. In this study, the total uncertainty (T) of climate projections is decomposed in-to the greenhouse gas emission scenario uncertainty (S, mean inter-scenario variance of the signals over all the mod-els), GCM uncertainty (M, mean inter-model variance of signals over all emission scenarios), and internal climate variability uncertainty (V, variance in noises over all models, emission scenarios, and projection lead times); namely, T = S + M + V. The results of analysis demonstrate that the magnitudes of S, M, and T present similarly increasing trends over the 21st century. The magnitudes of S, M, V, and T in CMIP6 are 0.94–0.96, 1.38–2.07, 1.04–1.69, and 1.20–1.93 times as high as those in CMIP5. Both CMIP5 and CMIP6 exhibit similar spatial variation patterns of un-certainties and similar ranks of contributions from different sources of uncertainties. The uncertainty for precipitation is lower in midlatitudes and parts of the equatorial region, but higher in low latitudes and the polar region. The uncer-tainty for temperature is higher over land areas than oceans, and higher in the Northern Hemisphere than the South-ern Hemisphere. For precipitation, T is mainly determined by M and V in the early 21st century, by M and S at the end of the 21st century; and the turning point will appear in the 2070s. For temperature, T is dominated by M in the early 21st century, and by S at the end of the 21st century, with the turning point occuring in the 2060s. The relative contributions of S to T in CMIP6 (12.5%–14.3% for precipitation and 31.6%–36.2% for temperature) are lower than those in CMIP5 (15.1%–17.5% for precipitation and 38.6%–43.8% for temperature). By contrast, the relative contri-butions of M in CMIP6 (50.6%–59.8% for precipitation and 59.4%–60.3% for temperature) are higher than those in CMIP5 (47.5%–57.9% for precipitation and 51.7%–53.6% for temperature). The higher magnitude and relative con-tributions of M in CMIP6 indicate larger difference among projections of various GCMs. Therefore, more GCMs are needed to ensure the robustness of climate projections. Climate projections by global climate models (GCMs) are subject to considerable and multi-source uncertainties. This study aims to compare the uncertainty in projection of precipitation and temperature extremes between Coupled Model Intercomparison Project (CMIP) phase 5 (CMIP5) and phase 6 (CMIP6), using 24 GCMs forced by 3 emission scenarios in each phase of CMIP. In this study, the total uncertainty ( T ) of climate projections is decomposed into the greenhouse gas emission scenario uncertainty ( S , mean inter-scenario variance of the signals over all the models), GCM uncertainty ( M , mean inter-model variance of signals over all emission scenarios), and internal climate variability uncertainty ( V , variance in noises over all models, emission scenarios, and projection lead times); namely, T = S + M + V . The results of analysis demonstrate that the magnitudes of S, M , and T present similarly increasing trends over the 21st century. The magnitudes of S, M, V , and T in CMIP6 are 0.94–0.96, 1.38–2.07, 1.04–1.69, and 1.20–1.93 times as high as those in CMIP5. Both CMIP5 and CMIP6 exhibit similar spatial variation patterns of uncertainties and similar ranks of contributions from different sources of uncertainties. The uncertainty for precipitation is lower in midlatitudes and parts of the equatorial region, but higher in low latitudes and the polar region. The uncertainty for temperature is higher over land areas than oceans, and higher in the Northern Hemisphere than the Southern Hemisphere. For precipitation, T is mainly determined by M and V in the early 21st century, by M and S at the end of the 21st century; and the turning point will appear in the 2070s. For temperature, T is dominated by M in the early 21st century, and by S at the end of the 21st century, with the turning point occuring in the 2060s. The relative contributions of S to T in CMIP6 (12.5%–14.3% for precipitation and 31.6%–36.2% for temperature) are lower than those in CMIP5 (15.1%–17.5% for precipitation and 38.6%–43.8% for temperature). By contrast, the relative contributions of M in CMIP6 (50.6%–59.8% for precipitation and 59.4%–60.3% for temperature) are higher than those in CMIP5 (47.5%–57.9% for precipitation and 51.7%–53.6% for temperature). The higher magnitude and relative contributions of M in CMIP6 indicate larger difference among projections of various GCMs. Therefore, more GCMs are needed to ensure the robustness of climate projections. |
| Author | Chen, Jie Zhang, Shaobo |
| AuthorAffiliation | State Key Laboratory of Water Resources&Hydropower Engineering Science,Wuhan University,299 Bayi Road,Wuchang District,Wuhan 430072;Hubei Provincial Key Lab of Water System Science for Sponge City Construction,Wuhan University,Wuhan 430072 |
| AuthorAffiliation_xml | – name: State Key Laboratory of Water Resources&Hydropower Engineering Science,Wuhan University,299 Bayi Road,Wuchang District,Wuhan 430072;Hubei Provincial Key Lab of Water System Science for Sponge City Construction,Wuhan University,Wuhan 430072 |
| Author_xml | – sequence: 1 givenname: Shaobo surname: Zhang fullname: Zhang, Shaobo organization: State Key Laboratory of Water Resources & Hydropower Engineering Science, Wuhan University, Hubei Provincial Key Lab of Water System Science for Sponge City Construction, Wuhan University – sequence: 2 givenname: Jie surname: Chen fullname: Chen, Jie email: jiechen@whu.edu.cn organization: State Key Laboratory of Water Resources & Hydropower Engineering Science, Wuhan University, Hubei Provincial Key Lab of Water System Science for Sponge City Construction, Wuhan University |
| BookMark | eNp9kE9LwzAYh4NMcM59AG-9eYq-SZqm8TbK1MHUHdw5pGk6OrZ0JhW3b29mB4Kgp7yE3_P-eS7RwLXOInRN4JYAiLtAGOMEAyWYAKGYnaEhJTLHIFk6iDVIjjNg4gKNQ1gDAJWUC0qH6GXpjPWdblx3SBqXLHy7tqZrWpe0dVJsmq3ubDLdd95ubbhPJknRbnfaN-GUeJ4teKJd9V1lV-i81ptgx6d3hJYP07fiCc9fH2fFZI4N47LDpoa81LwqLS8FVIYJTjPBCQfDKlaWhooqlTZuLExNci4llzYtrbVZFb9TNkI3fd9P7WrtVmrdfngXJ6r3_b5UlkYXkALkMSn6pPFtCN7WyjSdPh7Yed1sFAF1dKh6hypy6uhQsUiSX-TORx3-8C9DeybErFtZ_7PY39AXv36DVw |
| CitedBy_id | crossref_primary_10_1088_2515_7620_ad85c5 crossref_primary_10_3389_feart_2023_1102633 crossref_primary_10_1007_s13351_024_3059_4 crossref_primary_10_3724_j_1006_8775_2024_044 crossref_primary_10_1002_joc_70019 crossref_primary_10_1088_2752_5295_acc08a crossref_primary_10_1016_j_accre_2024_03_005 crossref_primary_10_1016_j_ecolind_2025_114150 crossref_primary_10_1016_j_jhydrol_2022_128646 crossref_primary_10_1371_journal_pone_0301759 crossref_primary_10_3390_atmos15030357 crossref_primary_10_3390_rs17081362 crossref_primary_10_1175_JHM_D_21_0158_1 crossref_primary_10_1002_joc_8543 crossref_primary_10_1002_met_2144 crossref_primary_10_2166_nh_2023_108 crossref_primary_10_1002_joc_7650 crossref_primary_10_1016_j_jhydrol_2022_128851 crossref_primary_10_3389_fclim_2022_980035 crossref_primary_10_3389_fenvs_2023_1127265 crossref_primary_10_1088_2515_7620_ae009b crossref_primary_10_3389_fenvs_2022_847475 crossref_primary_10_1007_s10584_025_03910_x crossref_primary_10_3390_fishes10070337 crossref_primary_10_3390_w16152082 crossref_primary_10_1016_j_scitotenv_2023_167136 crossref_primary_10_1029_2022EF002963 crossref_primary_10_1016_j_jhydrol_2025_133260 crossref_primary_10_1038_s41612_023_00372_9 crossref_primary_10_1002_joc_8677 crossref_primary_10_1175_JAMC_D_22_0022_1 crossref_primary_10_1139_cjfas_2025_0070 crossref_primary_10_3390_forecast6040055 crossref_primary_10_1016_j_scitotenv_2024_172350 crossref_primary_10_3389_fclim_2024_1344868 crossref_primary_10_1088_1748_9326_adae23 crossref_primary_10_3390_atmos13050799 crossref_primary_10_1007_s40333_024_0070_7 crossref_primary_10_1038_s41586_024_07887_y crossref_primary_10_1016_j_wace_2023_100573 crossref_primary_10_3390_w14182800 crossref_primary_10_1038_s41598_023_33856_y crossref_primary_10_2166_nh_2023_130 crossref_primary_10_1007_s00704_025_05564_2 crossref_primary_10_3389_feart_2021_751974 crossref_primary_10_1016_j_heliyon_2024_e29416 crossref_primary_10_1016_j_jenvman_2025_125378 crossref_primary_10_1029_2022EF003315 crossref_primary_10_1016_j_scitotenv_2022_153817 |
| Cites_doi | 10.1175/JCLI-D-12-00567.1 10.1038/35036559 10.1038/nclimate2051 10.1175/2007JCLI2119.1 10.1175/JHM-D-17-0180.1 10.5194/esd-11-491-2020 10.1038/nclimate1562 10.1007/BF00208987 10.1007/s00382-010-0810-6 10.1175/JCLI-D-12-00788.1 10.1007/s10584-011-0345-9 10.1175/JCLI-D-18-0606.1 10.1007/s10584-011-0148-z 10.1029/2019GL085782 10.1007/s00382-014-2312-4 10.1175/2010JCLI3484.1 10.1002/2015JD023656 10.1007/s00382-010-0977-x 10.5194/gmdd-8-10539-2015 10.1016/j.gloenvcha.2015.01.004 10.1007/s00382-016-3030-x 10.1002/joc.6590 10.1007/s10584-011-0156-z 10.1175/JCLI-D-16-0428.1 10.1029/2019GL086902 10.1016/j.jhydrol.2020.125760 10.1029/96JD00822 10.1126/science.1145956 10.1007/BF00231106 10.1029/91JD01786 10.1038/416723a 10.1098/rsta.2007.2074 10.1007/s10687-010-0105-7 10.5194/hess-22-3739-2018 10.1175/2011JCLI4085.1 10.1175/JCLI-D-16-0491.1 10.3878/j.issn.1006-9895.1901.18235 10.1175/JCLI-D-13-00629.1 10.1002/joc.5920 10.1007/s10584-007-9388-3 10.1007/s00382-012-1489-7 10.1007/s00382-003-0310-z 10.1175/2009BAMS2607.1 10.1038/nature08823 10.1175/BAMS-D-11-00094.1 10.1002/2015EF000336 10.1111/gcb.13724 10.1126/sciadv.aaz9549 10.2166/nh.2018.059 10.5194/hess-16-4343-2012 10.1080/14693062.2020.1852068 10.1016/j.atmosres.2019.04.018 10.1175/1520-0442(1989)002<0816:LSHPFA>2.0.CO;2 10.1029/JD095iD10p16601 10.1007/s10584-012-0441-5 10.1029/2020GL088415 10.1029/2020EF001602 10.1029/2005JD006119 10.5194/esd-4-95-2013 10.1007/s00704-013-0934-9 |
| ContentType | Journal Article |
| Copyright | The Chinese Meteorological Society and Springer-Verlag Berlin Heidelberg 2021 Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
| Copyright_xml | – notice: The Chinese Meteorological Society and Springer-Verlag Berlin Heidelberg 2021 – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
| DBID | AAYXX CITATION 2B. 4A8 92I 93N PSX TCJ |
| DOI | 10.1007/s13351-021-1012-3 |
| DatabaseName | CrossRef Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| EISSN | 2198-0934 |
| EndPage | 662 |
| ExternalDocumentID | qxxb_e202104008 10_1007_s13351_021_1012_3 |
| GrantInformation_xml | – fundername: (Supported by the National Key Research and Development Program of China); (National Natural Science Founda-tion of China); (and China 111 Project) funderid: (Supported by the National Key Research and Development Program of China); (National Natural Science Founda-tion of China); (and China 111 Project) |
| GroupedDBID | -01 -0A -EM -SA -S~ 06D 0R~ 2KG 2KM 4.4 406 5VR 5XA 5XB 92M 96X 9D9 9DA AAAVM AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAXDM AAYIU AAYQN AAYTO AAYZH AAZMS ABAKF ABDZT ABECU ABFTV ABJNI ABJOX ABKCH ABMQK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABXPI ACAOD ACDTI ACGFS ACHSB ACKNC ACMDZ ACMLO ACOKC ACPIV ACZOJ ADHIR ADINQ ADKNI ADRFC ADURQ ADYFF ADZKW AEBTG AEFQL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETCA AEVLU AEXYK AFBBN AFLOW AFQWF AFUIB AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF ANMIH AOCGG ARMRJ ASPBG AVWKF AXYYD BGNMA CAJEA CCEZO CCVFK CHBEP DDRTE DNIVK DPUIP EBLON EBS EDH EIOEI EJD ESBYG FA0 FERAY FIGPU FINBP FNLPD FRRFC FSGXE FYJPI GGCAI GGRSB GJIRD H13 IAO IEP IGS IKXTQ ITC IWAJR J-C JUIAU JZLTJ KOV L8X LLZTM M4Y NPVJJ NQJWS NU0 O9J OK1 PT4 Q-- Q-0 R-A RLLFE ROL RSV RT1 SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE T8Q TSG U1F U1G U5A U5K UG4 UOJIU UTJUX UZXMN VFIZW W48 ZMTXR ~LG AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA BANNL CITATION 2B. 4A8 92I 93N PSX TCJ |
| ID | FETCH-LOGICAL-c359t-cf08ba5dbe5b70dc3752675150c3d3bbc27d49e0377cf1859959e4beee6d9e043 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 57 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000695144600008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2095-6037 |
| IngestDate | Thu May 29 04:06:29 EDT 2025 Tue Nov 18 21:00:23 EST 2025 Sat Nov 29 02:09:58 EST 2025 Fri Feb 21 02:47:32 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | Coupled Model Intercomparison Project (CMIP) phase 5 (CMIP5) and phase 6 (CMIP6) uncertainty contribution climate projection uncertainty extreme precipitation and temperature |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c359t-cf08ba5dbe5b70dc3752675150c3d3bbc27d49e0377cf1859959e4beee6d9e043 |
| PageCount | 17 |
| ParticipantIDs | wanfang_journals_qxxb_e202104008 crossref_citationtrail_10_1007_s13351_021_1012_3 crossref_primary_10_1007_s13351_021_1012_3 springer_journals_10_1007_s13351_021_1012_3 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-08-01 |
| PublicationDateYYYYMMDD | 2021-08-01 |
| PublicationDate_xml | – month: 08 year: 2021 text: 2021-08-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Beijing |
| PublicationPlace_xml | – name: Beijing |
| PublicationTitle | Journal of Meteorological Research |
| PublicationTitleAbbrev | J Meteorol Res |
| PublicationTitle_FL | Journal of Meteorological Research(JMR) |
| PublicationYear | 2021 |
| Publisher | The Chinese Meteorological Society State Key Laboratory of Water Resources&Hydropower Engineering Science,Wuhan University,299 Bayi Road,Wuchang District,Wuhan 430072 Hubei Provincial Key Lab of Water System Science for Sponge City Construction,Wuhan University,Wuhan 430072 |
| Publisher_xml | – name: The Chinese Meteorological Society – name: State Key Laboratory of Water Resources&Hydropower Engineering Science,Wuhan University,299 Bayi Road,Wuchang District,Wuhan 430072 – name: Hubei Provincial Key Lab of Water System Science for Sponge City Construction,Wuhan University,Wuhan 430072 |
| References | Nakicenovic, Alcamo, Grubler (CR39) 2000 Slingo, Sperber, Boyle (CR44) 1996; 12 Chu, Chen, Schroeder (CR12) 2010; 23 Yao, Chen, Chen (CR59) 2020; 598 Cess, Potter, Blanchet (CR7) 1990; 95 Wang, Chen, Cannon (CR52) 2018; 22 Cox, Stephenson (CR14) 2007; 317 Wood, Lettenmaier, Zartarian (CR55) 1992; 97 Evin, Hingray, Blanchet (CR19) 2019; 32 van Pelt, Beersma, Buishand (CR50) 2015; 44 Entekhabi, Eagleson (CR18) 1989; 2 Wehner (CR54) 2010; 13 Schneider, Kinter (CR43) 1994; 10 Tokarska, Stolpe, Sippel (CR48) 2020; 6 Lu, Zhou, Huang (CR35) 2020; 44 Moss, Edmonds, Hibbard (CR37) 2010; 463 Zhuan, Chen, Xu (CR65) 2019; 39 Wang, Chen, Xu (CR53) 2020; 8 O’Neill, Kriegler, Ebi (CR41) 2017; 42 Olonscheck, Notz (CR42) 2017; 30 (CR28) 2007 Taylor, Stouffer, Meehl (CR47) 2012; 93 Yang, Wood, Sheffield (CR58) 2018; 19 Brekke, Dettinger, Maurer (CR6) 2008; 89 Herrera-Estrada, Sheffield (CR25) 2017; 30 Knutson, Zeng, Wittenberg (CR31) 2013; 26 Cess, Zhang, Ingram (CR8) 1996; 101 Zhou, Zhang, Chen (CR63) 2020; 40 Chen, Zhou, Zhang (CR10) 2020; 47 Hawkins, Sutton (CR24) 2011; 37 Chou, Suarez (CR11) 1994 Fischer, Beyerle, Knutti (CR22) 2013; 3 Aguilar, Peterson, Obando (CR1) 2005; 110 Hewitt, Cremades, Kovalevsky (CR26) 2020; 21 Knutti, Allen, Friedlingstein (CR32) 2008; 21 Chen, Brissette, Lucas-Picher (CR9) 2016; 47 Kang, Deser, Polvani (CR30) 2013; 26 Deser, Phillips, Bourdette (CR15) 2012; 38 Hawkins, Sutton (CR23) 2009; 90 Aloysius, Sheffield, Saiers (CR3) 2016; 121 Yip, Ferro, Stephenson (CR60) 2011; 24 Xu, Xu, Ju (CR57) 2019; 226 Dobler, Hagemann, Wilby (CR17) 2012; 16 Neumann, Mues, Moreno (CR40) 2017; 23 Hingray, Saïd (CR27) 2014; 27 Allen, Stott, Mitchell (CR2) 2000; 407 van Vuuren, Edmonds, Kainuma (CR51) 2011; 109 Booth, Bernie, McNeall (CR5) 2013; 4 Meinshausen, Smith, Calvin (CR36) 2011; 109 Colman (CR13) 2003; 20 Zhuan, Chen, Shen (CR64) 2018; 49 Fatichi, Ivanov, Paschalis (CR21) 2016; 4 Zhou, Lu, Zhang (CR62) 2020; 47 Eyring, Bony, Meehl (CR20) 2015; 8 Stott, Kettleborough (CR46) 2002; 416 Deser, Knutti, Solomon (CR16) 2012; 2 Xin, Wu, Zhang (CR56) 2020; 40 Trenberth (CR49) 2012; 115 Blázquez, Nuñez (CR4) 2013; 41 Lee, Ho, Kim (CR33) 2012; 113 Nakaegawa, Kitoh, Murakami (CR38) 2014; 116 Stainforth, Allen, Tredger (CR45) 2007; 365 Zelinka, Myers, McCoy (CR61) 2020; 47 Lehner, Deser, Maher (CR34) 2020; 11 (CR29) 2013 N Nakicenovic (1012_CR39) 2000 B B B Booth (1012_CR5) 2013; 4 M-J Zhuan (1012_CR64) 2018; 49 M R Allen (1012_CR2) 2000; 407 E Hawkins (1012_CR23) 2009; 90 M Wehner (1012_CR54) 2010; 13 D A Stainforth (1012_CR45) 2007; 365 D Olonscheck (1012_CR42) 2017; 30 J M Slingo (1012_CR44) 1996; 12 S Yip (1012_CR60) 2011; 24 R Colman (1012_CR13) 2003; 20 P Cox (1012_CR14) 2007; 317 K E Trenberth (1012_CR49) 2012; 115 X G Xin (1012_CR56) 2020; 40 H-M Wang (1012_CR52) 2018; 22 R D Cess (1012_CR7) 1990; 95 D P van Vuuren (1012_CR51) 2011; 109 B Hingray (1012_CR27) 2014; 27 J Blázquez (1012_CR4) 2013; 41 T R Knutson (1012_CR31) 2013; 26 S C van Pelt (1012_CR50) 2015; 44 T J Zhou (1012_CR62) 2020; 47 V Eyring (1012_CR20) 2015; 8 E F Wood (1012_CR55) 1992; 97 S M Kang (1012_CR30) 2013; 26 D Entekhabi (1012_CR18) 1989; 2 Z M Chen (1012_CR10) 2020; 47 R J Hewitt (1012_CR26) 2020; 21 M-D Chou (1012_CR11) 1994 E Hawkins (1012_CR24) 2011; 37 G Evin (1012_CR19) 2019; 32 S Fatichi (1012_CR21) 2016; 4 K B Tokarska (1012_CR48) 2020; 6 C Deser (1012_CR15) 2012; 38 R D Cess (1012_CR8) 1996; 101 IPCC (1012_CR28) 2007 R H Moss (1012_CR37) 2010; 463 L D Brekke (1012_CR6) 2008; 89 B C O’Neill (1012_CR41) 2017; 42 E M Fischer (1012_CR22) 2013; 3 T J Zhou (1012_CR63) 2020; 40 H-M Wang (1012_CR53) 2020; 8 M J Zhuan (1012_CR65) 2019; 39 P-S Chu (1012_CR12) 2010; 23 T Nakaegawa (1012_CR38) 2014; 116 E K Schneider (1012_CR43) 1994; 10 J Chen (1012_CR9) 2016; 47 F Lehner (1012_CR34) 2020; 11 J Q Yao (1012_CR59) 2020; 598 R Knutti (1012_CR32) 2008; 21 X Yang (1012_CR58) 2018; 19 C Deser (1012_CR16) 2012; 2 E Aguilar (1012_CR1) 2005; 110 K Xu (1012_CR57) 2019; 226 N R Aloysius (1012_CR3) 2016; 121 K E Taylor (1012_CR47) 2012; 93 M-H Lee (1012_CR33) 2012; 113 M Neumann (1012_CR40) 2017; 23 IPCC (1012_CR29) 2013 M Meinshausen (1012_CR36) 2011; 109 P A Stott (1012_CR46) 2002; 416 C Dobler (1012_CR17) 2012; 16 M D Zelinka (1012_CR61) 2020; 47 J W Lu (1012_CR35) 2020; 44 J E Herrera-Estrada (1012_CR25) 2017; 30 |
| References_xml | – volume: 116 start-page: 155 year: 2014 end-page: 168 ident: CR38 article-title: Annual maximum 5-day rainfall total and maximum number of consecutive dry days over Central America and the Caribbean in the late twenty-first century projected by an atmospheric general circulation model with three different horizontal resolutions publication-title: Theor. Appl. Climatol. – volume: 97 start-page: 2717 year: 1992 end-page: 2728 ident: CR55 article-title: A land-surface hydrology parameterization with subgrid variability for general circulation models publication-title: J. Geophys. Res. Atmos. – volume: 21 start-page: 2651 year: 2008 end-page: 2663 ident: CR32 article-title: A review of uncertainties in global temperature projections over the twenty-first century publication-title: J. Climate – volume: 47 start-page: e2019GL086902 year: 2020 ident: CR10 article-title: Global land monsoon precipitation changes in CMIP6 projections publication-title: Geophys. Res. Lett. – volume: 10 start-page: 181 year: 1994 end-page: 204 ident: CR43 article-title: An examination of internally generated variability in long climate simulations publication-title: Climate Dyn. – volume: 12 start-page: 325 year: 1996 end-page: 357 ident: CR44 article-title: Intraseasonal oscillations in 15 atmospheric general circulation models: results from an AMIP diagnostic subproject publication-title: Climate Dyn. – volume: 598 start-page: 125760 year: 2020 ident: CR59 article-title: Intensification of extreme precipitation in arid Central Asia publication-title: J. Hydrol. – volume: 40 start-page: 697 year: 2020 end-page: 710 ident: CR63 article-title: The near-term, mid-term and long-term projections of temperature and precipitation changes over the Tibetan Plateau and the sources of uncertainties publication-title: J. Meteor. Sci. – volume: 32 start-page: 2423 year: 2019 end-page: 2440 ident: CR19 article-title: Partitioning uncertainty components of an incomplete ensemble of climate projections using data augmentation publication-title: J. Climate – volume: 416 start-page: 723 year: 2002 end-page: 726 ident: CR46 article-title: Origins and estimates of uncertainty in predictions of twenty-first century temperature rise publication-title: Nature – volume: 20 start-page: 865 year: 2003 end-page: 873 ident: CR13 article-title: A comparison of climate feedbacks in general circulation models publication-title: Climate Dyn. – volume: 109 start-page: 213 year: 2011 ident: CR36 article-title: The RCP greenhouse gas concentrations and their extensions from 1765 to 2300 publication-title: Climatic Change – volume: 19 start-page: 609 year: 2018 end-page: 623 ident: CR58 article-title: Bias correction of historical and future simulations of precipitation and temperature for China from CMIP5 models publication-title: J. Hydrometeorol. – volume: 365 start-page: 2145 year: 2007 end-page: 2161 ident: CR45 article-title: Confidence, uncertainty and decision-support relevance in climate predictions publication-title: Philos. Trans. R. Soc. Lond. A: Math., Phys. Eng. Sci. – year: 2007 ident: CR28 publication-title: Climate Change 2007: The Physical Science Basis: Working Group I Contribution to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change – volume: 44 start-page: 1789 year: 2015 end-page: 1800 ident: CR50 article-title: Uncertainty in the future change of extreme precipitation over the Rhine basin: the role of internal climate variability publication-title: Climate Dyn. – volume: 26 start-page: 7541 year: 2013 end-page: 7554 ident: CR30 article-title: Uncertainty in climate change projections of the Hadley circulation: The role of internal variability publication-title: J. Climate – volume: 49 start-page: 421 year: 2018 end-page: 437 ident: CR64 article-title: Timing of human-induced climate change emergence from internal climate variability for hydrological impact studies publication-title: Hydrol. Res. – volume: 121 start-page: 130 year: 2016 end-page: 152 ident: CR3 article-title: Evaluation of historical and future simulations of precipitation and temperature in central Africa from CMIP5 climate models publication-title: J. Geophys. Res. Atmos. – volume: 23 start-page: 4788 year: 2017 end-page: 4797 ident: CR40 article-title: Climate variability drives recent tree mortality in Europe publication-title: Glob. Change Biol. – volume: 26 start-page: 8709 year: 2013 end-page: 8743 ident: CR31 article-title: Multimodel assessment of regional surface temperature trends: CMIP3 and CMIP5 twentieth-century simulations publication-title: J. Climate – volume: 109 start-page: 5 year: 2011 ident: CR51 article-title: The representative concentration pathways: an overview publication-title: Climatic Change – volume: 39 start-page: 1853 year: 2019 end-page: 1871 ident: CR65 article-title: A method for investigating the relative importance of three components in overall uncertainty of climate projections publication-title: Int. J. Climatol. – volume: 47 start-page: 3359 year: 2016 end-page: 3372 ident: CR9 article-title: Transferability of optimally-selected climate models in the quantification of climate change impacts on hydrology publication-title: Climate Dyn. – volume: 37 start-page: 407 year: 2011 end-page: 418 ident: CR24 article-title: The potential to narrow uncertainty in projections of regional precipitation change publication-title: Climate Dyn. – volume: 317 start-page: 207 year: 2007 end-page: 208 ident: CR14 article-title: A changing climate for prediction publication-title: Science – volume: 21 start-page: 434 year: 2020 end-page: 454 ident: CR26 article-title: Beyond shared socioeconomic pathways (SSPs) and representative concentration pathways (RCPs): climate policy implementation scenarios for Europe, the US and China publication-title: Climate Policy – volume: 47 start-page: e2020GL088415 year: 2020 ident: CR62 article-title: The sources of uncertainty in the projection of global land monsoon precipitation publication-title: Geophys. Res. Lett. – year: 2013 ident: CR29 publication-title: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change – volume: 41 start-page: 1039 year: 2013 end-page: 1056 ident: CR4 article-title: Analysis of uncertainties in future climate projections for South America: comparison of WCRP-CMIP3 and WCRP-CMIP5 models publication-title: Climate Dyn. – volume: 30 start-page: 9555 year: 2017 end-page: 9573 ident: CR42 article-title: Consistently estimating internal climate variability from climate model simulations publication-title: J. Climate – volume: 40 start-page: 6423 year: 2020 end-page: 6440 ident: CR56 article-title: Comparison of CMIP6 and CMIP5 simulations of precipitation in China and the East Asian summer monsoon publication-title: Int. J. Climatol. – volume: 226 start-page: 122 year: 2019 end-page: 137 ident: CR57 article-title: Projection and uncertainty of precipitation extremes in the CMIP5 multimodel ensembles over nine major basins in China publication-title: Atmos. Res. – volume: 95 start-page: 16,601 year: 1990 end-page: 16,615 ident: CR7 article-title: Intercomparison and interpretation of climate feedback processes in 19 atmospheric general circulation models publication-title: J. Geophys. Res. Atmos. – volume: 90 start-page: 1095 year: 2009 end-page: 1108 ident: CR23 article-title: The potential to narrow uncertainty in regional climate predictions publication-title: Bull. Amer. Meteor. Soc. – year: 1994 ident: CR11 publication-title: An Efficient Thermal Infrared Radiation Parameterization for Use in General Circulation Models – volume: 110 start-page: D23107 year: 2005 ident: CR1 article-title: Changes in precipitation and temperature extremes in Central America and northern South America, 1961–2003 publication-title: J. Geophys. Res. Atmos. – volume: 101 start-page: 12,791 year: 1996 end-page: 12,794 ident: CR8 article-title: Cloud feedback in atmospheric general circulation models: An update publication-title: J. Geophys. Res. Atmos. – volume: 8 start-page: e2020EF001602 year: 2020 ident: CR53 article-title: A framework to quantify the uncertainty contribution of GCMs over multiple sources in hydrological impacts of climate change publication-title: Earth’s Future – volume: 47 start-page: e2019GL085782 year: 2020 ident: CR61 article-title: Causes of higher climate sensitivity in CMIP6 models publication-title: Geophys. Res. Lett. – volume: 24 start-page: 4634 year: 2011 end-page: 4643 ident: CR60 article-title: A simple, coherent framework for partitioning uncertainty in climate predictions publication-title: J. Climate – volume: 89 start-page: 371 year: 2008 end-page: 394 ident: CR6 article-title: Significance of model credibility in estimating climate projection distributions for regional hydroclimatological risk assessments publication-title: Climatic Change – volume: 4 start-page: 240 year: 2016 end-page: 251 ident: CR21 article-title: Uncertainty partition challenges the predictability of vital details of climate change publication-title: Earth’s Future – volume: 22 start-page: 3739 year: 2018 end-page: 3759 ident: CR52 article-title: Transferability of climate simulation uncertainty to hydrological impacts publication-title: Hydrol. Earth Syst. Sci. – volume: 38 start-page: 527 year: 2012 end-page: 546 ident: CR15 article-title: Uncertainty in climate change projections: the role of internal variability publication-title: Climate Dyn. – volume: 115 start-page: 283 year: 2012 end-page: 290 ident: CR49 article-title: Framing the way to relate climate extremes to climate change publication-title: Climatic Change – volume: 42 start-page: 169 year: 2017 end-page: 180 ident: CR41 article-title: The roads ahead: Narratives for shared socioeconomic pathways describing world futures in the 21st century publication-title: Glob. Environ. Change – volume: 113 start-page: 301 year: 2012 end-page: 321 ident: CR33 article-title: Assessment of the changes in extreme vulnerability over East Asia due to global warming publication-title: Climatic Change – volume: 463 start-page: 747 year: 2010 end-page: 756 ident: CR37 article-title: The next generation of scenarios for climate change research and assessment publication-title: Nature – year: 2000 ident: CR39 publication-title: Special Reporton Emissions Scenarios: A Special Report of Working Group III of the Intergovernmental Panel on Climate Change – volume: 30 start-page: 6225 year: 2017 end-page: 6246 ident: CR25 article-title: Uncertainties in future projections of summer droughts and heat waves over the contiguous United States publication-title: J. Climate – volume: 11 start-page: 491 year: 2020 end-page: 508 ident: CR34 article-title: Partitioning climate projection uncertainty with multiple large ensembles and CMIP5/6 publication-title: Earth Syst. Dyn. – volume: 2 start-page: 775 year: 2012 end-page: 779 ident: CR16 article-title: Communication of the role of natural variability in future North American climate publication-title: Nat. Climate Change – volume: 407 start-page: 617 year: 2000 end-page: 620 ident: CR2 article-title: Quantifying the uncertainty in forecasts of anthropogenic climate change publication-title: Nature – volume: 93 start-page: 485 year: 2012 end-page: 498 ident: CR47 article-title: An overview of CMIP5 and the experiment design publication-title: Bull. Amer. Meteor. Soc. – volume: 23 start-page: 4881 year: 2010 end-page: 4900 ident: CR12 article-title: Changes in precipitation extremes in the Hawaiian Islands in a warming climate publication-title: J. Climate – volume: 44 start-page: 105 year: 2020 end-page: 121 ident: CR35 article-title: A comparison of three methods for estimating internal variability of near-surface air temperature publication-title: Chinese J. Atmos. Sci. – volume: 2 start-page: 816 year: 1989 end-page: 831 ident: CR18 article-title: Land surface hydrology parameterization for atmospheric general circulation models including subgrid scale spatial variability publication-title: J. Climate – volume: 16 start-page: 4343 year: 2012 end-page: 4360 ident: CR17 article-title: Quantifying different sources of uncertainty in hydrological projections in an Alpine watershed publication-title: Hydrol. Earth Syst. Sci. – volume: 3 start-page: 1033 year: 2013 end-page: 1038 ident: CR22 article-title: Robust spatially aggregated projections of climate extremes publication-title: Nat. Climate Change – volume: 13 start-page: 205 year: 2010 end-page: 217 ident: CR54 article-title: Sources of uncertainty in the extreme value statistics of climate data publication-title: Extremes – volume: 6 start-page: eaaz9549 year: 2020 ident: CR48 article-title: Past warming trend constrains future warming in CMIP6 models publication-title: Sci. Adv. – volume: 8 start-page: 10,539 year: 2015 end-page: 10,583 ident: CR20 article-title: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organisation publication-title: Geosci. Model Dev. Discuss. – volume: 27 start-page: 6779 year: 2014 end-page: 6798 ident: CR27 article-title: Partitioning internal variability and model uncertainty components in a multimember multimodel ensemble of climate projections publication-title: J. Climate – volume: 4 start-page: 95 year: 2013 end-page: 108 ident: CR5 article-title: Scenario and modelling uncertainty in global mean temperature change derived from emission-driven global climate models publication-title: Earth Syst. Dyn. – volume: 26 start-page: 8709 year: 2013 ident: 1012_CR31 publication-title: J. Climate doi: 10.1175/JCLI-D-12-00567.1 – volume: 407 start-page: 617 year: 2000 ident: 1012_CR2 publication-title: Nature doi: 10.1038/35036559 – volume: 3 start-page: 1033 year: 2013 ident: 1012_CR22 publication-title: Nat. Climate Change doi: 10.1038/nclimate2051 – volume: 21 start-page: 2651 year: 2008 ident: 1012_CR32 publication-title: J. Climate doi: 10.1175/2007JCLI2119.1 – volume: 19 start-page: 609 year: 2018 ident: 1012_CR58 publication-title: J. Hydrometeorol. doi: 10.1175/JHM-D-17-0180.1 – volume: 11 start-page: 491 year: 2020 ident: 1012_CR34 publication-title: Earth Syst. Dyn. doi: 10.5194/esd-11-491-2020 – volume: 40 start-page: 697 year: 2020 ident: 1012_CR63 publication-title: J. Meteor. Sci. – volume: 2 start-page: 775 year: 2012 ident: 1012_CR16 publication-title: Nat. Climate Change doi: 10.1038/nclimate1562 – volume: 10 start-page: 181 year: 1994 ident: 1012_CR43 publication-title: Climate Dyn. doi: 10.1007/BF00208987 – volume: 37 start-page: 407 year: 2011 ident: 1012_CR24 publication-title: Climate Dyn. doi: 10.1007/s00382-010-0810-6 – volume: 26 start-page: 7541 year: 2013 ident: 1012_CR30 publication-title: J. Climate doi: 10.1175/JCLI-D-12-00788.1 – volume: 113 start-page: 301 year: 2012 ident: 1012_CR33 publication-title: Climatic Change doi: 10.1007/s10584-011-0345-9 – volume: 32 start-page: 2423 year: 2019 ident: 1012_CR19 publication-title: J. Climate doi: 10.1175/JCLI-D-18-0606.1 – volume: 109 start-page: 5 year: 2011 ident: 1012_CR51 publication-title: Climatic Change doi: 10.1007/s10584-011-0148-z – volume: 47 start-page: e2019GL085782 year: 2020 ident: 1012_CR61 publication-title: Geophys. Res. Lett. doi: 10.1029/2019GL085782 – volume: 44 start-page: 1789 year: 2015 ident: 1012_CR50 publication-title: Climate Dyn. doi: 10.1007/s00382-014-2312-4 – volume-title: An Efficient Thermal Infrared Radiation Parameterization for Use in General Circulation Models year: 1994 ident: 1012_CR11 – volume: 23 start-page: 4881 year: 2010 ident: 1012_CR12 publication-title: J. Climate doi: 10.1175/2010JCLI3484.1 – volume: 121 start-page: 130 year: 2016 ident: 1012_CR3 publication-title: J. Geophys. Res. Atmos. doi: 10.1002/2015JD023656 – volume: 38 start-page: 527 year: 2012 ident: 1012_CR15 publication-title: Climate Dyn. doi: 10.1007/s00382-010-0977-x – volume: 8 start-page: 10,539 year: 2015 ident: 1012_CR20 publication-title: Geosci. Model Dev. Discuss. doi: 10.5194/gmdd-8-10539-2015 – volume: 42 start-page: 169 year: 2017 ident: 1012_CR41 publication-title: Glob. Environ. Change doi: 10.1016/j.gloenvcha.2015.01.004 – volume: 47 start-page: 3359 year: 2016 ident: 1012_CR9 publication-title: Climate Dyn. doi: 10.1007/s00382-016-3030-x – volume: 40 start-page: 6423 year: 2020 ident: 1012_CR56 publication-title: Int. J. Climatol. doi: 10.1002/joc.6590 – volume: 109 start-page: 213 year: 2011 ident: 1012_CR36 publication-title: Climatic Change doi: 10.1007/s10584-011-0156-z – volume: 30 start-page: 9555 year: 2017 ident: 1012_CR42 publication-title: J. Climate doi: 10.1175/JCLI-D-16-0428.1 – volume: 47 start-page: e2019GL086902 year: 2020 ident: 1012_CR10 publication-title: Geophys. Res. Lett. doi: 10.1029/2019GL086902 – volume: 598 start-page: 125760 year: 2020 ident: 1012_CR59 publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2020.125760 – volume: 101 start-page: 12,791 year: 1996 ident: 1012_CR8 publication-title: J. Geophys. Res. Atmos. doi: 10.1029/96JD00822 – volume: 317 start-page: 207 year: 2007 ident: 1012_CR14 publication-title: Science doi: 10.1126/science.1145956 – volume-title: Special Reporton Emissions Scenarios: A Special Report of Working Group III of the Intergovernmental Panel on Climate Change year: 2000 ident: 1012_CR39 – volume: 12 start-page: 325 year: 1996 ident: 1012_CR44 publication-title: Climate Dyn. doi: 10.1007/BF00231106 – volume: 97 start-page: 2717 year: 1992 ident: 1012_CR55 publication-title: J. Geophys. Res. Atmos. doi: 10.1029/91JD01786 – volume: 416 start-page: 723 year: 2002 ident: 1012_CR46 publication-title: Nature doi: 10.1038/416723a – volume: 365 start-page: 2145 year: 2007 ident: 1012_CR45 publication-title: Philos. Trans. R. Soc. Lond. A: Math., Phys. Eng. Sci. doi: 10.1098/rsta.2007.2074 – volume: 13 start-page: 205 year: 2010 ident: 1012_CR54 publication-title: Extremes doi: 10.1007/s10687-010-0105-7 – volume: 22 start-page: 3739 year: 2018 ident: 1012_CR52 publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-22-3739-2018 – volume: 24 start-page: 4634 year: 2011 ident: 1012_CR60 publication-title: J. Climate doi: 10.1175/2011JCLI4085.1 – volume: 30 start-page: 6225 year: 2017 ident: 1012_CR25 publication-title: J. Climate doi: 10.1175/JCLI-D-16-0491.1 – volume: 44 start-page: 105 year: 2020 ident: 1012_CR35 publication-title: Chinese J. Atmos. Sci. doi: 10.3878/j.issn.1006-9895.1901.18235 – volume: 27 start-page: 6779 year: 2014 ident: 1012_CR27 publication-title: J. Climate doi: 10.1175/JCLI-D-13-00629.1 – volume: 39 start-page: 1853 year: 2019 ident: 1012_CR65 publication-title: Int. J. Climatol. doi: 10.1002/joc.5920 – volume: 89 start-page: 371 year: 2008 ident: 1012_CR6 publication-title: Climatic Change doi: 10.1007/s10584-007-9388-3 – volume: 41 start-page: 1039 year: 2013 ident: 1012_CR4 publication-title: Climate Dyn. doi: 10.1007/s00382-012-1489-7 – volume: 20 start-page: 865 year: 2003 ident: 1012_CR13 publication-title: Climate Dyn. doi: 10.1007/s00382-003-0310-z – volume-title: Climate Change 2007: The Physical Science Basis: Working Group I Contribution to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change year: 2007 ident: 1012_CR28 – volume: 90 start-page: 1095 year: 2009 ident: 1012_CR23 publication-title: Bull. Amer. Meteor. Soc. doi: 10.1175/2009BAMS2607.1 – volume: 463 start-page: 747 year: 2010 ident: 1012_CR37 publication-title: Nature doi: 10.1038/nature08823 – volume: 93 start-page: 485 year: 2012 ident: 1012_CR47 publication-title: Bull. Amer. Meteor. Soc. doi: 10.1175/BAMS-D-11-00094.1 – volume: 4 start-page: 240 year: 2016 ident: 1012_CR21 publication-title: Earth’s Future doi: 10.1002/2015EF000336 – volume: 23 start-page: 4788 year: 2017 ident: 1012_CR40 publication-title: Glob. Change Biol. doi: 10.1111/gcb.13724 – volume: 6 start-page: eaaz9549 year: 2020 ident: 1012_CR48 publication-title: Sci. Adv. doi: 10.1126/sciadv.aaz9549 – volume: 49 start-page: 421 year: 2018 ident: 1012_CR64 publication-title: Hydrol. Res. doi: 10.2166/nh.2018.059 – volume: 16 start-page: 4343 year: 2012 ident: 1012_CR17 publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-16-4343-2012 – volume-title: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change year: 2013 ident: 1012_CR29 – volume: 21 start-page: 434 year: 2020 ident: 1012_CR26 publication-title: Climate Policy doi: 10.1080/14693062.2020.1852068 – volume: 226 start-page: 122 year: 2019 ident: 1012_CR57 publication-title: Atmos. Res. doi: 10.1016/j.atmosres.2019.04.018 – volume: 2 start-page: 816 year: 1989 ident: 1012_CR18 publication-title: J. Climate doi: 10.1175/1520-0442(1989)002<0816:LSHPFA>2.0.CO;2 – volume: 95 start-page: 16,601 year: 1990 ident: 1012_CR7 publication-title: J. Geophys. Res. Atmos. doi: 10.1029/JD095iD10p16601 – volume: 115 start-page: 283 year: 2012 ident: 1012_CR49 publication-title: Climatic Change doi: 10.1007/s10584-012-0441-5 – volume: 47 start-page: e2020GL088415 year: 2020 ident: 1012_CR62 publication-title: Geophys. Res. Lett. doi: 10.1029/2020GL088415 – volume: 8 start-page: e2020EF001602 year: 2020 ident: 1012_CR53 publication-title: Earth’s Future doi: 10.1029/2020EF001602 – volume: 110 start-page: D23107 year: 2005 ident: 1012_CR1 publication-title: J. Geophys. Res. Atmos. doi: 10.1029/2005JD006119 – volume: 4 start-page: 95 year: 2013 ident: 1012_CR5 publication-title: Earth Syst. Dyn. doi: 10.5194/esd-4-95-2013 – volume: 116 start-page: 155 year: 2014 ident: 1012_CR38 publication-title: Theor. Appl. Climatol. doi: 10.1007/s00704-013-0934-9 |
| SSID | ssj0002925722 ssib060478651 |
| Score | 2.452072 |
| Snippet | Climate projections by global climate models (GCMs) are subject to considerable and multi-source uncertainties. This study aims to compare the uncertainty in... |
| SourceID | wanfang crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 646 |
| SubjectTerms | Atmospheric Protection/Air Quality Control/Air Pollution Atmospheric Sciences Earth and Environmental Science Earth Sciences Geophysics and Environmental Physics Meteorology Original Paper |
| Title | Uncertainty in Projection of Climate Extremes: A Comparison of CMIP5 and CMIP6 |
| URI | https://link.springer.com/article/10.1007/s13351-021-1012-3 https://d.wanfangdata.com.cn/periodical/qxxb-e202104008 |
| Volume | 35 |
| WOSCitedRecordID | wos000695144600008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 2198-0934 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002925722 issn: 2095-6037 databaseCode: RSV dateStart: 20140101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF60evDiAxXriz14UgIxk-1uvJXSogdLUSu9hewjUiipNlHqv3dnk7QKUtDbEmY3YWazMzuPbwi5UEkqTArKi5gAL1QKRxB5CCTCjTXxE65dswne74vRKBpUddx5ne1ehyTdSb0sdgNg9uobYAoWIu2tkw2r7QT2a3h4fF44VoLI7kIXPQis-eC1fOB1NPO3VX7qo_rNroQnS5Ps5Zu26e386zt3yXZlXNJ2uRv2yJrJ9kl_aOXq4v7FJx1ndFD6Xqw86DSlncnY2qyGducFegrzG9qmnUVvQkdxfzdgNMm0G7UOyLDXfercelUXBU8BiwpPpb6QCdPSMMl9rYCzwN4SrCGoQIOUKuA6jIxlE1ep1d4IQGZCaYxpafs4hEPSyKaZOSJUACCUABafpmHIeCJDieg1WnNIhLpuEr_mZawqiHHsdDGJl-DIyJzYMgdzy4IYmuRyMeW1xNdYRXxVszyufrV8FTWtZLgkfpvPZWwCvOjaw0sc_2nBE7KFM8v0v1PSKGbv5oxsqo9inM_O3S78AsM80vc |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA86BX3xAxXnZx58UgqzSZbWtzE2Jm5l6CZ7K81HZTA6XavM_95L2m4KMtC3UC7XcrnmLrm73yF0JaPY0zGRjs884lApzYj4jgES4Rpc_Igr22yCB4E3Gvn9oo47LbPdy5Ck3amXxW6EMDj6uiYFyyDtraMNCgbLAOY_Pj0vLlZcH7TQRg9ccB-ceo3wMpr5G5ef9qh8sy3hSeIoeflmbdq7__rOPbRTOJe4kWvDPlrTyQEKhrCuNu6ffeJxgvv53QusB57GuDkZg8-qcWuemZvC9A43cHPRm9BS9O77DEeJsqP6IRq2W4Nmxym6KDiSMD9zZFzzRMSU0EzwmpKEMxdOCeAISqKIENLlivoaxMRlDNbbAJBpKrTWdQWPKTlClWSa6GOEPUIMlIApPo0pZTwSVBj0GqU4iTx5W0W1UpahLCDGTaeLSbgERzbCCUE4JrfMDUkVXS-mvOb4GquIb0qRh8Wvlq6ixsUaLonf5nMRatccdGHz8k7-xPASbXUGvW7YvQ8eTtG24ZKnAp6hSjZ71-doU35k43R2YTXyC7AP1ds |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF60injxgYr1uQdPSmjMZruJt1JbLGoIaKW3kH1JoaS1iVL_vTt5tApSEG9LmAzL7Cbz_gahCxFrT2kiLJ96xHKFgBXxLQASYcqY-DGT-bAJFgTeYOCH5ZzTtKp2r1KSRU8DoDQlWWMidWPR-EYINW6wA-VYgLq3itZcqKMHd_3pZR5kcXxzI_NMgmNMCatpE1ZlNn_j8lM3VbvI23kSHSev3zRPd_vfe95BW6XRiVvFLdlFKyrZQ0HfnHdeD5B94mGCwyImY84JjzVuj4bGllW4M8sggpje4BZuz2cW5hSPvZDiOJH5qrmP-t3Oc_vOKqcrWIJQP7OEtj0eU8kV5cyWgjDqGO_BGIiCSMK5cJh0fWVExoQ2Wh2AyZTLlVJNaR675ADVknGiDhH2CAGIAWhK1a5LWcxdDqg2UjISe-K6juxKrpEoocdhAsYoWoAmg3AiIxyoOXMiUkeX81cmBe7GMuKrSvxR-Qmmy6hxeZ4L4rfZjEfKAQfY_NS8oz8xPEcb4W03eugF98doE5gUFYInqJZN39UpWhcf2TCdnuWX8wtUz96_ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Uncertainty+in+Projection+of+Climate+Extremes%3A+A+Comparison+of+CMIP5+and+CMIP6&rft.jtitle=Journal+of+Meteorological+Research&rft.au=Zhang%2C+Shaobo&rft.au=Chen%2C+Jie&rft.date=2021-08-01&rft.pub=The+Chinese+Meteorological+Society&rft.issn=2095-6037&rft.eissn=2198-0934&rft.volume=35&rft.issue=4&rft.spage=646&rft.epage=662&rft_id=info:doi/10.1007%2Fs13351-021-1012-3&rft.externalDocID=10_1007_s13351_021_1012_3 |
| thumbnail_s | http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fqxxb-e%2Fqxxb-e.jpg |