Conditional Quasi-Greedy Bases in Non-superreflexive Banach Spaces

For a conditional quasi-greedy basis B in a Banach space, the associated conditionality constants k m [ B ] verify the estimate k m [ B ] = O ( log m ) . Answering a question raised by Temlyakov, Yang, and Ye, several authors have studied whether this bound can be improved when we consider quasi-gre...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Constructive approximation Ročník 49; číslo 1; s. 103 - 122
Hlavní autori: Albiac, Fernando, Ansorena, José L., Wojtaszczyk, Przemysław
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York Springer US 15.02.2019
Springer Nature B.V
Predmet:
ISSN:0176-4276, 1432-0940
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract For a conditional quasi-greedy basis B in a Banach space, the associated conditionality constants k m [ B ] verify the estimate k m [ B ] = O ( log m ) . Answering a question raised by Temlyakov, Yang, and Ye, several authors have studied whether this bound can be improved when we consider quasi-greedy bases in some special class of spaces. It is known that every quasi-greedy basis in a superreflexive Banach space verifies k m [ B ] = O ( ( log m ) 1 - ϵ ) for some 0 < ϵ < 1 , and this is optimal. Our first goal in this paper will be to fill the gap between the general case and the superreflexive case and investigate the growth of the conditionality constants in nonsuperreflexive spaces. Roughly speaking, the moral will be that we can guarantee optimal bounds only for quasi-greedy bases in superreflexive spaces. We prove that if a Banach space X is not superreflexive, then there is a quasi-greedy basis B in a Banach space Y finitely representable in X with k m [ B ] ≈ log m . As a consequence, we obtain that for every 2 < q < ∞ , there is a Banach space X of type 2 and cotype q possessing a quasi-greedy basis B with k m [ B ] ≈ log m . We also tackle the corresponding problem for Schauder bases and show that if a space is nonsuperreflexive, then it possesses a basic sequence B with k m [ B ] ≈ m .
AbstractList For a conditional quasi-greedy basis B in a Banach space, the associated conditionality constants k m [ B ] verify the estimate k m [ B ] = O ( log m ) . Answering a question raised by Temlyakov, Yang, and Ye, several authors have studied whether this bound can be improved when we consider quasi-greedy bases in some special class of spaces. It is known that every quasi-greedy basis in a superreflexive Banach space verifies k m [ B ] = O ( ( log m ) 1 - ϵ ) for some 0 < ϵ < 1 , and this is optimal. Our first goal in this paper will be to fill the gap between the general case and the superreflexive case and investigate the growth of the conditionality constants in nonsuperreflexive spaces. Roughly speaking, the moral will be that we can guarantee optimal bounds only for quasi-greedy bases in superreflexive spaces. We prove that if a Banach space X is not superreflexive, then there is a quasi-greedy basis B in a Banach space Y finitely representable in X with k m [ B ] ≈ log m . As a consequence, we obtain that for every 2 < q < ∞ , there is a Banach space X of type 2 and cotype q possessing a quasi-greedy basis B with k m [ B ] ≈ log m . We also tackle the corresponding problem for Schauder bases and show that if a space is nonsuperreflexive, then it possesses a basic sequence B with k m [ B ] ≈ m .
For a conditional quasi-greedy basis B in a Banach space, the associated conditionality constants km[B] verify the estimate km[B]=O(logm). Answering a question raised by Temlyakov, Yang, and Ye, several authors have studied whether this bound can be improved when we consider quasi-greedy bases in some special class of spaces. It is known that every quasi-greedy basis in a superreflexive Banach space verifies km[B]=O((logm)1-ϵ) for some 0<ϵ<1, and this is optimal. Our first goal in this paper will be to fill the gap between the general case and the superreflexive case and investigate the growth of the conditionality constants in nonsuperreflexive spaces. Roughly speaking, the moral will be that we can guarantee optimal bounds only for quasi-greedy bases in superreflexive spaces. We prove that if a Banach space X is not superreflexive, then there is a quasi-greedy basis B in a Banach space Y finitely representable in X with km[B]≈logm. As a consequence, we obtain that for every 2<q<∞, there is a Banach space X of type 2 and cotype q possessing a quasi-greedy basis B with km[B]≈logm. We also tackle the corresponding problem for Schauder bases and show that if a space is nonsuperreflexive, then it possesses a basic sequence B with km[B]≈m.
Author Wojtaszczyk, Przemysław
Ansorena, José L.
Albiac, Fernando
Author_xml – sequence: 1
  givenname: Fernando
  surname: Albiac
  fullname: Albiac, Fernando
  email: fernando.albiac@unavarra.es
  organization: Mathematics Department, Universidad Pública de Navarra
– sequence: 2
  givenname: José L.
  surname: Ansorena
  fullname: Ansorena, José L.
  organization: Department of Mathematics and Computer Sciences, Universidad de La Rioja
– sequence: 3
  givenname: Przemysław
  surname: Wojtaszczyk
  fullname: Wojtaszczyk, Przemysław
  organization: Interdisciplinary Centre for Mathematical and Computational Modelling, University of Warsaw, Institute of Mathematics of the Polish Academy of Sciences
BookMark eNp9kF1LwzAUhoNMcJv-AO8KXkdPmn7l0g3dhKGIeh3S9FQzalqTVrZ_b0YFQdCrHDjvc_LyzMjEthYJOWdwyQDyKw_As5QCy6ngQtDdEZmyhMcURAITMg2LjCZxnp2QmfdbAJYWPJ-SxbK1lelNa1UTPQ7KG7pyiNU-WiiPPjI2um8t9UOHzmHd4M58YthZpd-ip05p9KfkuFaNx7Pvd05ebm-el2u6eVjdLa83VPNU9FSLSqUQC1FAxupYFInWuizTrCoELzHMqRZFxSqGqFIs67LkoBJRqxBkOfI5uRjvdq79GND3ctsOLvT2MmYZ53kGSRJSbExp13ofKsvOmXfl9pKBPKiSoyoZjMiDKrkLTP6L0aZXBym9U6b5l4xH0odf7Cu6n05_Q1_E3ID5
CitedBy_id crossref_primary_10_1017_prm_2023_53
crossref_primary_10_1007_s00208_020_02069_3
crossref_primary_10_1017_prm_2022_16
crossref_primary_10_1007_s00365_023_09662_0
crossref_primary_10_1007_s00365_022_09607_z
Cites_doi 10.1512/iumj.2014.63.5269
10.1007/s00365-013-9209-z
10.1016/j.jat.2015.08.006
10.2140/pjm.1972.41.409
10.1007/978-3-642-66557-8
10.4064/sm-58-1-45-90
10.1007/s10444-010-9155-2
10.4064/sm227-2-3
10.1006/jath.2000.3512
10.1007/s13163-016-0204-3
10.1007/978-3-319-31557-7
10.4064/sm159-1-4
10.1007/BFb0078146
10.1017/CBO9781316480588
10.1007/978-3-642-51633-7
ContentType Journal Article
Copyright Springer Science+Business Media, LLC 2017
Copyright Springer Science & Business Media 2019
Copyright_xml – notice: Springer Science+Business Media, LLC 2017
– notice: Copyright Springer Science & Business Media 2019
DBID AAYXX
CITATION
DOI 10.1007/s00365-017-9399-x
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1432-0940
EndPage 122
ExternalDocumentID 10_1007_s00365_017_9399_x
GroupedDBID -52
-5D
-5G
-BR
-EM
-~C
-~X
.86
.VR
06D
0R~
0VY
199
1N0
203
29F
2J2
2JN
2JY
2KG
2KM
2LR
2~H
30V
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BAPOH
BDATZ
BGNMA
BSONS
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
EPL
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAS
LLZTM
M4Y
MA-
MK~
ML~
N9A
NB0
NPVJJ
NQJWS
NU0
O93
O9G
O9I
O9J
OAM
P19
P2P
P9R
PF0
PT4
PT5
QOK
QOS
R89
R9I
RHV
ROL
RPX
RSV
S16
S27
S3B
SAP
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z8M
ZMTXR
~8M
~EX
-Y2
1SB
2.D
28-
2P1
2VQ
5QI
6TJ
AAAVM
AAPKM
AARHV
AAYTO
AAYXX
ABBRH
ABDBE
ABFSG
ABJCF
ABQSL
ABRTQ
ABULA
ACBXY
ACSTC
ADHKG
ADXHL
AEBTG
AEFIE
AEKMD
AEZWR
AFDZB
AFEXP
AFFHD
AFFNX
AFGCZ
AFHIU
AFKRA
AFOHR
AGGDS
AGQPQ
AHPBZ
AHWEU
AIXLP
AJBLW
AMVHM
ATHPR
AYFIA
AZQEC
BBWZM
BENPR
BGLVJ
CAG
CCPQU
CITATION
COF
DWQXO
GNUQQ
HCIFZ
KOW
M2P
M7S
N2Q
NDZJH
O9-
PHGZM
PHGZT
PQGLB
PTHSS
R4E
RNI
RZK
S1Z
S26
S28
SCLPG
T16
ZWQNP
ZY4
ID FETCH-LOGICAL-c359t-c9da502998061f2984cccbb56d893beccb5c98d1d1eea5ebfbb30a49fa4cc17e3
IEDL.DBID RSV
ISICitedReferencesCount 10
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000454951500004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0176-4276
IngestDate Wed Sep 17 23:57:17 EDT 2025
Tue Nov 18 22:43:37 EST 2025
Sat Nov 29 04:47:04 EST 2025
Fri Feb 21 02:29:42 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Cotype
Reflexivity
Finite representability
Thresholding greedy algorithm
Banach spaces
Superreflexivity
Conditional basis
Type
46B15
Super property
41A65
Quasi-greedy basis
Conditionality constants
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c359t-c9da502998061f2984cccbb56d893beccb5c98d1d1eea5ebfbb30a49fa4cc17e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://investigacion.unirioja.es/documentos/5bbc68cdb750603269e80fde
PQID 2163376044
PQPubID 2043922
PageCount 20
ParticipantIDs proquest_journals_2163376044
crossref_primary_10_1007_s00365_017_9399_x
crossref_citationtrail_10_1007_s00365_017_9399_x
springer_journals_10_1007_s00365_017_9399_x
PublicationCentury 2000
PublicationDate 20190215
PublicationDateYYYYMMDD 2019-02-15
PublicationDate_xml – month: 2
  year: 2019
  text: 20190215
  day: 15
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Constructive approximation
PublicationTitleAbbrev Constr Approx
PublicationYear 2019
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References CR4
CR6
Bennett, Sharpley (CR5) 1988
Garrigós, Wojtaszczyk (CR8) 2014; 63
James (CR9) 1972; 41
CR15
CR14
Albiac, Ansorena (CR2) 2017; 30
Pisier (CR13) 2016
Temlyakov, Yang, Ye (CR17) 2011; 34
Maurey, Pisier (CR12) 1976; 58
Garrigós, Hernández, Oikhberg (CR7) 2013; 38
Konyagin, Temlyakov (CR10) 1999; 5
Wojtaszczyk (CR18) 2000; 107
Albiac, Ansorena (CR1) 2016; 201
Temlyakov, Yang, Ye (CR16) 2011; 17
Albiac, Ansorena, Garrigós, Hernández, Raja (CR3) 2015; 227
Lindenstrauss, Tzafriri (CR11) 1977
9399_CR15
VN Temlyakov (9399_CR16) 2011; 17
G Garrigós (9399_CR7) 2013; 38
9399_CR14
F Albiac (9399_CR2) 2017; 30
F Albiac (9399_CR1) 2016; 201
9399_CR4
RC James (9399_CR9) 1972; 41
9399_CR6
SV Konyagin (9399_CR10) 1999; 5
J Lindenstrauss (9399_CR11) 1977
P Wojtaszczyk (9399_CR18) 2000; 107
VN Temlyakov (9399_CR17) 2011; 34
G Garrigós (9399_CR8) 2014; 63
F Albiac (9399_CR3) 2015; 227
C Bennett (9399_CR5) 1988
B Maurey (9399_CR12) 1976; 58
G Pisier (9399_CR13) 2016
References_xml – volume: 63
  start-page: 1017
  issue: 4
  year: 2014
  end-page: 1036
  ident: CR8
  article-title: Conditional quasi-greedy bases in hilbert and banach spaces
  publication-title: Indiana Univ. Math. J.
  doi: 10.1512/iumj.2014.63.5269
– volume: 38
  start-page: 447
  issue: 3
  year: 2013
  end-page: 470
  ident: CR7
  article-title: Lebesgue-type inequalities for quasi-greedy bases
  publication-title: Constr. Approx.
  doi: 10.1007/s00365-013-9209-z
– volume: 201
  start-page: 7
  year: 2016
  end-page: 12
  ident: CR1
  article-title: Characterization of 1-quasi-greedy bases
  publication-title: J. Approx. Theory
  doi: 10.1016/j.jat.2015.08.006
– ident: CR4
– volume: 41
  start-page: 409
  year: 1972
  end-page: 419
  ident: CR9
  article-title: Super-reflexive spaces with bases
  publication-title: Pac. J. Math.
  doi: 10.2140/pjm.1972.41.409
– ident: CR14
– ident: CR15
– year: 1977
  ident: CR11
  publication-title: Classical Banach Spaces I: Sequence Spaces, Ergebnisse der Mathematik und ihrer Grenzgebiete
  doi: 10.1007/978-3-642-66557-8
– volume: 58
  start-page: 45
  issue: 1
  year: 1976
  end-page: 90
  ident: CR12
  article-title: Séries de variables aléatoires vectorielles indépendantes et propriétés géométriques des espaces de banach (in French)
  publication-title: Studia Math.
  doi: 10.4064/sm-58-1-45-90
– volume: 34
  start-page: 319
  issue: 3
  year: 2011
  end-page: 337
  ident: CR17
  article-title: Greedy approximation with regard to non-greedy bases
  publication-title: Adv. Comput. Math.
  doi: 10.1007/s10444-010-9155-2
– volume: 227
  start-page: 133
  issue: 2
  year: 2015
  end-page: 140
  ident: CR3
  article-title: Conditionality constants of quasi-greedy bases in super-reflexive Banach spaces
  publication-title: Studia Math.
  doi: 10.4064/sm227-2-3
– year: 1988
  ident: CR5
  publication-title: Interpolation of Operators, Pure and Applied Mathematics
– ident: CR6
– volume: 17
  start-page: 203
  issue: 2
  year: 2011
  end-page: 214
  ident: CR16
  article-title: Lebesgue-type inequalities for greedy approximation with respect to quasi-greedy bases
  publication-title: East J. Approx.
– volume: 107
  start-page: 293
  issue: 2
  year: 2000
  end-page: 314
  ident: CR18
  article-title: Greedy algorithm for general biorthogonal systems
  publication-title: J. Approx. Theory
  doi: 10.1006/jath.2000.3512
– volume: 30
  start-page: 13
  issue: 1
  year: 2017
  end-page: 24
  ident: CR2
  article-title: Characterization of 1-almost greedy bases
  publication-title: Rev. Mat. Complut.
  doi: 10.1007/s13163-016-0204-3
– volume: 5
  start-page: 365
  issue: 3
  year: 1999
  end-page: 379
  ident: CR10
  article-title: A remark on greedy approximation in banach spaces
  publication-title: East J. Approx.
– year: 2016
  ident: CR13
  publication-title: Martingales in Banach Spaces
– volume: 5
  start-page: 365
  issue: 3
  year: 1999
  ident: 9399_CR10
  publication-title: East J. Approx.
– volume: 107
  start-page: 293
  issue: 2
  year: 2000
  ident: 9399_CR18
  publication-title: J. Approx. Theory
  doi: 10.1006/jath.2000.3512
– volume: 38
  start-page: 447
  issue: 3
  year: 2013
  ident: 9399_CR7
  publication-title: Constr. Approx.
  doi: 10.1007/s00365-013-9209-z
– volume-title: Interpolation of Operators, Pure and Applied Mathematics
  year: 1988
  ident: 9399_CR5
– volume: 63
  start-page: 1017
  issue: 4
  year: 2014
  ident: 9399_CR8
  publication-title: Indiana Univ. Math. J.
  doi: 10.1512/iumj.2014.63.5269
– ident: 9399_CR4
  doi: 10.1007/978-3-319-31557-7
– volume: 30
  start-page: 13
  issue: 1
  year: 2017
  ident: 9399_CR2
  publication-title: Rev. Mat. Complut.
  doi: 10.1007/s13163-016-0204-3
– volume: 227
  start-page: 133
  issue: 2
  year: 2015
  ident: 9399_CR3
  publication-title: Studia Math.
  doi: 10.4064/sm227-2-3
– ident: 9399_CR6
  doi: 10.4064/sm159-1-4
– volume: 41
  start-page: 409
  year: 1972
  ident: 9399_CR9
  publication-title: Pac. J. Math.
  doi: 10.2140/pjm.1972.41.409
– volume-title: Classical Banach Spaces I: Sequence Spaces, Ergebnisse der Mathematik und ihrer Grenzgebiete
  year: 1977
  ident: 9399_CR11
  doi: 10.1007/978-3-642-66557-8
– ident: 9399_CR14
  doi: 10.1007/BFb0078146
– volume-title: Martingales in Banach Spaces
  year: 2016
  ident: 9399_CR13
  doi: 10.1017/CBO9781316480588
– volume: 17
  start-page: 203
  issue: 2
  year: 2011
  ident: 9399_CR16
  publication-title: East J. Approx.
– ident: 9399_CR15
  doi: 10.1007/978-3-642-51633-7
– volume: 201
  start-page: 7
  year: 2016
  ident: 9399_CR1
  publication-title: J. Approx. Theory
  doi: 10.1016/j.jat.2015.08.006
– volume: 58
  start-page: 45
  issue: 1
  year: 1976
  ident: 9399_CR12
  publication-title: Studia Math.
  doi: 10.4064/sm-58-1-45-90
– volume: 34
  start-page: 319
  issue: 3
  year: 2011
  ident: 9399_CR17
  publication-title: Adv. Comput. Math.
  doi: 10.1007/s10444-010-9155-2
SSID ssj0015837
Score 2.282413
Snippet For a conditional quasi-greedy basis B in a Banach space, the associated conditionality constants k m [ B ] verify the estimate k m [ B ] = O ( log m ) ....
For a conditional quasi-greedy basis B in a Banach space, the associated conditionality constants km[B] verify the estimate km[B]=O(logm). Answering a question...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 103
SubjectTerms Analysis
Banach spaces
Mathematics
Mathematics and Statistics
Numerical Analysis
Title Conditional Quasi-Greedy Bases in Non-superreflexive Banach Spaces
URI https://link.springer.com/article/10.1007/s00365-017-9399-x
https://www.proquest.com/docview/2163376044
Volume 49
WOSCitedRecordID wos000454951500004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1432-0940
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0015837
  issn: 0176-4276
  databaseCode: RSV
  dateStart: 19970301
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLYQcIADb8R4qQdOoEh9JG1yZBMTFybe2q1K0kRMQt20bhP8e5yu7QQCJDjHtSLHzmfVzmeAMyVFEsbSEvRgS6gMKOGZViRiNED30dZqWw6bSHo93u-L2-odd1F3u9clyfKmbh67OeoU12iWEIGoSjBxXEG04y4a7x-em9IB43OizCCJCQ2TuC5lfqfiMxgtMswvRdESa7qb_9rlFmxUqaV3OfeFbVgy-Q6s3zS8rMUutDtDV6Iuf_95d1NZDIhrvMnevTaiWeENcq83zEkxHZkx7taRZc4MruVSv3gPI9e-tQdP3avHzjWppigQHTExIVpkkvmIOhyh24aCU621UizOMFVxJ6iYFjwLssAYyYyySkW-pMJKFAwSE-3Dcj7MzQF4ieA68pW2TEmaCatCiyGtUCuNY5-LFvi1OVNdUYy7SRevaUOOXJonRfOkzjzpWwvOm09Gc36N34SP6zNKq1Ar0hAzStfZQ2kLLuozWSz_qOzwT9JHsIapknD92gE7huXJeGpOYFXPJoNifFp64AcY0ddt
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fS8MwEA4yBfXB3-J0ah98UgL9kbTNoxuOidtQN2VvJUkTHEg31m3of--lazsUFfQ5aQh3l3xH78t3CF0IzgLX5xpDBGtMuENwGEuBPUocCB-ptdRZs4mg2w0HA3afv-NOC7Z7UZLMburysZuRTjFEswAzQFUMieMqAcAyPL7H3nNZOqDhQijTCXxM3MAvSpnfLfEZjJYZ5peiaIY1ze1_7XIHbeWppXW9iIVdtKKSPbTZKXVZ031Ub4xMiTr7_Wc9zHg6xIZ4E79bdUCz1BomVneU4HQ2VhPYrRHLnCsYS7h8sXpjQ986QE_Nm36jhfMuClh6lE2xZDGnNqBOCNCtXRYSKaUQ1I8hVTEeFFSyMHZiRylOldBCeDYnTHOY6ATKO0SVZJSoI2QFLJSeLaSmgpOYaeFqONICViW-b4esiuzCnJHMJcZNp4vXqBRHzswTgXkiY57orYouy0_GC32N3ybXCh9F-VFLIxcySsPsIaSKrgqfLId_XOz4T7PP0Xqr32lH7dvu3QnagLSJGe62Q2uoMp3M1Clak_PpMJ2cZdH4ATr82lE
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwEA-iIvrgtzid2geflLB-JG3y6KZDUctkKnsrSZrgQLqydkP_e5Ou7VBUEJ9zPcLdhbv0fvkdAKec0cD1mYI6ghVEzEGQxIJDDyNHh49QSqhi2EQQhmQwoL1yzmlWod2rluTsTYNhaUryVhqrVv3wzdCoGNBZAKnOsFAXkUvIzAwy1_X-c91GwGRGmukEPkRu4Fdtze9UfE5M82rzS4O0yDvdjX_veBOslyWndTGLkS2wIJNtsHZf87VmO6DdGZnWdfFb0HqYsGwIDSAnfrfaOstl1jCxwlECs0kqx3rnhkRzKvVawsSL1U8NrGsXPHWvHjvXsJyuAIWHaQ4FjRm2dTYiOqUrlxIkhOAc-7EuYYxnORaUxE7sSMmw5Ipzz2aIKqYFnUB6e2AxGSVyH1gBJcKzuVCYMxRTxV2ljzrXWpHv24Q2gF2ZNhIl9biZgPEa1aTJhXkibZ7ImCd6a4Cz-pN0xrvxm3Cz8ldUHsEscnWlaRA_CDXAeeWf-fKPyg7-JH0CVnqX3ejuJrw9BKu6mqIG0u3gJljMxxN5BJbFNB9m4-MiMD8Az7PjNQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Conditional+Quasi-Greedy+Bases+in+Non-superreflexive+Banach+Spaces&rft.jtitle=Constructive+approximation&rft.au=Albiac%2C+Fernando&rft.au=Ansorena%2C+Jos%C3%A9+L.&rft.au=Wojtaszczyk%2C+Przemys%C5%82aw&rft.date=2019-02-15&rft.issn=0176-4276&rft.eissn=1432-0940&rft.volume=49&rft.issue=1&rft.spage=103&rft.epage=122&rft_id=info:doi/10.1007%2Fs00365-017-9399-x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00365_017_9399_x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0176-4276&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0176-4276&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0176-4276&client=summon