Nonlocal Tensor-Ring Decomposition for Hyperspectral Image Denoising

Hyperspectral image (HSI) denoising is a fundamental problem in remote sensing and image processing. Recently, nonlocal low-rank tensor approximation-based denoising methods have attracted much attention due to their advantage of being capable of fully exploiting the nonlocal self-similarity and glo...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on geoscience and remote sensing Vol. 58; no. 2; pp. 1348 - 1362
Main Authors: Chen, Yong, He, Wei, Yokoya, Naoto, Huang, Ting-Zhu, Zhao, Xi-Le
Format: Journal Article
Language:English
Published: New York IEEE 01.02.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:0196-2892, 1558-0644
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Hyperspectral image (HSI) denoising is a fundamental problem in remote sensing and image processing. Recently, nonlocal low-rank tensor approximation-based denoising methods have attracted much attention due to their advantage of being capable of fully exploiting the nonlocal self-similarity and global spectral correlation. Existing nonlocal low-rank tensor approximation methods were mainly based on two common decomposition [Tucker or CANDECOMP/PARAFAC (CP)] methods and achieved the state-of-the-art results, but they are subject to certain issues and do not produce the best approximation for a tensor. For example, the number of parameters for Tucker decomposition increases exponentially according to its dimensions, and CP decomposition cannot better preserve the intrinsic correlation of the HSI. In this article, a novel nonlocal tensor-ring (TR) approximation is proposed for HSI denoising by using TR decomposition to explore the nonlocal self-similarity and global spectral correlation simultaneously. TR decomposition approximates a high-order tensor as a sequence of cyclically contracted third-order tensors, which has strong ability to explore these two intrinsic priors and to improve the HSI denoising results. Moreover, an efficient proximal alternating minimization algorithm is developed to optimize the proposed TR decomposition model efficiently. Extensive experiments on three simulated data sets under several noise levels and two real data sets verify that the proposed TR model provides better HSI denoising results than several state-of-the-art methods in terms of quantitative and visual performance evaluations.
AbstractList Hyperspectral image (HSI) denoising is a fundamental problem in remote sensing and image processing. Recently, nonlocal low-rank tensor approximation-based denoising methods have attracted much attention due to their advantage of being capable of fully exploiting the nonlocal self-similarity and global spectral correlation. Existing nonlocal low-rank tensor approximation methods were mainly based on two common decomposition [Tucker or CANDECOMP/PARAFAC (CP)] methods and achieved the state-of-the-art results, but they are subject to certain issues and do not produce the best approximation for a tensor. For example, the number of parameters for Tucker decomposition increases exponentially according to its dimensions, and CP decomposition cannot better preserve the intrinsic correlation of the HSI. In this article, a novel nonlocal tensor-ring (TR) approximation is proposed for HSI denoising by using TR decomposition to explore the nonlocal self-similarity and global spectral correlation simultaneously. TR decomposition approximates a high-order tensor as a sequence of cyclically contracted third-order tensors, which has strong ability to explore these two intrinsic priors and to improve the HSI denoising results. Moreover, an efficient proximal alternating minimization algorithm is developed to optimize the proposed TR decomposition model efficiently. Extensive experiments on three simulated data sets under several noise levels and two real data sets verify that the proposed TR model provides better HSI denoising results than several state-of-the-art methods in terms of quantitative and visual performance evaluations.
Author Yokoya, Naoto
He, Wei
Chen, Yong
Zhao, Xi-Le
Huang, Ting-Zhu
Author_xml – sequence: 1
  givenname: Yong
  orcidid: 0000-0002-5052-5919
  surname: Chen
  fullname: Chen, Yong
  email: chenyong1872008@163.com
  organization: School of Mathematical Sciences/Research Center for Image and Vision Computing, University of Electronic Science and Technology of China, Chengdu, China
– sequence: 2
  givenname: Wei
  orcidid: 0000-0003-3410-0643
  surname: He
  fullname: He, Wei
  email: wei.he@riken.jp
  organization: Geoinformatics Unit, RIKEN Center for Advanced Intelligence Project, Tokyo, Japan
– sequence: 3
  givenname: Naoto
  orcidid: 0000-0002-7321-4590
  surname: Yokoya
  fullname: Yokoya, Naoto
  email: naoto.yokoya@riken.jp
  organization: Geoinformatics Unit, RIKEN Center for Advanced Intelligence Project, Tokyo, Japan
– sequence: 4
  givenname: Ting-Zhu
  orcidid: 0000-0001-7766-230X
  surname: Huang
  fullname: Huang, Ting-Zhu
  email: tingzhuhuang@126.com
  organization: School of Mathematical Sciences/Research Center for Image and Vision Computing, University of Electronic Science and Technology of China, Chengdu, China
– sequence: 5
  givenname: Xi-Le
  orcidid: 0000-0002-6540-946X
  surname: Zhao
  fullname: Zhao, Xi-Le
  email: xlzhao122003@163.com
  organization: School of Mathematical Sciences/Research Center for Image and Vision Computing, University of Electronic Science and Technology of China, Chengdu, China
BookMark eNp9kE1PAjEQhhuDiYj-AONlE8-L_dh226MBBRKiCeK5WcosKVnatV0O_Hu7gXjw4GkmM887H-8tGjjvAKEHgseEYPW8nq0-xxQTNaaqEJjjKzQknMsci6IYoGHqiJxKRW_QbYx7jEnBSTlE03fvGm-qJluDiz7kK-t22RSMP7Q-2s56l9U-ZPNTCyG2YLqQ2MWh2kGinLcx8Xfouq6aCPeXOEJfb6_ryTxffswWk5dlbhhXXW6kgjJlQHlpNnizBSMFU0Sx0oDghphUIhumWCFFLTAlFS6VKknN-FZRyUbo6Ty3Df77CLHTe38MLq3UlBWcE5q-SlR5pkzwMQaotbFd1X-SbreNJlj3luneMt1bpi-WJSX5o2yDPVTh9K_m8ayxAPDLSykZxZz9AK_0eHE
CODEN IGRSD2
CitedBy_id crossref_primary_10_1109_ACCESS_2023_3304005
crossref_primary_10_1109_TGRS_2023_3269224
crossref_primary_10_1109_TIP_2020_2994411
crossref_primary_10_1016_j_sigpro_2024_109718
crossref_primary_10_1109_LGRS_2021_3124804
crossref_primary_10_1109_JSTARS_2024_3357732
crossref_primary_10_1007_s11432_022_3609_4
crossref_primary_10_1016_j_jag_2023_103481
crossref_primary_10_1109_ACCESS_2020_3022626
crossref_primary_10_1109_TGRS_2024_3389981
crossref_primary_10_1016_j_infrared_2023_104667
crossref_primary_10_1109_ACCESS_2020_3008004
crossref_primary_10_1109_JSTARS_2024_3398201
crossref_primary_10_1016_j_sigpro_2023_108942
crossref_primary_10_1109_LGRS_2025_3569305
crossref_primary_10_1109_TGRS_2021_3085779
crossref_primary_10_1016_j_sigpro_2024_109514
crossref_primary_10_1080_01431161_2023_2229497
crossref_primary_10_1109_TGRS_2021_3131878
crossref_primary_10_1109_TGRS_2020_3048138
crossref_primary_10_1109_TGRS_2025_3527056
crossref_primary_10_1080_01431161_2023_2187720
crossref_primary_10_1109_TGRS_2024_3385536
crossref_primary_10_1109_JSTARS_2021_3076170
crossref_primary_10_1109_JSTARS_2020_3042966
crossref_primary_10_1007_s10489_022_03346_1
crossref_primary_10_1016_j_infrared_2025_106139
crossref_primary_10_1109_JSTARS_2020_3046488
crossref_primary_10_1109_TGRS_2021_3114197
crossref_primary_10_1016_j_compbiomed_2024_108591
crossref_primary_10_1109_TGRS_2022_3217051
crossref_primary_10_1109_TGRS_2022_3202359
crossref_primary_10_1016_j_patcog_2021_108280
crossref_primary_10_1109_JSTARS_2022_3199207
crossref_primary_10_1080_01431161_2025_2511210
crossref_primary_10_1109_TGRS_2022_3228927
crossref_primary_10_1109_MGRS_2021_3075491
crossref_primary_10_1109_TGRS_2022_3202714
crossref_primary_10_1109_TGRS_2022_3217097
crossref_primary_10_1109_TGRS_2023_3277832
crossref_primary_10_1109_TGRS_2025_3549625
crossref_primary_10_1016_j_sigpro_2024_109705
crossref_primary_10_1109_TCSVT_2021_3067022
crossref_primary_10_1109_TGRS_2020_3024623
crossref_primary_10_1109_JSTARS_2021_3108233
crossref_primary_10_1016_j_cviu_2024_104270
crossref_primary_10_1109_TNNLS_2021_3106654
crossref_primary_10_1109_TCI_2021_3126232
crossref_primary_10_1109_TPAMI_2024_3464875
crossref_primary_10_1109_TGRS_2024_3385448
crossref_primary_10_1109_TMI_2022_3156270
crossref_primary_10_1109_TNNLS_2024_3383392
crossref_primary_10_1109_TGRS_2025_3583772
crossref_primary_10_1109_TKDE_2022_3176466
crossref_primary_10_1109_JSTARS_2022_3228942
crossref_primary_10_1016_j_amc_2021_126342
crossref_primary_10_1109_TIP_2024_3475738
crossref_primary_10_1109_TGRS_2023_3242728
crossref_primary_10_1109_TCYB_2022_3157133
crossref_primary_10_1109_ACCESS_2022_3233831
crossref_primary_10_1109_MGRS_2021_3064051
crossref_primary_10_1109_TGRS_2021_3068465
crossref_primary_10_1016_j_neunet_2025_107808
crossref_primary_10_3390_rs14194815
crossref_primary_10_1109_JSTARS_2021_3076793
crossref_primary_10_1016_j_knosys_2022_108590
crossref_primary_10_1109_ACCESS_2024_3359036
crossref_primary_10_1109_LGRS_2023_3322946
crossref_primary_10_1109_TGRS_2021_3091157
crossref_primary_10_1016_j_asoc_2021_108028
crossref_primary_10_1109_TNNLS_2023_3278866
crossref_primary_10_1109_TGRS_2022_3177719
crossref_primary_10_1109_TGRS_2022_3227735
crossref_primary_10_1109_TGRS_2020_2987954
crossref_primary_10_1109_TIP_2022_3196826
crossref_primary_10_1109_JSTARS_2021_3111404
crossref_primary_10_1016_j_jvcir_2025_104406
crossref_primary_10_1109_TIP_2022_3226406
crossref_primary_10_1016_j_infrared_2022_104232
crossref_primary_10_1109_TGRS_2022_3142988
crossref_primary_10_1016_j_dsp_2025_105169
crossref_primary_10_1109_TGRS_2021_3110769
crossref_primary_10_1109_TGRS_2023_3311482
crossref_primary_10_1109_JSTARS_2021_3079210
crossref_primary_10_1016_j_neunet_2025_107713
crossref_primary_10_1080_10095020_2025_2477552
crossref_primary_10_3390_rs12182979
crossref_primary_10_1016_j_cag_2025_104366
crossref_primary_10_1109_LGRS_2022_3199820
crossref_primary_10_3390_rs14030467
crossref_primary_10_1080_13682199_2024_2344900
crossref_primary_10_1109_TGRS_2022_3206783
Cites_doi 10.1109/TGRS.2012.2227764
10.1109/TGRS.2017.2771155
10.1109/JSTARS.2018.2791718
10.1109/TCYB.2019.2936042
10.1109/CVPR.2017.625
10.1109/TGRS.2016.2547879
10.1137/060670080
10.1109/TGRS.2019.2924017
10.1016/j.apm.2019.02.001
10.1109/CVPR.2014.377
10.1109/MGRS.2016.2637824
10.1109/TGRS.2018.2859203
10.1109/TIP.2018.2839531
10.1109/CVPR.2019.00703
10.1016/j.sigpro.2017.06.012
10.1109/TGRS.2014.2363101
10.1016/j.isprsjprs.2019.09.003
10.1109/TGRS.2012.2187063
10.1137/07070111X
10.1109/TIP.2017.2676466
10.1109/TIP.2003.819861
10.1109/TGRS.2015.2452812
10.1007/s10107-011-0484-9
10.1109/TPAMI.2017.2734888
10.1137/120891009
10.1016/j.cam.2019.06.004
10.1109/JSTARS.2017.2779539
10.1109/LGRS.2017.2701805
10.1609/aaai.v33i01.33019151
10.1109/JSTARS.2018.2877722
10.1109/TGRS.2012.2185054
10.1109/CVPR.2005.38
10.1109/TGRS.2013.2284280
10.1109/TCYB.2017.2677944
10.1109/TIP.2012.2210725
10.1016/j.apm.2018.06.044
10.1109/TIP.2012.2235847
10.1109/TGRS.2018.2889256
10.23919/APSIPA.2018.8659708
10.1109/TIP.2007.901238
10.1109/TGRS.2018.2865197
10.1109/CVPR.2016.187
10.1016/j.ins.2018.01.035
10.1561/2400000003
10.1109/TGRS.2017.2706326
10.1016/0167-2789(92)90242-F
10.1109/ICCV.2017.607
10.1109/TGRS.2014.2321557
10.1109/ICASSP.2019.8682231
10.1109/JSTARS.2018.2805290
10.1109/CVPR.2014.366
10.1109/JSTARS.2018.2796570
10.1109/TIP.2006.881969
10.1109/LGRS.2008.915736
10.1109/TGRS.2018.2833473
10.1109/TIP.2011.2109730
10.1109/TGRS.2015.2489218
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
DOI 10.1109/TGRS.2019.2946050
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList Aerospace Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1558-0644
EndPage 1362
ExternalDocumentID 10_1109_TGRS_2019_2946050
8883205
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61772003; 61876203
  funderid: 10.13039/501100001809
– fundername: Japan Society for the Promotion of Science
  grantid: 18K18067; 19K20308
  funderid: 10.13039/501100001691
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
VH1
Y6R
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
ID FETCH-LOGICAL-c359t-c89e7359e257cb0bdec86391937ce65c1cbde1b393486f6021a079971f35d9283
IEDL.DBID RIE
ISICitedReferencesCount 99
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000510710600048&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0196-2892
IngestDate Mon Jun 30 08:39:21 EDT 2025
Sat Nov 29 02:50:02 EST 2025
Tue Nov 18 22:28:58 EST 2025
Wed Aug 27 02:40:22 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c359t-c89e7359e257cb0bdec86391937ce65c1cbde1b393486f6021a079971f35d9283
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5052-5919
0000-0002-7321-4590
0000-0003-3410-0643
0000-0002-6540-946X
0000-0001-7766-230X
PQID 2345512145
PQPubID 85465
PageCount 15
ParticipantIDs proquest_journals_2345512145
ieee_primary_8883205
crossref_primary_10_1109_TGRS_2019_2946050
crossref_citationtrail_10_1109_TGRS_2019_2946050
PublicationCentury 2000
PublicationDate 2020-02-01
PublicationDateYYYYMMDD 2020-02-01
PublicationDate_xml – month: 02
  year: 2020
  text: 2020-02-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on geoscience and remote sensing
PublicationTitleAbbrev TGRS
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref13
ref56
ref12
ref59
ref15
ref58
ref14
ref53
ref52
ref11
ref54
ref10
zhao (ref38) 2016
ref17
ref16
ref19
ref18
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
wald (ref55) 2002
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
References_xml – ident: ref4
  doi: 10.1109/TGRS.2012.2227764
– ident: ref36
  doi: 10.1109/TGRS.2017.2771155
– ident: ref27
  doi: 10.1109/JSTARS.2018.2791718
– ident: ref26
  doi: 10.1109/TCYB.2019.2936042
– ident: ref33
  doi: 10.1109/CVPR.2017.625
– ident: ref16
  doi: 10.1109/TGRS.2016.2547879
– ident: ref59
  doi: 10.1137/060670080
– ident: ref43
  doi: 10.1109/TGRS.2019.2924017
– ident: ref49
  doi: 10.1016/j.apm.2019.02.001
– ident: ref31
  doi: 10.1109/CVPR.2014.377
– ident: ref3
  doi: 10.1109/MGRS.2016.2637824
– ident: ref58
  doi: 10.1109/TGRS.2018.2859203
– ident: ref2
  doi: 10.1109/TIP.2018.2839531
– ident: ref34
  doi: 10.1109/CVPR.2019.00703
– ident: ref18
  doi: 10.1016/j.sigpro.2017.06.012
– ident: ref20
  doi: 10.1109/TGRS.2014.2363101
– ident: ref12
  doi: 10.1016/j.isprsjprs.2019.09.003
– ident: ref1
  doi: 10.1109/TGRS.2012.2187063
– ident: ref44
  doi: 10.1137/07070111X
– ident: ref11
  doi: 10.1109/TIP.2017.2676466
– ident: ref53
  doi: 10.1109/TIP.2003.819861
– ident: ref14
  doi: 10.1109/TGRS.2015.2452812
– ident: ref46
  doi: 10.1007/s10107-011-0484-9
– ident: ref35
  doi: 10.1109/TPAMI.2017.2734888
– ident: ref47
  doi: 10.1137/120891009
– ident: ref6
  doi: 10.1016/j.cam.2019.06.004
– year: 2016
  ident: ref38
  article-title: Tensor ring decomposition
  publication-title: arXiv 1606 05535
– ident: ref28
  doi: 10.1109/JSTARS.2017.2779539
– ident: ref17
  doi: 10.1109/LGRS.2017.2701805
– ident: ref42
  doi: 10.1609/aaai.v33i01.33019151
– ident: ref29
  doi: 10.1109/JSTARS.2018.2877722
– ident: ref56
  doi: 10.1109/TGRS.2012.2185054
– ident: ref8
  doi: 10.1109/CVPR.2005.38
– year: 2002
  ident: ref55
  publication-title: Data Fusion Definitions and Architectures Fusion of Images of Different Spatial Resolutions
– ident: ref52
  doi: 10.1109/TGRS.2013.2284280
– ident: ref22
  doi: 10.1109/TCYB.2017.2677944
– ident: ref37
  doi: 10.1109/TIP.2012.2210725
– ident: ref21
  doi: 10.1016/j.apm.2018.06.044
– ident: ref9
  doi: 10.1109/TIP.2012.2235847
– ident: ref45
  doi: 10.1109/TGRS.2018.2889256
– ident: ref41
  doi: 10.23919/APSIPA.2018.8659708
– ident: ref51
  doi: 10.1109/TIP.2007.901238
– ident: ref57
  doi: 10.1109/TGRS.2018.2865197
– ident: ref32
  doi: 10.1109/CVPR.2016.187
– ident: ref48
  doi: 10.1016/j.ins.2018.01.035
– ident: ref50
  doi: 10.1561/2400000003
– ident: ref15
  doi: 10.1109/TGRS.2017.2706326
– ident: ref5
  doi: 10.1016/0167-2789(92)90242-F
– ident: ref40
  doi: 10.1109/ICCV.2017.607
– ident: ref13
  doi: 10.1109/TGRS.2014.2321557
– ident: ref39
  doi: 10.1109/ICASSP.2019.8682231
– ident: ref23
  doi: 10.1109/JSTARS.2018.2805290
– ident: ref10
  doi: 10.1109/CVPR.2014.366
– ident: ref24
  doi: 10.1109/JSTARS.2018.2796570
– ident: ref7
  doi: 10.1109/TIP.2006.881969
– ident: ref25
  doi: 10.1109/LGRS.2008.915736
– ident: ref30
  doi: 10.1109/TGRS.2018.2833473
– ident: ref54
  doi: 10.1109/TIP.2011.2109730
– ident: ref19
  doi: 10.1109/TGRS.2015.2489218
SSID ssj0014517
Score 2.590751
Snippet Hyperspectral image (HSI) denoising is a fundamental problem in remote sensing and image processing. Recently, nonlocal low-rank tensor approximation-based...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1348
SubjectTerms Algorithms
Approximation
Computer simulation
Correlation
Data models
Datasets
Decomposition
Denoising
Dimensions
hyperspectral image (HSI)
Hyperspectral imaging
Image processing
Matrix decomposition
Methods
Noise levels
Noise reduction
nonlocal self-similarity
Optimization
Performance evaluation
Remote sensing
Self-similarity
Spectral correlation
tensor-ring (TR) decomposition
Tensors
Title Nonlocal Tensor-Ring Decomposition for Hyperspectral Image Denoising
URI https://ieeexplore.ieee.org/document/8883205
https://www.proquest.com/docview/2345512145
Volume 58
WOSCitedRecordID wos000510710600048&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-0644
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014517
  issn: 0196-2892
  databaseCode: RIE
  dateStart: 19800101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB5WUdCDb3F90YMnMdpHmsdR1FUvi-gK3kqbTkDQVvbh73eSjYuiCN5CmUDJJJlvMt_MABwhT1BaJZhNLTKueMUqKyqGmeXcVCUqy32zCdnvq6cnfdeBk1kuDCJ68hmeuqGP5detmbinsjPy1rLUFSydk1JMc7VmEQOeJyE1WjByItIQwUxifTa4vn9wJC59mmoXBoy_2SDfVOXHTezNS2_1fz-2BisBRkbnU72vQwebDVj-UlxwAxY9udOMNuGy3zbeZkUDclrbIbsngegSHZ08cLYiwq7RDfmk09TLIcnevtJVQ1JN--zeE7bgsXc1uLhhoXsCM1mux8wojZJGSIfSVHFVo1EERwiwSYMiN4mhT0mV6YwrYQXZ-jKWWsvEZnmtCXVsw3zTNrgDES9NqYxRVqDktVVVWuc1mb_ElLUWKLoQf65nYUJpcdfh4qXwLkasC6eCwqmgCCrowvFsytu0rsZfwptuzWeCYbm7sP-ptCKcvFGRZpxAoKu_vvv7rD1YSp3P7JnX-zA_Hk7wABbM-_h5NDz0m-oDEVzKBw
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB7EB-rBt7g-e_Akxu0jTZOj-FpRF9EVvJU2nYCgreyu_n4n2bgoiuAtlAmUTJL5JvPNDMA-8ggzIwUzsUHGJS9ZaUTJMDGc67JAabhrNpF1u_LxUd1OwOE4FwYRHfkMj-zQxfKrRr_Zp7I2eWtJbAuWTqWcx-EoW2scM-Bp5JOjBSM3IvYxzChU7d7F3b2lcamjWNlAYPjNCrm2Kj_uYmdgzhf_92tLsOCBZHA80vwyTGC9AvNfyguuwIyjd-rBKpx2m9pZraBHbmvTZ3ckEJyiJZR71lZA6DXokFc6Sr7sk-zlC102JFU3T_ZFYQ0ezs96Jx3m-ycwnaRqyLRUmNEI6VjqMiwr1JIACUG2TKNIdaTpU1QmKuFSGEHWvggzpbLIJGmlCHesw2Td1LgBAS90IbWWRmDGKyPLuEorMoCRLiolULQg_FzPXPvi4rbHxXPunIxQ5VYFuVVB7lXQgoPxlNdRZY2_hFftmo8F_XK3YPtTabk_e4M8TjjBQFuBffP3WXsw2-ndXOfXl92rLZiLrQfteNjbMDnsv-EOTOv34dOgv-s22Ae_tc1O
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nonlocal+Tensor-Ring+Decomposition+for+Hyperspectral+Image+Denoising&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=Chen%2C+Yong&rft.au=He%2C+Wei&rft.au=Yokoya%2C+Naoto&rft.au=Huang%2C+Ting-Zhu&rft.date=2020-02-01&rft.issn=0196-2892&rft.eissn=1558-0644&rft.volume=58&rft.issue=2&rft.spage=1348&rft.epage=1362&rft_id=info:doi/10.1109%2FTGRS.2019.2946050&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TGRS_2019_2946050
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon