Nonlocal Tensor-Ring Decomposition for Hyperspectral Image Denoising
Hyperspectral image (HSI) denoising is a fundamental problem in remote sensing and image processing. Recently, nonlocal low-rank tensor approximation-based denoising methods have attracted much attention due to their advantage of being capable of fully exploiting the nonlocal self-similarity and glo...
Uloženo v:
| Vydáno v: | IEEE transactions on geoscience and remote sensing Ročník 58; číslo 2; s. 1348 - 1362 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
IEEE
01.02.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 0196-2892, 1558-0644 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Hyperspectral image (HSI) denoising is a fundamental problem in remote sensing and image processing. Recently, nonlocal low-rank tensor approximation-based denoising methods have attracted much attention due to their advantage of being capable of fully exploiting the nonlocal self-similarity and global spectral correlation. Existing nonlocal low-rank tensor approximation methods were mainly based on two common decomposition [Tucker or CANDECOMP/PARAFAC (CP)] methods and achieved the state-of-the-art results, but they are subject to certain issues and do not produce the best approximation for a tensor. For example, the number of parameters for Tucker decomposition increases exponentially according to its dimensions, and CP decomposition cannot better preserve the intrinsic correlation of the HSI. In this article, a novel nonlocal tensor-ring (TR) approximation is proposed for HSI denoising by using TR decomposition to explore the nonlocal self-similarity and global spectral correlation simultaneously. TR decomposition approximates a high-order tensor as a sequence of cyclically contracted third-order tensors, which has strong ability to explore these two intrinsic priors and to improve the HSI denoising results. Moreover, an efficient proximal alternating minimization algorithm is developed to optimize the proposed TR decomposition model efficiently. Extensive experiments on three simulated data sets under several noise levels and two real data sets verify that the proposed TR model provides better HSI denoising results than several state-of-the-art methods in terms of quantitative and visual performance evaluations. |
|---|---|
| AbstractList | Hyperspectral image (HSI) denoising is a fundamental problem in remote sensing and image processing. Recently, nonlocal low-rank tensor approximation-based denoising methods have attracted much attention due to their advantage of being capable of fully exploiting the nonlocal self-similarity and global spectral correlation. Existing nonlocal low-rank tensor approximation methods were mainly based on two common decomposition [Tucker or CANDECOMP/PARAFAC (CP)] methods and achieved the state-of-the-art results, but they are subject to certain issues and do not produce the best approximation for a tensor. For example, the number of parameters for Tucker decomposition increases exponentially according to its dimensions, and CP decomposition cannot better preserve the intrinsic correlation of the HSI. In this article, a novel nonlocal tensor-ring (TR) approximation is proposed for HSI denoising by using TR decomposition to explore the nonlocal self-similarity and global spectral correlation simultaneously. TR decomposition approximates a high-order tensor as a sequence of cyclically contracted third-order tensors, which has strong ability to explore these two intrinsic priors and to improve the HSI denoising results. Moreover, an efficient proximal alternating minimization algorithm is developed to optimize the proposed TR decomposition model efficiently. Extensive experiments on three simulated data sets under several noise levels and two real data sets verify that the proposed TR model provides better HSI denoising results than several state-of-the-art methods in terms of quantitative and visual performance evaluations. |
| Author | Yokoya, Naoto He, Wei Chen, Yong Zhao, Xi-Le Huang, Ting-Zhu |
| Author_xml | – sequence: 1 givenname: Yong orcidid: 0000-0002-5052-5919 surname: Chen fullname: Chen, Yong email: chenyong1872008@163.com organization: School of Mathematical Sciences/Research Center for Image and Vision Computing, University of Electronic Science and Technology of China, Chengdu, China – sequence: 2 givenname: Wei orcidid: 0000-0003-3410-0643 surname: He fullname: He, Wei email: wei.he@riken.jp organization: Geoinformatics Unit, RIKEN Center for Advanced Intelligence Project, Tokyo, Japan – sequence: 3 givenname: Naoto orcidid: 0000-0002-7321-4590 surname: Yokoya fullname: Yokoya, Naoto email: naoto.yokoya@riken.jp organization: Geoinformatics Unit, RIKEN Center for Advanced Intelligence Project, Tokyo, Japan – sequence: 4 givenname: Ting-Zhu orcidid: 0000-0001-7766-230X surname: Huang fullname: Huang, Ting-Zhu email: tingzhuhuang@126.com organization: School of Mathematical Sciences/Research Center for Image and Vision Computing, University of Electronic Science and Technology of China, Chengdu, China – sequence: 5 givenname: Xi-Le orcidid: 0000-0002-6540-946X surname: Zhao fullname: Zhao, Xi-Le email: xlzhao122003@163.com organization: School of Mathematical Sciences/Research Center for Image and Vision Computing, University of Electronic Science and Technology of China, Chengdu, China |
| BookMark | eNp9kE1PAjEQhhuDiYj-AONlE8-L_dh226MBBRKiCeK5WcosKVnatV0O_Hu7gXjw4GkmM887H-8tGjjvAKEHgseEYPW8nq0-xxQTNaaqEJjjKzQknMsci6IYoGHqiJxKRW_QbYx7jEnBSTlE03fvGm-qJluDiz7kK-t22RSMP7Q-2s56l9U-ZPNTCyG2YLqQ2MWh2kGinLcx8Xfouq6aCPeXOEJfb6_ryTxffswWk5dlbhhXXW6kgjJlQHlpNnizBSMFU0Sx0oDghphUIhumWCFFLTAlFS6VKknN-FZRyUbo6Ty3Df77CLHTe38MLq3UlBWcE5q-SlR5pkzwMQaotbFd1X-SbreNJlj3luneMt1bpi-WJSX5o2yDPVTh9K_m8ayxAPDLSykZxZz9AK_0eHE |
| CODEN | IGRSD2 |
| CitedBy_id | crossref_primary_10_1109_ACCESS_2023_3304005 crossref_primary_10_1109_TGRS_2023_3269224 crossref_primary_10_1109_TIP_2020_2994411 crossref_primary_10_1016_j_sigpro_2024_109718 crossref_primary_10_1109_LGRS_2021_3124804 crossref_primary_10_1109_JSTARS_2024_3357732 crossref_primary_10_1007_s11432_022_3609_4 crossref_primary_10_1016_j_jag_2023_103481 crossref_primary_10_1109_ACCESS_2020_3022626 crossref_primary_10_1109_TGRS_2024_3389981 crossref_primary_10_1016_j_infrared_2023_104667 crossref_primary_10_1109_ACCESS_2020_3008004 crossref_primary_10_1109_JSTARS_2024_3398201 crossref_primary_10_1016_j_sigpro_2023_108942 crossref_primary_10_1109_LGRS_2025_3569305 crossref_primary_10_1109_TGRS_2021_3085779 crossref_primary_10_1016_j_sigpro_2024_109514 crossref_primary_10_1080_01431161_2023_2229497 crossref_primary_10_1109_TGRS_2021_3131878 crossref_primary_10_1109_TGRS_2020_3048138 crossref_primary_10_1109_TGRS_2025_3527056 crossref_primary_10_1080_01431161_2023_2187720 crossref_primary_10_1109_TGRS_2024_3385536 crossref_primary_10_1109_JSTARS_2021_3076170 crossref_primary_10_1109_JSTARS_2020_3042966 crossref_primary_10_1007_s10489_022_03346_1 crossref_primary_10_1016_j_infrared_2025_106139 crossref_primary_10_1109_JSTARS_2020_3046488 crossref_primary_10_1109_TGRS_2021_3114197 crossref_primary_10_1016_j_compbiomed_2024_108591 crossref_primary_10_1109_TGRS_2022_3217051 crossref_primary_10_1109_TGRS_2022_3202359 crossref_primary_10_1016_j_patcog_2021_108280 crossref_primary_10_1109_JSTARS_2022_3199207 crossref_primary_10_1080_01431161_2025_2511210 crossref_primary_10_1109_TGRS_2022_3228927 crossref_primary_10_1109_MGRS_2021_3075491 crossref_primary_10_1109_TGRS_2022_3202714 crossref_primary_10_1109_TGRS_2022_3217097 crossref_primary_10_1109_TGRS_2023_3277832 crossref_primary_10_1109_TGRS_2025_3549625 crossref_primary_10_1016_j_sigpro_2024_109705 crossref_primary_10_1109_TCSVT_2021_3067022 crossref_primary_10_1109_TGRS_2020_3024623 crossref_primary_10_1109_JSTARS_2021_3108233 crossref_primary_10_1016_j_cviu_2024_104270 crossref_primary_10_1109_TNNLS_2021_3106654 crossref_primary_10_1109_TCI_2021_3126232 crossref_primary_10_1109_TPAMI_2024_3464875 crossref_primary_10_1109_TGRS_2024_3385448 crossref_primary_10_1109_TMI_2022_3156270 crossref_primary_10_1109_TNNLS_2024_3383392 crossref_primary_10_1109_TGRS_2025_3583772 crossref_primary_10_1109_TKDE_2022_3176466 crossref_primary_10_1109_JSTARS_2022_3228942 crossref_primary_10_1016_j_amc_2021_126342 crossref_primary_10_1109_TIP_2024_3475738 crossref_primary_10_1109_TGRS_2023_3242728 crossref_primary_10_1109_TCYB_2022_3157133 crossref_primary_10_1109_ACCESS_2022_3233831 crossref_primary_10_1109_MGRS_2021_3064051 crossref_primary_10_1109_TGRS_2021_3068465 crossref_primary_10_1016_j_neunet_2025_107808 crossref_primary_10_3390_rs14194815 crossref_primary_10_1109_JSTARS_2021_3076793 crossref_primary_10_1016_j_knosys_2022_108590 crossref_primary_10_1109_ACCESS_2024_3359036 crossref_primary_10_1109_LGRS_2023_3322946 crossref_primary_10_1109_TGRS_2021_3091157 crossref_primary_10_1016_j_asoc_2021_108028 crossref_primary_10_1109_TNNLS_2023_3278866 crossref_primary_10_1109_TGRS_2022_3177719 crossref_primary_10_1109_TGRS_2022_3227735 crossref_primary_10_1109_TGRS_2020_2987954 crossref_primary_10_1109_TIP_2022_3196826 crossref_primary_10_1109_JSTARS_2021_3111404 crossref_primary_10_1016_j_jvcir_2025_104406 crossref_primary_10_1109_TIP_2022_3226406 crossref_primary_10_1016_j_infrared_2022_104232 crossref_primary_10_1109_TGRS_2022_3142988 crossref_primary_10_1016_j_dsp_2025_105169 crossref_primary_10_1109_TGRS_2021_3110769 crossref_primary_10_1109_TGRS_2023_3311482 crossref_primary_10_1109_JSTARS_2021_3079210 crossref_primary_10_1016_j_neunet_2025_107713 crossref_primary_10_1080_10095020_2025_2477552 crossref_primary_10_3390_rs12182979 crossref_primary_10_1016_j_cag_2025_104366 crossref_primary_10_1109_LGRS_2022_3199820 crossref_primary_10_3390_rs14030467 crossref_primary_10_1080_13682199_2024_2344900 crossref_primary_10_1109_TGRS_2022_3206783 |
| Cites_doi | 10.1109/TGRS.2012.2227764 10.1109/TGRS.2017.2771155 10.1109/JSTARS.2018.2791718 10.1109/TCYB.2019.2936042 10.1109/CVPR.2017.625 10.1109/TGRS.2016.2547879 10.1137/060670080 10.1109/TGRS.2019.2924017 10.1016/j.apm.2019.02.001 10.1109/CVPR.2014.377 10.1109/MGRS.2016.2637824 10.1109/TGRS.2018.2859203 10.1109/TIP.2018.2839531 10.1109/CVPR.2019.00703 10.1016/j.sigpro.2017.06.012 10.1109/TGRS.2014.2363101 10.1016/j.isprsjprs.2019.09.003 10.1109/TGRS.2012.2187063 10.1137/07070111X 10.1109/TIP.2017.2676466 10.1109/TIP.2003.819861 10.1109/TGRS.2015.2452812 10.1007/s10107-011-0484-9 10.1109/TPAMI.2017.2734888 10.1137/120891009 10.1016/j.cam.2019.06.004 10.1109/JSTARS.2017.2779539 10.1109/LGRS.2017.2701805 10.1609/aaai.v33i01.33019151 10.1109/JSTARS.2018.2877722 10.1109/TGRS.2012.2185054 10.1109/CVPR.2005.38 10.1109/TGRS.2013.2284280 10.1109/TCYB.2017.2677944 10.1109/TIP.2012.2210725 10.1016/j.apm.2018.06.044 10.1109/TIP.2012.2235847 10.1109/TGRS.2018.2889256 10.23919/APSIPA.2018.8659708 10.1109/TIP.2007.901238 10.1109/TGRS.2018.2865197 10.1109/CVPR.2016.187 10.1016/j.ins.2018.01.035 10.1561/2400000003 10.1109/TGRS.2017.2706326 10.1016/0167-2789(92)90242-F 10.1109/ICCV.2017.607 10.1109/TGRS.2014.2321557 10.1109/ICASSP.2019.8682231 10.1109/JSTARS.2018.2805290 10.1109/CVPR.2014.366 10.1109/JSTARS.2018.2796570 10.1109/TIP.2006.881969 10.1109/LGRS.2008.915736 10.1109/TGRS.2018.2833473 10.1109/TIP.2011.2109730 10.1109/TGRS.2015.2489218 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| DBID | 97E RIA RIE AAYXX CITATION 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M |
| DOI | 10.1109/TGRS.2019.2946050 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE/IET Electronic Library CrossRef Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Water Resources Abstracts Environmental Sciences and Pollution Management |
| DatabaseTitleList | Aerospace Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Physics |
| EISSN | 1558-0644 |
| EndPage | 1362 |
| ExternalDocumentID | 10_1109_TGRS_2019_2946050 8883205 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61772003; 61876203 funderid: 10.13039/501100001809 – fundername: Japan Society for the Promotion of Science grantid: 18K18067; 19K20308 funderid: 10.13039/501100001691 |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS RXW TAE TN5 VH1 Y6R AAYXX CITATION 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M |
| ID | FETCH-LOGICAL-c359t-c89e7359e257cb0bdec86391937ce65c1cbde1b393486f6021a079971f35d9283 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 99 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000510710600048&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0196-2892 |
| IngestDate | Mon Jun 30 08:39:21 EDT 2025 Sat Nov 29 02:50:02 EST 2025 Tue Nov 18 22:28:58 EST 2025 Wed Aug 27 02:40:22 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c359t-c89e7359e257cb0bdec86391937ce65c1cbde1b393486f6021a079971f35d9283 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-5052-5919 0000-0002-7321-4590 0000-0003-3410-0643 0000-0002-6540-946X 0000-0001-7766-230X |
| PQID | 2345512145 |
| PQPubID | 85465 |
| PageCount | 15 |
| ParticipantIDs | proquest_journals_2345512145 ieee_primary_8883205 crossref_primary_10_1109_TGRS_2019_2946050 crossref_citationtrail_10_1109_TGRS_2019_2946050 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-02-01 |
| PublicationDateYYYYMMDD | 2020-02-01 |
| PublicationDate_xml | – month: 02 year: 2020 text: 2020-02-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on geoscience and remote sensing |
| PublicationTitleAbbrev | TGRS |
| PublicationYear | 2020 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref57 ref13 ref56 ref12 ref59 ref15 ref58 ref14 ref53 ref52 ref11 ref54 ref10 zhao (ref38) 2016 ref17 ref16 ref19 ref18 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 wald (ref55) 2002 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 |
| References_xml | – ident: ref4 doi: 10.1109/TGRS.2012.2227764 – ident: ref36 doi: 10.1109/TGRS.2017.2771155 – ident: ref27 doi: 10.1109/JSTARS.2018.2791718 – ident: ref26 doi: 10.1109/TCYB.2019.2936042 – ident: ref33 doi: 10.1109/CVPR.2017.625 – ident: ref16 doi: 10.1109/TGRS.2016.2547879 – ident: ref59 doi: 10.1137/060670080 – ident: ref43 doi: 10.1109/TGRS.2019.2924017 – ident: ref49 doi: 10.1016/j.apm.2019.02.001 – ident: ref31 doi: 10.1109/CVPR.2014.377 – ident: ref3 doi: 10.1109/MGRS.2016.2637824 – ident: ref58 doi: 10.1109/TGRS.2018.2859203 – ident: ref2 doi: 10.1109/TIP.2018.2839531 – ident: ref34 doi: 10.1109/CVPR.2019.00703 – ident: ref18 doi: 10.1016/j.sigpro.2017.06.012 – ident: ref20 doi: 10.1109/TGRS.2014.2363101 – ident: ref12 doi: 10.1016/j.isprsjprs.2019.09.003 – ident: ref1 doi: 10.1109/TGRS.2012.2187063 – ident: ref44 doi: 10.1137/07070111X – ident: ref11 doi: 10.1109/TIP.2017.2676466 – ident: ref53 doi: 10.1109/TIP.2003.819861 – ident: ref14 doi: 10.1109/TGRS.2015.2452812 – ident: ref46 doi: 10.1007/s10107-011-0484-9 – ident: ref35 doi: 10.1109/TPAMI.2017.2734888 – ident: ref47 doi: 10.1137/120891009 – ident: ref6 doi: 10.1016/j.cam.2019.06.004 – year: 2016 ident: ref38 article-title: Tensor ring decomposition publication-title: arXiv 1606 05535 – ident: ref28 doi: 10.1109/JSTARS.2017.2779539 – ident: ref17 doi: 10.1109/LGRS.2017.2701805 – ident: ref42 doi: 10.1609/aaai.v33i01.33019151 – ident: ref29 doi: 10.1109/JSTARS.2018.2877722 – ident: ref56 doi: 10.1109/TGRS.2012.2185054 – ident: ref8 doi: 10.1109/CVPR.2005.38 – year: 2002 ident: ref55 publication-title: Data Fusion Definitions and Architectures Fusion of Images of Different Spatial Resolutions – ident: ref52 doi: 10.1109/TGRS.2013.2284280 – ident: ref22 doi: 10.1109/TCYB.2017.2677944 – ident: ref37 doi: 10.1109/TIP.2012.2210725 – ident: ref21 doi: 10.1016/j.apm.2018.06.044 – ident: ref9 doi: 10.1109/TIP.2012.2235847 – ident: ref45 doi: 10.1109/TGRS.2018.2889256 – ident: ref41 doi: 10.23919/APSIPA.2018.8659708 – ident: ref51 doi: 10.1109/TIP.2007.901238 – ident: ref57 doi: 10.1109/TGRS.2018.2865197 – ident: ref32 doi: 10.1109/CVPR.2016.187 – ident: ref48 doi: 10.1016/j.ins.2018.01.035 – ident: ref50 doi: 10.1561/2400000003 – ident: ref15 doi: 10.1109/TGRS.2017.2706326 – ident: ref5 doi: 10.1016/0167-2789(92)90242-F – ident: ref40 doi: 10.1109/ICCV.2017.607 – ident: ref13 doi: 10.1109/TGRS.2014.2321557 – ident: ref39 doi: 10.1109/ICASSP.2019.8682231 – ident: ref23 doi: 10.1109/JSTARS.2018.2805290 – ident: ref10 doi: 10.1109/CVPR.2014.366 – ident: ref24 doi: 10.1109/JSTARS.2018.2796570 – ident: ref7 doi: 10.1109/TIP.2006.881969 – ident: ref25 doi: 10.1109/LGRS.2008.915736 – ident: ref30 doi: 10.1109/TGRS.2018.2833473 – ident: ref54 doi: 10.1109/TIP.2011.2109730 – ident: ref19 doi: 10.1109/TGRS.2015.2489218 |
| SSID | ssj0014517 |
| Score | 2.5906923 |
| Snippet | Hyperspectral image (HSI) denoising is a fundamental problem in remote sensing and image processing. Recently, nonlocal low-rank tensor approximation-based... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1348 |
| SubjectTerms | Algorithms Approximation Computer simulation Correlation Data models Datasets Decomposition Denoising Dimensions hyperspectral image (HSI) Hyperspectral imaging Image processing Matrix decomposition Methods Noise levels Noise reduction nonlocal self-similarity Optimization Performance evaluation Remote sensing Self-similarity Spectral correlation tensor-ring (TR) decomposition Tensors |
| Title | Nonlocal Tensor-Ring Decomposition for Hyperspectral Image Denoising |
| URI | https://ieeexplore.ieee.org/document/8883205 https://www.proquest.com/docview/2345512145 |
| Volume | 58 |
| WOSCitedRecordID | wos000510710600048&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-0644 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014517 issn: 0196-2892 databaseCode: RIE dateStart: 19800101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB7WRUEPvsX1RQ-exGibJk1zFHVdL4usK3gr23QKgrayD3-_kzS7KIrgLYcJlJkm832ZF8BpmhuZGBExRSSZiULkLB1xwRKTFwLTqDS8GTah-v30-Vk_tOB8UQuDiC75DC_s0sXyi9rM7FPZJbG1mNuGpUtKJU2t1iJiIGTkS6MTRiSC-whmFOrL4d3g0SZx6QuubRgw_OaD3FCVHzexcy_djf992CasexgZXDV234IWVtuw9qW54DasuOROM9mBm35dOZ8VDIm01mM2IIHgBm06uc_ZCgi7Bj3ipE3p5Zhk79_oqiGpqn6x7wm78NS9HV73mJ-ewEws9ZSZVKOiFdKhNHmYF2hSgiME2JTBRJqIrIFRHutYpEmZkK8fhUprFZWxLDShjj1oV3WF-xDECQqtZClHhgAIkVqeczRK6lIUmI5kB8K5PjPjW4vbCRevmaMYoc6sCTJrgsyboANniy3vTV-Nv4R3rM4Xgl7dHTiaGy3zJ2-S8VgQCLT91w9-33UIq9xyZpd5fQTt6XiGx7BsPqYvk_GJ-6k-AYWmyB4 |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB7EB-rBt7i6ag-exLhtmrTNUXzt4rrIuoK3sk2nIGgru6u_30kaF0URvOUwgTLTZL4v8wI4SjItIy0CFhNJZiIXGUuGXLBIZ7nAJCg0r4dNxL1e8vio7mbgZFoLg4g2-QxPzdLG8vNKv5mnshaxtZCbhqVzUgju19Va05iBkIErjo4Y0QjuYpiBr1qD6_69SeNSp1yZQKD_zQvZsSo_7mLrYK5W__dpa7DigKR3Vlt-HWaw3IDlL-0FN2DBpnfq8SZc9KrSei1vQLS1GrE-CXgXaBLKXdaWR-jVaxMrrYsvRyTbeaHLhqTK6sm8KGzBw9Xl4LzN3PwEpkOpJkwnCmNaIR1LnflZjjohQEKQLdYYSR2QPTDIQhWKJCoi8vZDP1YqDopQ5opwxzbMllWJO-CFEQoVy0IONUEQorU846hjqQqRYzKUDfA_9Zlq11zczLh4Ti3J8FVqTJAaE6TOBA04nm55rTtr_CW8aXQ-FXTqbkDz02ipO3vjlIeCYKDpwL77-65DWGwPbrtpt9O72YMlbhi0zcNuwuxk9Ib7MK_fJ0_j0YH9wT4AGxrLZQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nonlocal+Tensor-Ring+Decomposition+for+Hyperspectral+Image+Denoising&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=Chen%2C+Yong&rft.au=He%2C+Wei&rft.au=Yokoya%2C+Naoto&rft.au=Huang%2C+Ting-Zhu&rft.date=2020-02-01&rft.pub=IEEE&rft.issn=0196-2892&rft.volume=58&rft.issue=2&rft.spage=1348&rft.epage=1362&rft_id=info:doi/10.1109%2FTGRS.2019.2946050&rft.externalDocID=8883205 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon |