Learning customized and optimized lists of rules with mathematical programming
We introduce a mathematical programming approach to building rule lists, which are a type of interpretable, nonlinear, and logical machine learning classifier involving IF-THEN rules. Unlike traditional decision tree algorithms like CART and C5.0, this method does not use greedy splitting and prunin...
Saved in:
| Published in: | Mathematical programming computation Vol. 10; no. 4; pp. 659 - 702 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.12.2018
Springer Nature B.V |
| Subjects: | |
| ISSN: | 1867-2949, 1867-2957 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | We introduce a mathematical programming approach to building rule lists, which are a type of interpretable, nonlinear, and logical machine learning classifier involving IF-THEN rules. Unlike traditional decision tree algorithms like CART and C5.0, this method does not use greedy splitting and pruning. Instead, it aims to fully optimize a combination of accuracy and sparsity, obeying user-defined constraints. This method is useful for producing non-black-box predictive models, and has the benefit of a clear user-defined tradeoff between training accuracy and sparsity. The flexible framework of mathematical programming allows users to create customized models with a provable guarantee of optimality. The software reviewed as part of this submission was given the DOI (Digital Object Identifier)
https://doi.org/10.5281/zenodo.1344142
. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1867-2949 1867-2957 |
| DOI: | 10.1007/s12532-018-0143-8 |