Learning customized and optimized lists of rules with mathematical programming
We introduce a mathematical programming approach to building rule lists, which are a type of interpretable, nonlinear, and logical machine learning classifier involving IF-THEN rules. Unlike traditional decision tree algorithms like CART and C5.0, this method does not use greedy splitting and prunin...
Saved in:
| Published in: | Mathematical programming computation Vol. 10; no. 4; pp. 659 - 702 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.12.2018
Springer Nature B.V |
| Subjects: | |
| ISSN: | 1867-2949, 1867-2957 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | We introduce a mathematical programming approach to building rule lists, which are a type of interpretable, nonlinear, and logical machine learning classifier involving IF-THEN rules. Unlike traditional decision tree algorithms like CART and C5.0, this method does not use greedy splitting and pruning. Instead, it aims to fully optimize a combination of accuracy and sparsity, obeying user-defined constraints. This method is useful for producing non-black-box predictive models, and has the benefit of a clear user-defined tradeoff between training accuracy and sparsity. The flexible framework of mathematical programming allows users to create customized models with a provable guarantee of optimality. The software reviewed as part of this submission was given the DOI (Digital Object Identifier)
https://doi.org/10.5281/zenodo.1344142
. |
|---|---|
| AbstractList | We introduce a mathematical programming approach to building rule lists, which are a type of interpretable, nonlinear, and logical machine learning classifier involving IF-THEN rules. Unlike traditional decision tree algorithms like CART and C5.0, this method does not use greedy splitting and pruning. Instead, it aims to fully optimize a combination of accuracy and sparsity, obeying user-defined constraints. This method is useful for producing non-black-box predictive models, and has the benefit of a clear user-defined tradeoff between training accuracy and sparsity. The flexible framework of mathematical programming allows users to create customized models with a provable guarantee of optimality. The software reviewed as part of this submission was given the DOI (Digital Object Identifier)
https://doi.org/10.5281/zenodo.1344142
. We introduce a mathematical programming approach to building rule lists, which are a type of interpretable, nonlinear, and logical machine learning classifier involving IF-THEN rules. Unlike traditional decision tree algorithms like CART and C5.0, this method does not use greedy splitting and pruning. Instead, it aims to fully optimize a combination of accuracy and sparsity, obeying user-defined constraints. This method is useful for producing non-black-box predictive models, and has the benefit of a clear user-defined tradeoff between training accuracy and sparsity. The flexible framework of mathematical programming allows users to create customized models with a provable guarantee of optimality. The software reviewed as part of this submission was given the DOI (Digital Object Identifier) https://doi.org/10.5281/zenodo.1344142. |
| Author | Rudin, Cynthia Ertekin, Şeyda |
| Author_xml | – sequence: 1 givenname: Cynthia surname: Rudin fullname: Rudin, Cynthia email: cynthia@cs.duke.edu organization: Departments of Computer Science, Electrical and Computer Engineering, and Statistical Science, Duke University – sequence: 2 givenname: Şeyda surname: Ertekin fullname: Ertekin, Şeyda organization: Department of Computer Engineering, Middle Eastern Technical University, MIT Sloan School of Management, Massachusetts Institute of Technology |
| BookMark | eNp9kF9LBCEUxSU2aNv2A_Qm9DyljjM6j7H0D5Z6qWdxRt11mdFNHaI-fS4TBUEJeq9wfudezimYOe80AOcYXWKE2FXEpCpJgTDPl5YFPwJzzGtWkKZis--eNidgGeMO5VMSxstmDh7XWgZn3QZ2Y0x-sB9aQekU9Ptkp19vY4rQGxjGXkf4ZtMWDjJtdX5sJ3u4D34T5DBklzNwbGQf9fKrLsDL7c3z6r5YP909rK7XRVdWTSq6ujVEtbTBslWkRrVkJW4rnAsyxJBGK4UYRRXnFUHSSEU5qpHSDZUdM6hcgIvJN89-HXVMYufH4PJIQTDmnNLsmlVsUnXBxxi0EZ1NeWnvUpC2FxiJQ35iyk_k_MQhP8EziX-R-2AHGd7_ZcjExKx1Gx1-dvob-gQTcISh |
| CitedBy_id | crossref_primary_10_3847_1538_4357_ad2261 crossref_primary_10_1080_09593330_2023_2192877 crossref_primary_10_3390_math11224594 crossref_primary_10_1007_s10601_023_09348_1 crossref_primary_10_1016_j_ejor_2021_08_017 crossref_primary_10_1111_insr_12536 crossref_primary_10_1016_j_jclepro_2020_122181 crossref_primary_10_1214_22_AOS2171 crossref_primary_10_1007_s13369_021_06153_x crossref_primary_10_3390_sym13122439 crossref_primary_10_1007_s44007_021_00003_w crossref_primary_10_1007_s11750_021_00594_1 crossref_primary_10_1287_ijds_2021_0043 crossref_primary_10_1109_TVCG_2020_3045560 crossref_primary_10_1287_ijds_2021_0001 |
| Cites_doi | 10.1145/312129.312219 10.1145/3097983.3098161 10.1037/h0043158 10.1007/s10618-010-0174-x 10.1016/0743-1066(94)90035-3 10.1145/2020408.2020550 10.1007/978-3-540-87479-9_34 10.1145/1132960.1132963 10.1017/S0269888905000408 10.1080/01621459.1998.10473750 10.1214/15-AOAS848 10.1145/3097983.3098047 10.1007/s10994-017-5633-9 10.1006/jcss.1997.1504 10.1037/e526292010-001 10.1214/07-AOAS148 10.1111/biom.12354 10.1198/106186007X180426 10.1007/s10618-008-0089-y 10.1145/2623330.2623648 10.1145/1281192.1281250 10.1109/69.842268 10.1016/B978-1-55860-377-6.50023-2 10.1214/11-AOAS522 10.1017/CBO9780511809477.016 10.32614/CRAN.package.sbrl 10.1145/1656274.1656278 10.1214/10-AOAS367 10.1007/s10618-006-0059-1 10.1109/ISKE.2010.5680784 10.1023/A:1010933404324 10.1007/s10994-015-5528-6 10.32614/CRAN.package.C50 10.2333/bhmk.26.29 10.1145/2594473.2594475 10.1016/j.dss.2010.12.003 10.1017/S0269888907001026 10.1111/rssa.12227 10.1137/1.9781611972733.40 10.1007/978-3-319-59776-8_8 10.1145/360402.360421 |
| ContentType | Journal Article |
| Copyright | Springer-Verlag GmbH Germany, part of Springer Nature and The Mathematical Programming Society 2018 Copyright Springer Science & Business Media 2018 |
| Copyright_xml | – notice: Springer-Verlag GmbH Germany, part of Springer Nature and The Mathematical Programming Society 2018 – notice: Copyright Springer Science & Business Media 2018 |
| DBID | AAYXX CITATION JQ2 |
| DOI | 10.1007/s12532-018-0143-8 |
| DatabaseName | CrossRef ProQuest Computer Science Collection |
| DatabaseTitle | CrossRef ProQuest Computer Science Collection |
| DatabaseTitleList | ProQuest Computer Science Collection |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Mathematics |
| EISSN | 1867-2957 |
| EndPage | 702 |
| ExternalDocumentID | 10_1007_s12532_018_0143_8 |
| GroupedDBID | -5D -5G -BR -EM -~C 06D 0R~ 0VY 1N0 203 29M 2JY 2KG 2VQ 2~H 30V 4.4 406 408 409 40D 40E 6NX 8UJ 96X AAAVM AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH AAZMS ABAKF ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABMQK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACDTI ACGFS ACHSB ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGNC AEJHL AEJRE AEKMD AEMSY AEOHA AEPYU AESKC AEVLU AEXYK AFBBN AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ANMIH AOCGG ASPBG AUKKA AVWKF AXYYD AYJHY AZFZN BA0 BAPOH BGNMA CAG COF CSCUP DDRTE DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FYJPI GGCAI GGRSB GJIRD GQ6 GQ7 GQ8 GXS H13 HF~ HG6 HLICF HMJXF HQYDN HRMNR HZ~ I0C IJ- IKXTQ IWAJR IXC IXD IZIGR I~X J-C J0Z J9A JBSCW JCJTX JZLTJ KOV LLZTM M4Y NPVJJ NQJWS NU0 O9- O93 O9J OAM OK1 P9R PT4 QOS R89 RIG RLLFE ROL RSV S1Z S27 S3B SDH SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE T13 TSG U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 Z45 Z83 ZMTXR ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION JQ2 |
| ID | FETCH-LOGICAL-c359t-c6bf2db491abd2606a731b51a730f2f29edd0740588520afad48060de94ac7f03 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 32 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000448393800007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1867-2949 |
| IngestDate | Sun Nov 09 07:46:39 EST 2025 Tue Nov 18 21:05:19 EST 2025 Sat Nov 29 06:19:08 EST 2025 Fri Feb 21 02:33:17 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | 68T05 Learning and adaptive systems Learning and adaptive systems Sparsity 90C11 Mixed integer programming Mixed-integer programming 62-04 Explicit machine computation and programs (not the theory of computation or programming) Decision lists Interpretable modeling Decision trees Artificial intelligence Associative classification 68T05—Computer Science |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c359t-c6bf2db491abd2606a731b51a730f2f29edd0740588520afad48060de94ac7f03 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://hdl.handle.net/11511/35666 |
| PQID | 2118844260 |
| PQPubID | 2044128 |
| PageCount | 44 |
| ParticipantIDs | proquest_journals_2118844260 crossref_citationtrail_10_1007_s12532_018_0143_8 crossref_primary_10_1007_s12532_018_0143_8 springer_journals_10_1007_s12532_018_0143_8 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-12-01 |
| PublicationDateYYYYMMDD | 2018-12-01 |
| PublicationDate_xml | – month: 12 year: 2018 text: 2018-12-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
| PublicationSubtitle | A Publication of the Mathematical Optimization Society |
| PublicationTitle | Mathematical programming computation |
| PublicationTitleAbbrev | Math. Prog. Comp |
| PublicationYear | 2018 |
| Publisher | Springer Berlin Heidelberg Springer Nature B.V |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
| References | McGarryKA survey of interestingness measures for knowledge discoveryKnowl. Eng. Rev.200520396110.1017/S0269888905000408 MarchandMSokolovaMLearning with decision lists of data-dependent featuresJ. Mach. Learn. Res.2005642745122498271222.68257 PlateTAAccuracy versus interpretability in flexible modeling: implementing a tradeoff using gaussian process modelsBehaviormetrika199926295010.2333/bhmk.26.29 NaumovGNP-completeness of problems of construction of optimal decision treesSov. Phys. Dokl.19913642702710800.68856 Simon, G.J., Kumar, V., Li, P.W.: A simple statistical model and association rule filtering for classification. In: Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 823–831 (2011) Rüping, S.: Learning interpretable models. Ph.D. thesis, Universität Dortmund (2006) Yang, H., Rudin, C., Seltzer, M.: Scalable Bayesian rule lists. In: Proceedings of the 34th International Conference on Machine Learning (ICML) (2017) Angelino, E., Larus-Stone, N., Alabi, D., Seltzer, M., Rudin, C.: Learning certifiably optimal rule lists for categorical data. In: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD) (2017) QuinlanJRC4.5: Programs for Machine Learning1993Los AltosMorgan Kaufmann HippJGüntzerUNakhaeizadehGAlgorithms for association rule mining: a general survey and comparisonSIGKDD Explor.20002586410.1145/360402.360421 Cusick, G.R., Courtney, M.E., Havlicek, J., Hess, N.: Crime during the transition to adulthood: how youth fare as they leave out-of-home care. National Institute of Justice, Office of Justice Programs, US Department of Justice (2010) VapnikVStatistical Learning Theory1998New YorkWiley0935.62007 Bennett, K.P., Blue, J.A.: Optimal decision trees. Tech. rep., R.P.I. Math Report No. 214, Rensselaer Polytechnic Institute (1996) LeondesCTExpert Systems: The Technology of Knowledge Management and Decision Making for the 21st Century2002LondonAcademic Press Tan, P.N., Kumar, V.: Interestingness measures for association patterns: a perspective. Tech. rep., Department of Computer Science, University of Minnesota (2000) Agrawal, R., Srikant, R.: Fast algorithms for mining association rules. In: Proceedings of the 20th International Conference on Very Large Databases, pp. 487–499 (1994) Cohen, W.W.: Fast effective rule induction. In: Proceedings of the Twelfth International Conference on Machine Learning, pp. 115–123. Morgan Kaufmann (1995) McCormickTHRudinCMadiganDBayesian hierarchical modeling for predicting medical conditionsAnn. Appl. Stat.201262652668297648610.1214/11-AOAS522 RidgewayGThe pitfalls of predictionNIJ J. Natl. Inst. Justice20132713440 BreimanLFriedmanJHOlshenRAStoneCJClassification and Regression Trees1984BelmontWadsworth0541.62042 Vanhoof, K., Depaire, B.: Structure of association rule classifiers: a review. In: Proceedings of the International Conference on Intelligent Systems and Knowledge Engineering (ISKE), pp. 9–12 (2010) FriedmanJHPopescuBEPredictive learning via rule ensemblesAnn. Appl. Stat.200823916954252217510.1214/07-AOAS148 WuYTjelmelandHWestMBayesian CART: prior specification and posterior simulationJ. Comput. Graph. Stat.20071614466234574710.1198/106186007X180426 LethamBRudinCMcCormickTHMadiganDInterpretable classifiers using rules and bayesian analysis: building a better stroke prediction modelAnn. Appl. Stat.20159313501371341872610.1214/15-AOAS848 Lakkaraju, H., Rudin, C.: Learning cost effective and interpretable treatment regimes in the form of rule lists. In: Proceedings of Artificial Intelligence and Statistics (AISTATS) (2017) Rudin, C., Letham, B., Salleb-Aouissi, A., Kogan, E., Madigan, D.: Sequential event prediction with association rules. In: Proceedings of the 24th Annual Conference on Learning Theory (COLT) (2011) NorouziMCollinsMJohnsonMAFleetDJKohliPEfficient non-greedy optimization of decision treesAdv. Neural Inf. Process. Syst.20152817291737 Hata, I., Veloso, A., Ziviani, N.: Learning accurate and interpretable classifiers using optimal multi-criteria rules. J. Inf. Data Manag. 4(3) (2013) MuggletonSDe RaedtLInductive logic programming: theory and methodsJ. Log. Program.199419629679127993610.1016/0743-1066(94)90035-3 HanJChengHXinDYanXFrequent pattern mining: current status and future directionsData Min. Knowl. Discov.2007155586238077710.1007/s10618-006-0059-1 KlivansARServedioRAToward attribute efficient learning of decision lists and paritiesJ. Mach. Learn. Res.2006758760222743791222.68087 Liu, B., Hsu, W., Ma, Y.: Integrating classification and association rule mining. In: Proceedings of the 4th International Conference on Knowledge Discovery and Data Mining, pp. 80–96 (1998) Vellido, A., Martín-Guerrero, J.D., Lisboa, P.J.: Making machine learning models interpretable. In: Proceedings of the European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (2012) Goh, S.T., Rudin, C.: Box drawings for learning with imbalanced data. In: Proceedings of the 20th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD) (2014) Chang, A.: Integer optimization methods for machine learning. Ph.D. thesis, Massachusetts Institute of Technology (2012) BreimanLRandom forestsMach Learn200145153210.1023/A:1010933404324 ChipmanHAGeorgeEIMcCullochREBayesian CART model searchJ. Am. Stat. Assoc.19989344393594810.1080/01621459.1998.10473750 HuysmansJDejaegerKMuesCVanthienenJBaesensBAn empirical evaluation of the comprehensibility of decision table, tree and rule based predictive modelsDecis. Support Syst.201151114115410.1016/j.dss.2010.12.003 Anthony, M.: Decision lists. Tech. rep., CDAM Research Report LSE-CDAM-2005-23 (2005) YinXiaoxinHanJiaweiCPAR: Classification based on Predictive Association RulesProceedings of the 2003 SIAM International Conference on Data Mining2003Philadelphia, PASociety for Industrial and Applied Mathematics33133510.1137/1.9781611972733.40 Nijssen, S., Fromont, E.: Mining optimal decision trees from itemset lattices. In: Proceedings of the ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD) (2007) Verwer, S., Zhang, Y.: Learning decision trees with flexible constraints and objectives using integer optimization In: Salvagnin, D., Lombardi, M. (eds.) Integration of AI and OR Techniques in Constraint Programming. CPAIOR 2017. Lecture Notes in Computer Science, vol. 10335, pp 94–103. Springer (2017) GengLHamiltonHJInterestingness measures for data mining: a surveyACM Comput. Surv.200610.1145/1132960.1132963 Bayardo, R.J., Agrawal, R.: Mining the most interesting rules. In: Proceedings of the 5th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 145–154 (1999) Rückert, U.: A statistical approach to rule learning. Ph.D. thesis, Technischen Universität München (2008) NijssenSFromontEOptimal constraint-based decision tree induction from itemset latticesData Min. Knowl. Discov.2010211951272051210.1007/s10618-010-0174-x Malioutov, D., Varshney, K.: Exact rule learning via boolean compressed sensing. In: Proceedings of The 30th International Conference on Machine Learning, pp. 765–773 (2013) RudinCLethamBMadiganDLearning theory analysis for association rules and sequential event predictionJ. Mach. Learn. Res.2013143384343631444681317.68184 UstunBRudinCSupersparse linear integer models for optimized medical scoring systemsMach. Learn.20161023349391346309310.1007/s10994-015-5528-6 MillerGAThe magical number seven, plus or minus two: Some limits to our capacity for processing informationPsychol. Rev.1956632819710.1037/h0043158 WangTRudinCDoshi-VelezFLiuYKlampflEMacNeillePA Bayesian framework for learning rule sets for interpretable classificationJ. Mach. Learn. Res.20171870137371423306860775 FreitasAAComprehensible classification models: a position paperACM SIGKDD Explor. Newsl.201415111010.1145/2594473.2594475 Kuhn, M., Weston, S., Coulter, N.: C50: C5.0 Decision Trees and Rule-Based Models, C Code for C5.0 by R. Quinlan. http://CRAN.R-project.org/package=C50. r package version 0.1.0-013 (2012) ZengJUstunBRudinCInterpretable classification models for recidivism predictionJ. R. Stat. Soc. Ser. A (Stat. Soc.)20171803689722366015710.1111/rssa.12227 ThabtahFA review of associative classification miningKnowl. Eng. Rev.200722376510.1017/S0269888907001026 Wang, F., Rudin, C.: Falling rule lists. In: Proceedings of Artificial Intelligence and Statistics (AISTATS) (2015) Farhangfar, A., Greiner, R., Zinkevich, M.: A fast way to produce optimal fixed-depth decision trees. In: International Symposium on Artificial Intelligence and Mathematics (ISAIM 2008), Fort Lauderdale, Florida, USA, January 2–4 (2008) BorosEHammerPLIbarakiTKoganAMayorazEMuchnikIAn implementation of logical analysis of dataIEEE Trans. Knowl. Data Eng.200012229230610.1109/69.842268 Li, W., Han, J., Pei, J.: CMAR: Accurate and efficient classification based on multiple class-association rules. IEEE International Conference on Data Mining, pp. 369–376 (2001) Bache, K., Lichman, M.: UCI machine learning repository. http://archive.ics.uci.edu/ml (2013) Dobkin, D., Fulton, T., Gunopulos, D., Kasif, S., Salzberg, S.: Induction of shallow decision trees (1996) RivestRLLearning decision listsMach. Learn.198723229246 ZhangYLaberEBTsiatisADavidianMUsing decision lists to construct interpretable and parsimonious treatment regimesBiometrics2015714895904343671510.1111/biom.12354 FreundYSchapireREA decision-theoretic generalization of on-line learning and an application to boostingJ. Comput. Syst. Sci.1997551119139147305510.1006/jcss.1997.1504 CieslakDAChawlaNVDaelemansWGoethalsBMorikKLearning decision trees for unbalanced dataMachine Learning and Knowledge Discovery in Databases. Lecture Notes in Computer Science2008BerlinSpringer24125610.1007/978-3-540-87479-9_34 Su, G., Wei, D., Varshney, K.R., Malioutov, D.M.: Interpretable two-level boolean rule learning for classification. In: ICML Workshop on Human Interpretability in Machine Learning (WHI 2016) (2016). arXiv:1606.05798 JenningsDL 143_CR12 143_CR56 RL Rivest (143_CR55) 1987; 2 J Huysmans (143_CR31) 2011; 51 T Wang (143_CR71) 2017; 18 143_CR6 143_CR7 Y Freund (143_CR22) 1997; 55 J Han (143_CR28) 2007; 15 TA Plate (143_CR52) 1999; 26 L Breiman (143_CR11) 1984 HA Chipman (143_CR14) 1998; 93 M Marchand (143_CR42) 2005; 6 N Meinshausen (143_CR45) 2010; 4 143_CR1 143_CR2 143_CR49 143_CR4 143_CR5 G Naumov (143_CR48) 1991; 36 CT Leondes (143_CR36) 2002 143_CR41 DA Cieslak (143_CR15) 2008 M Norouzi (143_CR51) 2015; 28 B Ustun (143_CR64) 2016; 102 D Bertsimas (143_CR8) 2017; 7 T Fawcett (143_CR20) 2008; 17 E Boros (143_CR9) 2000; 12 M Hall (143_CR27) 2009; 11 J Hipp (143_CR30) 2000; 2 TH McCormick (143_CR43) 2012; 6 S Muggleton (143_CR47) 1994; 19 J Zeng (143_CR75) 2017; 180 143_CR39 143_CR38 143_CR35 JH Friedman (143_CR23) 2008; 2 DL Jennings (143_CR32) 1982 143_CR34 L Breiman (143_CR10) 2001; 45 B Letham (143_CR37) 2015; 9 143_CR73 C Rudin (143_CR58) 2013; 14 AR Klivans (143_CR33) 2006; 7 143_CR70 V Vapnik (143_CR67) 1998 L Geng (143_CR24) 2006 E Angelino (143_CR3) 2018; 18 AA Freitas (143_CR21) 2014; 15 JR Quinlan (143_CR53) 1993 143_CR29 Y Wu (143_CR72) 2007; 16 143_CR26 143_CR25 143_CR69 143_CR68 143_CR66 143_CR65 143_CR62 143_CR61 143_CR60 F Thabtah (143_CR63) 2007; 22 Y Zhang (143_CR76) 2015; 71 K McGarry (143_CR44) 2005; 20 GA Miller (143_CR46) 1956; 63 143_CR19 143_CR18 G Ridgeway (143_CR54) 2013; 271 143_CR17 143_CR16 S Nijssen (143_CR50) 2010; 21 143_CR59 Xiaoxin Yin (143_CR74) 2003 143_CR13 PM Long (143_CR40) 2007; 19 143_CR57 |
| References_xml | – reference: Verwer, S., Zhang, Y.: Learning decision trees with flexible constraints and objectives using integer optimization In: Salvagnin, D., Lombardi, M. (eds.) Integration of AI and OR Techniques in Constraint Programming. CPAIOR 2017. Lecture Notes in Computer Science, vol. 10335, pp 94–103. Springer (2017) – reference: UstunBRudinCSupersparse linear integer models for optimized medical scoring systemsMach. Learn.20161023349391346309310.1007/s10994-015-5528-6 – reference: HallMFrankEHolmesGPfahringerBReutemannPWittenIHThe weka data mining software: an updateSIGKDD Explor. Newsl.2009111101810.1145/1656274.1656278 – reference: BertsimasDDunnJOptimal classification treesMach. Learn.2017710391082366578810.1007/s10994-017-5633-9 – reference: Chang, A.: Integer optimization methods for machine learning. Ph.D. thesis, Massachusetts Institute of Technology (2012) – reference: Vanhoof, K., Depaire, B.: Structure of association rule classifiers: a review. In: Proceedings of the International Conference on Intelligent Systems and Knowledge Engineering (ISKE), pp. 9–12 (2010) – reference: Nijssen, S., Fromont, E.: Mining optimal decision trees from itemset lattices. In: Proceedings of the ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD) (2007) – reference: Farhangfar, A., Greiner, R., Zinkevich, M.: A fast way to produce optimal fixed-depth decision trees. In: International Symposium on Artificial Intelligence and Mathematics (ISAIM 2008), Fort Lauderdale, Florida, USA, January 2–4 (2008) – reference: HanJChengHXinDYanXFrequent pattern mining: current status and future directionsData Min. Knowl. Discov.2007155586238077710.1007/s10618-006-0059-1 – reference: Chen, C., Rudin, C.: An optimization approach to learning falling rule lists. In: Proceedings of Artificial Intelligence and Statistics (AISTATS) (2018) – reference: McGarryKA survey of interestingness measures for knowledge discoveryKnowl. Eng. Rev.200520396110.1017/S0269888905000408 – reference: Bache, K., Lichman, M.: UCI machine learning repository. http://archive.ics.uci.edu/ml (2013) – reference: CieslakDAChawlaNVDaelemansWGoethalsBMorikKLearning decision trees for unbalanced dataMachine Learning and Knowledge Discovery in Databases. Lecture Notes in Computer Science2008BerlinSpringer24125610.1007/978-3-540-87479-9_34 – reference: FawcettTPrie: a system for generating rulelists to maximize roc performanceData Min. Knowl. Discov.2008172207224243476410.1007/s10618-008-0089-y – reference: ZhangYLaberEBTsiatisADavidianMUsing decision lists to construct interpretable and parsimonious treatment regimesBiometrics2015714895904343671510.1111/biom.12354 – reference: NaumovGNP-completeness of problems of construction of optimal decision treesSov. Phys. Dokl.19913642702710800.68856 – reference: Kuhn, M., Weston, S., Coulter, N.: C50: C5.0 Decision Trees and Rule-Based Models, C Code for C5.0 by R. Quinlan. http://CRAN.R-project.org/package=C50. r package version 0.1.0-013 (2012) – reference: Ustun, B., Rudin, C.: Optimized risk scores. In: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2017) – reference: RudinCLethamBMadiganDLearning theory analysis for association rules and sequential event predictionJ. Mach. Learn. Res.2013143384343631444681317.68184 – reference: Wang, F., Rudin, C.: Falling rule lists. In: Proceedings of Artificial Intelligence and Statistics (AISTATS) (2015) – reference: YinXiaoxinHanJiaweiCPAR: Classification based on Predictive Association RulesProceedings of the 2003 SIAM International Conference on Data Mining2003Philadelphia, PASociety for Industrial and Applied Mathematics33133510.1137/1.9781611972733.40 – reference: Malioutov, D., Varshney, K.: Exact rule learning via boolean compressed sensing. In: Proceedings of The 30th International Conference on Machine Learning, pp. 765–773 (2013) – reference: ChipmanHAGeorgeEIMcCullochREBayesian CART model searchJ. Am. Stat. Assoc.19989344393594810.1080/01621459.1998.10473750 – reference: Hata, I., Veloso, A., Ziviani, N.: Learning accurate and interpretable classifiers using optimal multi-criteria rules. J. Inf. Data Manag. 4(3) (2013) – reference: ZengJUstunBRudinCInterpretable classification models for recidivism predictionJ. R. Stat. Soc. Ser. A (Stat. Soc.)20171803689722366015710.1111/rssa.12227 – reference: Agrawal, R., Srikant, R.: Fast algorithms for mining association rules. In: Proceedings of the 20th International Conference on Very Large Databases, pp. 487–499 (1994) – reference: Yang, H., Rudin, C., Seltzer, M.: Scalable Bayesian rule lists. In: Proceedings of the 34th International Conference on Machine Learning (ICML) (2017) – reference: Su, G., Wei, D., Varshney, K.R., Malioutov, D.M.: Interpretable two-level boolean rule learning for classification. In: ICML Workshop on Human Interpretability in Machine Learning (WHI 2016) (2016). arXiv:1606.05798 – reference: FreundYSchapireREA decision-theoretic generalization of on-line learning and an application to boostingJ. Comput. Syst. Sci.1997551119139147305510.1006/jcss.1997.1504 – reference: MillerGAThe magical number seven, plus or minus two: Some limits to our capacity for processing informationPsychol. Rev.1956632819710.1037/h0043158 – reference: MuggletonSDe RaedtLInductive logic programming: theory and methodsJ. Log. Program.199419629679127993610.1016/0743-1066(94)90035-3 – reference: BreimanLRandom forestsMach Learn200145153210.1023/A:1010933404324 – reference: HippJGüntzerUNakhaeizadehGAlgorithms for association rule mining: a general survey and comparisonSIGKDD Explor.20002586410.1145/360402.360421 – reference: HuysmansJDejaegerKMuesCVanthienenJBaesensBAn empirical evaluation of the comprehensibility of decision table, tree and rule based predictive modelsDecis. Support Syst.201151114115410.1016/j.dss.2010.12.003 – reference: Li, W., Han, J., Pei, J.: CMAR: Accurate and efficient classification based on multiple class-association rules. IEEE International Conference on Data Mining, pp. 369–376 (2001) – reference: Tan, P.N., Kumar, V.: Interestingness measures for association patterns: a perspective. Tech. rep., Department of Computer Science, University of Minnesota (2000) – reference: Lakkaraju, H., Rudin, C.: Learning cost effective and interpretable treatment regimes in the form of rule lists. In: Proceedings of Artificial Intelligence and Statistics (AISTATS) (2017) – reference: Goh, S.T., Rudin, C.: Box drawings for learning with imbalanced data. In: Proceedings of the 20th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD) (2014) – reference: JenningsDLAmabileTMRossLKahnemanDSlovicPTverskyAInformal covariation assessments: Data-based versus theory-based judgementsJudgment Under Uncertainty: Heuristics and Biases1982CambridgeCambridge Press21123010.1017/CBO9780511809477.016 – reference: NijssenSFromontEOptimal constraint-based decision tree induction from itemset latticesData Min. Knowl. Discov.2010211951272051210.1007/s10618-010-0174-x – reference: Rückert, U.: A statistical approach to rule learning. Ph.D. thesis, Technischen Universität München (2008) – reference: MarchandMSokolovaMLearning with decision lists of data-dependent featuresJ. Mach. Learn. Res.2005642745122498271222.68257 – reference: RivestRLLearning decision listsMach. Learn.198723229246 – reference: Bennett, K.P., Blue, J.A.: Optimal decision trees. Tech. rep., R.P.I. Math Report No. 214, Rensselaer Polytechnic Institute (1996) – reference: WangTRudinCDoshi-VelezFLiuYKlampflEMacNeillePA Bayesian framework for learning rule sets for interpretable classificationJ. Mach. Learn. Res.20171870137371423306860775 – reference: Dobkin, D., Fulton, T., Gunopulos, D., Kasif, S., Salzberg, S.: Induction of shallow decision trees (1996) – reference: WuYTjelmelandHWestMBayesian CART: prior specification and posterior simulationJ. Comput. Graph. Stat.20071614466234574710.1198/106186007X180426 – reference: Liu, B., Hsu, W., Ma, Y.: Integrating classification and association rule mining. In: Proceedings of the 4th International Conference on Knowledge Discovery and Data Mining, pp. 80–96 (1998) – reference: MeinshausenNNode harvestAnn. Appl. Stat.20104420492072282994610.1214/10-AOAS367 – reference: LeondesCTExpert Systems: The Technology of Knowledge Management and Decision Making for the 21st Century2002LondonAcademic Press – reference: QuinlanJRC4.5: Programs for Machine Learning1993Los AltosMorgan Kaufmann – reference: Angelino, E., Larus-Stone, N., Alabi, D., Seltzer, M., Rudin, C.: Learning certifiably optimal rule lists for categorical data. In: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD) (2017) – reference: NorouziMCollinsMJohnsonMAFleetDJKohliPEfficient non-greedy optimization of decision treesAdv. Neural Inf. Process. Syst.20152817291737 – reference: ThabtahFA review of associative classification miningKnowl. Eng. Rev.200722376510.1017/S0269888907001026 – reference: Anthony, M.: Decision lists. Tech. rep., CDAM Research Report LSE-CDAM-2005-23 (2005) – reference: Bayardo, R.J., Agrawal, R.: Mining the most interesting rules. In: Proceedings of the 5th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 145–154 (1999) – reference: LethamBRudinCMcCormickTHMadiganDInterpretable classifiers using rules and bayesian analysis: building a better stroke prediction modelAnn. Appl. Stat.20159313501371341872610.1214/15-AOAS848 – reference: FreitasAAComprehensible classification models: a position paperACM SIGKDD Explor. Newsl.201415111010.1145/2594473.2594475 – reference: AngelinoELarus-StoneNAlabiDSeltzerMRudinCLearning certifiably optimal rule lists for categorical dataJ. Mach. Learn. Res.201818178 – reference: McCormickTHRudinCMadiganDBayesian hierarchical modeling for predicting medical conditionsAnn. Appl. Stat.201262652668297648610.1214/11-AOAS522 – reference: BorosEHammerPLIbarakiTKoganAMayorazEMuchnikIAn implementation of logical analysis of dataIEEE Trans. Knowl. Data Eng.200012229230610.1109/69.842268 – reference: GengLHamiltonHJInterestingness measures for data mining: a surveyACM Comput. Surv.200610.1145/1132960.1132963 – reference: Cohen, W.W.: Fast effective rule induction. In: Proceedings of the Twelfth International Conference on Machine Learning, pp. 115–123. Morgan Kaufmann (1995) – reference: Cusick, G.R., Courtney, M.E., Havlicek, J., Hess, N.: Crime during the transition to adulthood: how youth fare as they leave out-of-home care. National Institute of Justice, Office of Justice Programs, US Department of Justice (2010) – reference: FriedmanJHPopescuBEPredictive learning via rule ensemblesAnn. Appl. Stat.200823916954252217510.1214/07-AOAS148 – reference: BreimanLFriedmanJHOlshenRAStoneCJClassification and Regression Trees1984BelmontWadsworth0541.62042 – reference: Vellido, A., Martín-Guerrero, J.D., Lisboa, P.J.: Making machine learning models interpretable. In: Proceedings of the European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (2012) – reference: RidgewayGThe pitfalls of predictionNIJ J. Natl. Inst. Justice20132713440 – reference: Rüping, S.: Learning interpretable models. Ph.D. thesis, Universität Dortmund (2006) – reference: Rudin, C., Letham, B., Salleb-Aouissi, A., Kogan, E., Madigan, D.: Sequential event prediction with association rules. In: Proceedings of the 24th Annual Conference on Learning Theory (COLT) (2011) – reference: Simon, G.J., Kumar, V., Li, P.W.: A simple statistical model and association rule filtering for classification. In: Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 823–831 (2011) – reference: LongPMServedioRAAttribute-efficient learning of decision lists and linear threshold functions under unconcentrated distributionsAdv. Neural Inf. Process. Syst.200719921928 – reference: Goethals, B.: Survey on frequent pattern mining. Tech. rep., Helsinki Institute for Information Technology (2003) – reference: KlivansARServedioRAToward attribute efficient learning of decision lists and paritiesJ. Mach. Learn. Res.2006758760222743791222.68087 – reference: VapnikVStatistical Learning Theory1998New YorkWiley0935.62007 – reference: PlateTAAccuracy versus interpretability in flexible modeling: implementing a tradeoff using gaussian process modelsBehaviormetrika199926295010.2333/bhmk.26.29 – ident: 143_CR6 doi: 10.1145/312129.312219 – ident: 143_CR65 doi: 10.1145/3097983.3098161 – volume: 63 start-page: 81 issue: 2 year: 1956 ident: 143_CR46 publication-title: Psychol. Rev. doi: 10.1037/h0043158 – volume: 36 start-page: 270 issue: 4 year: 1991 ident: 143_CR48 publication-title: Sov. Phys. Dokl. – volume: 18 start-page: 1 year: 2018 ident: 143_CR3 publication-title: J. Mach. Learn. Res. – volume: 21 start-page: 9 issue: 1 year: 2010 ident: 143_CR50 publication-title: Data Min. Knowl. Discov. doi: 10.1007/s10618-010-0174-x – volume: 19 start-page: 629 year: 1994 ident: 143_CR47 publication-title: J. Log. Program. doi: 10.1016/0743-1066(94)90035-3 – volume-title: C4.5: Programs for Machine Learning year: 1993 ident: 143_CR53 – ident: 143_CR60 doi: 10.1145/2020408.2020550 – ident: 143_CR57 – start-page: 241 volume-title: Machine Learning and Knowledge Discovery in Databases. Lecture Notes in Computer Science year: 2008 ident: 143_CR15 doi: 10.1007/978-3-540-87479-9_34 – ident: 143_CR19 – ident: 143_CR38 – year: 2006 ident: 143_CR24 publication-title: ACM Comput. Surv. doi: 10.1145/1132960.1132963 – volume: 6 start-page: 427 year: 2005 ident: 143_CR42 publication-title: J. Mach. Learn. Res. – volume: 28 start-page: 1729 year: 2015 ident: 143_CR51 publication-title: Adv. Neural Inf. Process. Syst. – volume: 20 start-page: 39 year: 2005 ident: 143_CR44 publication-title: Knowl. Eng. Rev. doi: 10.1017/S0269888905000408 – volume: 2 start-page: 229 issue: 3 year: 1987 ident: 143_CR55 publication-title: Mach. Learn. – ident: 143_CR25 – volume: 93 start-page: 935 issue: 443 year: 1998 ident: 143_CR14 publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.1998.10473750 – ident: 143_CR29 – volume: 9 start-page: 1350 issue: 3 year: 2015 ident: 143_CR37 publication-title: Ann. Appl. Stat. doi: 10.1214/15-AOAS848 – ident: 143_CR68 – ident: 143_CR2 doi: 10.1145/3097983.3098047 – volume: 7 start-page: 1039 year: 2017 ident: 143_CR8 publication-title: Mach. Learn. doi: 10.1007/s10994-017-5633-9 – volume: 55 start-page: 119 issue: 1 year: 1997 ident: 143_CR22 publication-title: J. Comput. Syst. Sci. doi: 10.1006/jcss.1997.1504 – ident: 143_CR17 doi: 10.1037/e526292010-001 – ident: 143_CR12 – ident: 143_CR5 – ident: 143_CR70 – volume-title: Expert Systems: The Technology of Knowledge Management and Decision Making for the 21st Century year: 2002 ident: 143_CR36 – volume: 7 start-page: 587 year: 2006 ident: 143_CR33 publication-title: J. Mach. Learn. Res. – volume-title: Statistical Learning Theory year: 1998 ident: 143_CR67 – volume: 2 start-page: 916 issue: 3 year: 2008 ident: 143_CR23 publication-title: Ann. Appl. Stat. doi: 10.1214/07-AOAS148 – volume: 71 start-page: 895 issue: 4 year: 2015 ident: 143_CR76 publication-title: Biometrics doi: 10.1111/biom.12354 – volume-title: Classification and Regression Trees year: 1984 ident: 143_CR11 – volume: 14 start-page: 3384 year: 2013 ident: 143_CR58 publication-title: J. Mach. Learn. Res. – volume: 16 start-page: 44 issue: 1 year: 2007 ident: 143_CR72 publication-title: J. Comput. Graph. Stat. doi: 10.1198/106186007X180426 – ident: 143_CR4 – volume: 17 start-page: 207 issue: 2 year: 2008 ident: 143_CR20 publication-title: Data Min. Knowl. Discov. doi: 10.1007/s10618-008-0089-y – ident: 143_CR26 doi: 10.1145/2623330.2623648 – ident: 143_CR49 doi: 10.1145/1281192.1281250 – ident: 143_CR59 – ident: 143_CR13 – volume: 12 start-page: 292 issue: 2 year: 2000 ident: 143_CR9 publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/69.842268 – ident: 143_CR16 doi: 10.1016/B978-1-55860-377-6.50023-2 – ident: 143_CR1 – volume: 6 start-page: 652 issue: 2 year: 2012 ident: 143_CR43 publication-title: Ann. Appl. Stat. doi: 10.1214/11-AOAS522 – volume: 271 start-page: 34 year: 2013 ident: 143_CR54 publication-title: NIJ J. Natl. Inst. Justice – ident: 143_CR61 – volume: 18 start-page: 1 issue: 70 year: 2017 ident: 143_CR71 publication-title: J. Mach. Learn. Res. – start-page: 211 volume-title: Judgment Under Uncertainty: Heuristics and Biases year: 1982 ident: 143_CR32 doi: 10.1017/CBO9780511809477.016 – ident: 143_CR73 doi: 10.32614/CRAN.package.sbrl – volume: 11 start-page: 10 issue: 1 year: 2009 ident: 143_CR27 publication-title: SIGKDD Explor. Newsl. doi: 10.1145/1656274.1656278 – volume: 4 start-page: 2049 issue: 4 year: 2010 ident: 143_CR45 publication-title: Ann. Appl. Stat. doi: 10.1214/10-AOAS367 – volume: 15 start-page: 55 year: 2007 ident: 143_CR28 publication-title: Data Min. Knowl. Discov. doi: 10.1007/s10618-006-0059-1 – ident: 143_CR66 doi: 10.1109/ISKE.2010.5680784 – ident: 143_CR18 – volume: 45 start-page: 5 issue: 1 year: 2001 ident: 143_CR10 publication-title: Mach Learn doi: 10.1023/A:1010933404324 – volume: 102 start-page: 349 issue: 3 year: 2016 ident: 143_CR64 publication-title: Mach. Learn. doi: 10.1007/s10994-015-5528-6 – ident: 143_CR7 – ident: 143_CR34 doi: 10.32614/CRAN.package.C50 – volume: 26 start-page: 29 year: 1999 ident: 143_CR52 publication-title: Behaviormetrika doi: 10.2333/bhmk.26.29 – volume: 15 start-page: 1 issue: 1 year: 2014 ident: 143_CR21 publication-title: ACM SIGKDD Explor. Newsl. doi: 10.1145/2594473.2594475 – ident: 143_CR39 – volume: 51 start-page: 141 issue: 1 year: 2011 ident: 143_CR31 publication-title: Decis. Support Syst. doi: 10.1016/j.dss.2010.12.003 – ident: 143_CR35 – ident: 143_CR56 – volume: 22 start-page: 37 year: 2007 ident: 143_CR63 publication-title: Knowl. Eng. Rev. doi: 10.1017/S0269888907001026 – volume: 19 start-page: 921 year: 2007 ident: 143_CR40 publication-title: Adv. Neural Inf. Process. Syst. – volume: 180 start-page: 689 issue: 3 year: 2017 ident: 143_CR75 publication-title: J. R. Stat. Soc. Ser. A (Stat. Soc.) doi: 10.1111/rssa.12227 – start-page: 331 volume-title: Proceedings of the 2003 SIAM International Conference on Data Mining year: 2003 ident: 143_CR74 doi: 10.1137/1.9781611972733.40 – ident: 143_CR69 doi: 10.1007/978-3-319-59776-8_8 – ident: 143_CR41 – volume: 2 start-page: 58 year: 2000 ident: 143_CR30 publication-title: SIGKDD Explor. doi: 10.1145/360402.360421 – ident: 143_CR62 |
| SSID | ssj0000327839 |
| Score | 2.3580759 |
| Snippet | We introduce a mathematical programming approach to building rule lists, which are a type of interpretable, nonlinear, and logical machine learning classifier... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 659 |
| SubjectTerms | Accuracy Decision trees Digital Object Identifier Full Length Paper Machine learning Mathematical analysis Mathematical models Mathematical programming Mathematics Mathematics and Statistics Mathematics of Computing Operations Research/Decision Theory Optimization Pruning Sparsity Theory of Computation |
| Title | Learning customized and optimized lists of rules with mathematical programming |
| URI | https://link.springer.com/article/10.1007/s12532-018-0143-8 https://www.proquest.com/docview/2118844260 |
| Volume | 10 |
| WOSCitedRecordID | wos000448393800007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1867-2957 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000327839 issn: 1867-2949 databaseCode: RSV dateStart: 20090701 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI5gcIADb8RgoBw4gSJladImR4SYOMCEeEy7VXmiSVuH1o0Dv56ka1dAgASnKmrqVrab2LH9GYBTxqT3qxKJFMUSUWEtEjZWKBKxt44xI0lRlda7Sbpd3u-Lu7KOO6-y3auQZLFS18VuhEUhjSAkX9EI8WWw4nc7Hvo13D_0FgcrOArNI4LZG7DaEBFUVNHM76h83o9qI_NLXLTYbjqb__rQLbBRWpfwYq4O22DJZjtg_QPmoB_dLoBa813QLfFVn6GeeTNwNHizBsrMwLFfSuajoVeEHI4dnMyGNofh4BaOFjT828oUr5GnsgeeOlePl9eobLGAdMTEFOlYOWIUFW2pjHdtYplEbcXa_oIdcURYY7yRgRnnjGDppKEcx9hYQaVOHI72QSMbZ_YAQCctD9gyhCpKmXJK2sREWGvbVtwZ3QS4YnSqS_zx0AZjmNbIyYFxqWdcGhiX8iY4WzzyMgff-G1yq5JeWv6HeerdW85pQOFvgvNKWvXtH4kd_mn2EVgjQdxFlksLNKaTmT0Gq_p1OsgnJ4V6vgOgPd5n |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9swED9BhwR72MbHRLcO_MATyJLr2In9OCEQaG2FBqt4i_yJKvVjaloe-Otnp0nLECDBU2TFuUR3F9-d7-5ngCPOVYirMoU1Iwoz6RyWLtU4kWnwjgmnWdmV1u9kvZ64vZVXVR93UVe71ynJcqVeNbtRnsQyglh8xRIs1uEDCwYrAub_vu4vN1ZIEg-PiG5vxGrDVDJZZzOfo_K_PVo5mU_yoqW5Of_8rg_9Ap8q7xL9XKjDNqy58Q58fIQ5GEbdJVBrsQu9Cl_1Dpl5cANHgwdnkRpbNAlLyWI0DIpQoIlH0_nQFShu3KLRkkZ4W1XiNQpU9uDP-dnN6QWujljAJuFyhk2qPbWaybbSNoQ2qcqStubtcCGeeiqdtcHJIFwITonyyjJBUmKdZMpkniRfoTGejN0-IK-ciNgylGnGuPZaucwmxBjX1sJb0wRSMzo3Ff54PAZjmK-QkyPj8sC4PDIuF004Xj7ydwG-8drkVi29vPoPizyEt0KwiMLfhJNaWqvbLxL79qbZh7B5cdPt5J3L3q_vsEWj6MuKlxY0ZtO5-wEb5n42KKYHpar-AxW94Us |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9swED-2rIz1Yf1m2dpVD31aEVVkyZYex7aw0iwUtoW8GX2WQuKUOOlD__pK_kjasg7GnoywfBZ3Z-tOd_c7gBPOVfCrMoU1Iwoz6RyWLtU4kWmwjgmnWVWVNhpkw6EYj-Vl0-e0bLPd25BkXdMQUZqKxdmN9WfrwjfKk5hSEBOxWILFS3jFYh59dNd_jlaHLCSJjSSiCRxx2zCVTLaRzT9Rebw3rQ3OJzHSauvpb_33orfhbWN1os-1muzAC1fswuYDLMIw-rECcC33YNjgrl4hswzm4fT6zlmkCotm4RdTjyZBQUo082i-nLgSxQNdNF3RCG9rUr-mgco-_O5_-_XlO25aL2CTcLnAJtWeWs1kT2kbXJ5UZUlP8164EE89lc7aYHwQLgSnRHllmSApsU4yZTJPkgPoFLPCvQPklRMRc4YyzRjXXiuX2YQY43paeGu6QFqm56bBJY_tMSb5GlE5Mi4PjMsj43LRhU-rR25qUI6_TT5sJZk332eZB7dXCBbR-btw2kpufftZYu__afYxvL782s8H58OLD_CGRslXiTCH0FnMl-4INszt4rqcf6y09h6Jw-ov |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learning+customized+and+optimized+lists+of+rules+with+mathematical+programming&rft.jtitle=Mathematical+programming+computation&rft.au=Rudin%2C+Cynthia&rft.au=Ertekin%2C+%C5%9Eeyda&rft.date=2018-12-01&rft.issn=1867-2949&rft.eissn=1867-2957&rft.volume=10&rft.issue=4&rft.spage=659&rft.epage=702&rft_id=info:doi/10.1007%2Fs12532-018-0143-8&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s12532_018_0143_8 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1867-2949&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1867-2949&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1867-2949&client=summon |