Unsupervised Deep Slow Feature Analysis for Change Detection in Multi-Temporal Remote Sensing Images

Change detection has been a hotspot in the remote sensing technology for a long time. With the increasing availability of multi-temporal remote sensing images, numerous change detection algorithms have been proposed. Among these methods, image transformation methods with feature extraction and mappi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on geoscience and remote sensing Jg. 57; H. 12; S. 9976 - 9992
Hauptverfasser: Du, Bo, Ru, Lixiang, Wu, Chen, Zhang, Liangpei
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York IEEE 01.12.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:0196-2892, 1558-0644
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Change detection has been a hotspot in the remote sensing technology for a long time. With the increasing availability of multi-temporal remote sensing images, numerous change detection algorithms have been proposed. Among these methods, image transformation methods with feature extraction and mapping could effectively highlight the changed information and thus has a better change detection performance. However, the changes of multi-temporal images are usually complex, and the existing methods are not effective enough. In recent years, the deep network has shown its brilliant performance in many fields, including feature extraction and projection. Therefore, in this paper, based on the deep network and slow feature analysis (SFA) theory, we proposed a new change detection algorithm for multi-temporal remotes sensing images called deep SFA (DSFA). In the DSFA model, two symmetric deep networks are utilized for projecting the input data of bi-temporal imagery. Then, the SFA module is deployed to suppress the unchanged components and highlight the changed components of the transformed features. The change vector analysis pre-detection is employed to find unchanged pixels with high confidence as training samples. Finally, the change intensity is calculated with chi-square distance and the changes are determined by threshold algorithms. The experiments are performed on two real-world data sets and a public hyperspectral data set. The visual comparison and the quantitative evaluation have shown that DSFA could outperform the other state-of-the-art algorithms, including other SFA-based and deep learning methods.
AbstractList Change detection has been a hotspot in the remote sensing technology for a long time. With the increasing availability of multi-temporal remote sensing images, numerous change detection algorithms have been proposed. Among these methods, image transformation methods with feature extraction and mapping could effectively highlight the changed information and thus has a better change detection performance. However, the changes of multi-temporal images are usually complex, and the existing methods are not effective enough. In recent years, the deep network has shown its brilliant performance in many fields, including feature extraction and projection. Therefore, in this paper, based on the deep network and slow feature analysis (SFA) theory, we proposed a new change detection algorithm for multi-temporal remotes sensing images called deep SFA (DSFA). In the DSFA model, two symmetric deep networks are utilized for projecting the input data of bi-temporal imagery. Then, the SFA module is deployed to suppress the unchanged components and highlight the changed components of the transformed features. The change vector analysis pre-detection is employed to find unchanged pixels with high confidence as training samples. Finally, the change intensity is calculated with chi-square distance and the changes are determined by threshold algorithms. The experiments are performed on two real-world data sets and a public hyperspectral data set. The visual comparison and the quantitative evaluation have shown that DSFA could outperform the other state-of-the-art algorithms, including other SFA-based and deep learning methods.
Author Ru, Lixiang
Zhang, Liangpei
Du, Bo
Wu, Chen
Author_xml – sequence: 1
  givenname: Bo
  orcidid: 0000-0002-0059-8458
  surname: Du
  fullname: Du, Bo
  email: gunspace@163.com
  organization: School of Computer Science, Wuhan University, Wuhan, China
– sequence: 2
  givenname: Lixiang
  orcidid: 0000-0002-9129-2453
  surname: Ru
  fullname: Ru, Lixiang
  email: rulixiang@whu.edu.cn
  organization: School of Computer Science, Wuhan University, Wuhan, China
– sequence: 3
  givenname: Chen
  orcidid: 0000-0001-6461-8377
  surname: Wu
  fullname: Wu, Chen
  email: chen.wu@whu.edu.cn
  organization: School of Computer Science, Wuhan University, Wuhan, China
– sequence: 4
  givenname: Liangpei
  orcidid: 0000-0001-6890-3650
  surname: Zhang
  fullname: Zhang, Liangpei
  email: zlp62@whu.edu.cn
  organization: School of Computer Science, Wuhan University, Wuhan, China
BookMark eNp9kEtLxDAUhYMoOD5-gLgJuO6Ym77SpYyODijCPNYlk96OkTapSarMv7dlxIULV2dxv-_COWfk2FiDhFwBmwKw4nb9uFxNOYNiyouYZYIfkQmkqYhYliTHZDJcsoiLgp-SM-_fGYMkhXxCqo3xfYfuU3us6D1iR1eN_aJzlKF3SO-MbPZee1pbR2dv0uxwoAKqoK2h2tCXvgk6WmPbWScbusTWBqQrNF6bHV20cof-gpzUsvF4-ZPnZDN_WM-eoufXx8Xs7jlScVqESDHYyqSuhIK4EoA5ilRBxnO1rVJV1IwLrFlWQc6qNFUZiHqIClVdbFnMRHxObg5_O2c_evShfLe9Gxr4kseQ5zyPCxio_EApZ713WJdKBzn2CU7qpgRWjpOW46TlOGn5M-lgwh-zc7qVbv-vc31wNCL-8kLwhEMWfwOMDYTB
CODEN IGRSD2
CitedBy_id crossref_primary_10_1109_TIM_2024_3353267
crossref_primary_10_1109_LGRS_2024_3434730
crossref_primary_10_1109_LGRS_2021_3096526
crossref_primary_10_1109_TGRS_2024_3403971
crossref_primary_10_1007_s10489_024_06000_0
crossref_primary_10_1016_j_knosys_2025_113408
crossref_primary_10_1016_j_isprsjprs_2020_01_005
crossref_primary_10_1016_j_isprsjprs_2024_01_016
crossref_primary_10_1109_JSTARS_2025_3541260
crossref_primary_10_1109_TGRS_2022_3156041
crossref_primary_10_1109_TGRS_2024_3390206
crossref_primary_10_1109_JSTARS_2024_3401581
crossref_primary_10_3390_rs14122834
crossref_primary_10_1016_j_eswa_2023_122125
crossref_primary_10_1016_j_oceaneng_2023_113835
crossref_primary_10_1080_01431161_2022_2155084
crossref_primary_10_1109_LGRS_2021_3059461
crossref_primary_10_1109_TGRS_2021_3139077
crossref_primary_10_3390_rs17152624
crossref_primary_10_1109_TIP_2025_3542276
crossref_primary_10_3390_rs14122838
crossref_primary_10_1016_j_compag_2025_110770
crossref_primary_10_1007_s00521_022_07928_5
crossref_primary_10_1109_TGRS_2022_3224293
crossref_primary_10_1109_TGRS_2022_3220814
crossref_primary_10_1109_TGRS_2023_3235917
crossref_primary_10_1007_s10619_020_07292_0
crossref_primary_10_1016_j_isprsjprs_2023_11_004
crossref_primary_10_1080_13682199_2024_2410673
crossref_primary_10_3390_rs15051194
crossref_primary_10_1109_JSTARS_2022_3146167
crossref_primary_10_1109_TMM_2020_2999182
crossref_primary_10_1109_TCSVT_2025_3526960
crossref_primary_10_3390_rs11232740
crossref_primary_10_1109_TGRS_2019_2956756
crossref_primary_10_3390_rs13152969
crossref_primary_10_1109_TGRS_2025_3598588
crossref_primary_10_1109_TGRS_2024_3363886
crossref_primary_10_1109_TGRS_2024_3381751
crossref_primary_10_3390_rs15020428
crossref_primary_10_1109_JSTARS_2023_3270498
crossref_primary_10_1109_TGRS_2021_3054641
crossref_primary_10_1109_TII_2024_3367045
crossref_primary_10_1109_TGRS_2022_3221492
crossref_primary_10_1007_s11629_020_6151_y
crossref_primary_10_1007_s12145_021_00620_7
crossref_primary_10_1109_TGRS_2021_3053571
crossref_primary_10_1109_LGRS_2025_3569718
crossref_primary_10_1049_iet_ipr_2019_1527
crossref_primary_10_1109_TNNLS_2022_3201621
crossref_primary_10_1109_TGRS_2024_3445930
crossref_primary_10_1109_ACCESS_2020_3041790
crossref_primary_10_1117_1_JEI_31_5_053005
crossref_primary_10_3390_electronics11091486
crossref_primary_10_1109_JSTARS_2021_3066508
crossref_primary_10_1016_j_isprsjprs_2024_09_002
crossref_primary_10_1109_TGRS_2021_3090802
crossref_primary_10_1016_j_ins_2020_06_011
crossref_primary_10_1016_j_rse_2025_114912
crossref_primary_10_1109_JSTARS_2022_3166234
crossref_primary_10_1080_10106049_2021_2017018
crossref_primary_10_1109_JSTARS_2025_3588154
crossref_primary_10_3390_rs13244971
crossref_primary_10_1109_TGRS_2023_3336791
crossref_primary_10_1109_TIM_2021_3096872
crossref_primary_10_1016_j_neucom_2020_04_033
crossref_primary_10_1016_j_psep_2025_106941
crossref_primary_10_1061__ASCE_NH_1527_6996_0000500
crossref_primary_10_1109_TGRS_2020_2992542
crossref_primary_10_1109_JSTARS_2022_3150571
crossref_primary_10_1016_j_knosys_2025_113691
crossref_primary_10_1111_phor_12492
crossref_primary_10_1109_JSTARS_2024_3522350
crossref_primary_10_3390_rs12111781
crossref_primary_10_1109_TGRS_2020_2987338
crossref_primary_10_1109_ACCESS_2020_2968965
crossref_primary_10_1109_JSTARS_2022_3157648
crossref_primary_10_1080_2150704X_2021_1895448
crossref_primary_10_3390_rs13234918
crossref_primary_10_1109_JSTARS_2020_3046482
crossref_primary_10_1109_TIP_2020_3028457
crossref_primary_10_3390_rs13234927
crossref_primary_10_3390_rs14143323
crossref_primary_10_1109_TGRS_2022_3171067
crossref_primary_10_3390_app12105158
crossref_primary_10_3390_rs13234802
crossref_primary_10_1080_10095020_2022_2128902
crossref_primary_10_3390_rs13163125
crossref_primary_10_1109_ACCESS_2025_3560591
crossref_primary_10_1109_TGRS_2022_3191815
crossref_primary_10_1109_TGRS_2025_3534881
crossref_primary_10_3390_rs16183507
crossref_primary_10_1109_MGRS_2024_3412770
crossref_primary_10_1002_gj_4677
crossref_primary_10_1109_LGRS_2023_3333354
crossref_primary_10_1109_TGRS_2021_3079907
crossref_primary_10_1007_s00521_021_06092_6
crossref_primary_10_1109_TGRS_2021_3079909
crossref_primary_10_3390_rs16081357
crossref_primary_10_1016_j_neucom_2020_07_020
crossref_primary_10_3390_rs13214302
crossref_primary_10_1016_j_jprocont_2025_103461
crossref_primary_10_1109_ACCESS_2023_3268059
crossref_primary_10_1109_TGRS_2020_3037249
crossref_primary_10_3390_rs13071236
crossref_primary_10_1016_j_knosys_2024_111777
crossref_primary_10_1109_JSTARS_2020_3047677
crossref_primary_10_1007_s00521_022_07637_z
crossref_primary_10_1109_LGRS_2024_3454629
crossref_primary_10_1109_TGRS_2022_3197334
crossref_primary_10_1080_01431161_2023_2224100
crossref_primary_10_1109_JSTARS_2020_2995445
crossref_primary_10_1109_TGRS_2024_3469930
crossref_primary_10_1109_JSTARS_2021_3086139
crossref_primary_10_1109_TGRS_2023_3321752
crossref_primary_10_1109_TGRS_2024_3353383
crossref_primary_10_1109_JSTARS_2021_3088438
crossref_primary_10_1109_TGRS_2025_3564996
crossref_primary_10_1109_TGRS_2020_3009483
crossref_primary_10_1109_TGRS_2023_3241097
crossref_primary_10_1109_TGRS_2020_3042507
crossref_primary_10_1109_LGRS_2023_3266091
crossref_primary_10_1007_s11432_020_3084_1
crossref_primary_10_1109_JSTARS_2023_3335281
crossref_primary_10_1016_j_eswa_2021_115663
crossref_primary_10_1016_j_wasman_2022_02_031
crossref_primary_10_1109_TGRS_2022_3160827
crossref_primary_10_1080_07038992_2021_1925530
crossref_primary_10_3390_rs15071770
crossref_primary_10_1109_ACCESS_2023_3333360
crossref_primary_10_1109_JSTARS_2022_3216624
crossref_primary_10_3390_rs12152460
crossref_primary_10_1007_s10661_024_12598_y
crossref_primary_10_1109_TGRS_2020_3008286
crossref_primary_10_3390_rs16050804
crossref_primary_10_1109_LGRS_2022_3157916
crossref_primary_10_1109_TGRS_2024_3519195
crossref_primary_10_3390_rs15010246
crossref_primary_10_1016_j_neucom_2021_08_130
crossref_primary_10_1109_ACCESS_2020_3047915
crossref_primary_10_1109_LGRS_2022_3179134
crossref_primary_10_1109_TGRS_2021_3106697
crossref_primary_10_1017_qrd_2022_23
crossref_primary_10_1109_TGRS_2023_3335134
crossref_primary_10_1109_JSTARS_2024_3389641
crossref_primary_10_3390_rs15112834
crossref_primary_10_1109_TGRS_2021_3104032
crossref_primary_10_3390_rs15092464
crossref_primary_10_1109_TGRS_2023_3263563
crossref_primary_10_3390_rs15071868
crossref_primary_10_1007_s00521_020_05592_1
crossref_primary_10_1109_TGRS_2022_3206804
crossref_primary_10_1109_TGRS_2020_3045799
crossref_primary_10_1016_j_jag_2025_104792
crossref_primary_10_1109_TGRS_2023_3314217
crossref_primary_10_1109_TGRS_2023_3262928
crossref_primary_10_3390_rs14041000
crossref_primary_10_1080_01431161_2023_2224099
crossref_primary_10_1109_TGRS_2024_3442156
crossref_primary_10_1016_j_isprsjprs_2021_12_005
crossref_primary_10_1016_j_jag_2024_103663
crossref_primary_10_1080_01431161_2021_1937372
crossref_primary_10_1002_cjce_24207
crossref_primary_10_1109_TGRS_2022_3182745
crossref_primary_10_1109_JSTARS_2024_3349775
crossref_primary_10_1016_j_neucom_2021_01_031
crossref_primary_10_3390_rs14092228
crossref_primary_10_1016_j_ophoto_2023_100044
crossref_primary_10_1109_TGRS_2020_3033009
crossref_primary_10_1109_TGRS_2021_3064606
crossref_primary_10_1016_j_rse_2021_112589
crossref_primary_10_1109_JSTARS_2021_3108777
crossref_primary_10_1016_j_eswa_2020_114527
crossref_primary_10_1117_1_JRS_19_026503
crossref_primary_10_3390_rs16163037
crossref_primary_10_1016_j_jprocont_2025_103491
crossref_primary_10_1016_j_neucom_2024_127489
crossref_primary_10_1109_TGRS_2021_3089453
crossref_primary_10_1109_LGRS_2021_3111040
crossref_primary_10_1109_TCYB_2021_3086884
crossref_primary_10_1109_TGRS_2022_3203314
crossref_primary_10_1109_TGRS_2025_3586102
crossref_primary_10_1109_TGRS_2025_3591814
crossref_primary_10_3390_rs12233907
crossref_primary_10_1109_TGRS_2024_3476992
crossref_primary_10_1016_j_inffus_2024_102313
crossref_primary_10_3390_rs14246291
crossref_primary_10_1109_LGRS_2025_3569426
crossref_primary_10_1109_TNNLS_2021_3056238
crossref_primary_10_1016_j_asoc_2022_109130
crossref_primary_10_1109_JSTARS_2023_3268601
crossref_primary_10_1109_ACCESS_2021_3068162
crossref_primary_10_1016_j_jag_2022_102749
crossref_primary_10_1109_TGRS_2022_3157721
crossref_primary_10_1155_2022_8513093
crossref_primary_10_1109_LGRS_2021_3085022
crossref_primary_10_1109_TGRS_2020_3013673
crossref_primary_10_1109_TSMC_2020_3048950
crossref_primary_10_3390_s25092813
crossref_primary_10_1109_TGRS_2020_3043766
crossref_primary_10_1109_LGRS_2023_3302469
crossref_primary_10_1109_TGRS_2025_3556237
crossref_primary_10_1109_TGRS_2022_3229027
crossref_primary_10_1109_TCSVT_2023_3276719
crossref_primary_10_1109_TGRS_2022_3200985
crossref_primary_10_1016_j_asoc_2020_106510
crossref_primary_10_1080_17538947_2024_2316109
crossref_primary_10_3390_rs14133100
crossref_primary_10_1109_TGRS_2024_3424532
crossref_primary_10_1109_TGRS_2021_3067096
crossref_primary_10_1117_1_JRS_18_024516
crossref_primary_10_1007_s10666_021_09758_6
crossref_primary_10_1109_TGRS_2021_3106381
crossref_primary_10_1109_TGRS_2024_3512548
crossref_primary_10_1016_j_inffus_2025_103257
crossref_primary_10_3390_su141912597
crossref_primary_10_3724_j_issn_1007_2802_20240157
crossref_primary_10_1109_TGRS_2023_3305334
crossref_primary_10_1109_TPAMI_2023_3237896
crossref_primary_10_1109_JSTARS_2023_3285389
crossref_primary_10_1109_TGRS_2023_3274781
crossref_primary_10_3390_rs15215106
crossref_primary_10_1007_s40031_024_01084_1
crossref_primary_10_1016_j_optlastec_2022_109020
crossref_primary_10_1109_TNNLS_2021_3071026
crossref_primary_10_3390_rs12101688
crossref_primary_10_1109_TGRS_2023_3319961
crossref_primary_10_3390_rs14194806
crossref_primary_10_3390_su15010140
crossref_primary_10_1109_JSTARS_2023_3251962
Cites_doi 10.1109/TGRS.2013.2266673
10.1126/science.1127647
10.1109/TGRS.2008.916643
10.1016/S0034-4257(97)00112-0
10.1016/j.rse.2008.07.018
10.1109/TGRS.2012.2197860
10.1080/0143116031000101675
10.1109/TPAMI.2011.157
10.1109/TPAMI.2011.272
10.1016/j.rse.2007.06.013
10.1109/CVPR.2014.336
10.1109/TGRS.2016.2642125
10.1016/j.rse.2007.08.012
10.1162/0899766042321814
10.1016/j.rse.2010.02.018
10.1109/CVPR.2015.7298965
10.1016/j.rse.2017.07.009
10.1016/j.neucom.2012.08.056
10.1080/01431168908903939
10.1109/LGRS.2016.2611001
10.3390/rs10070980
10.1109/LGRS.2018.2876616
10.1080/01431160801950162
10.1080/0143116031000139863
10.1016/j.rse.2007.10.002
10.1080/02757259609532305
10.1162/089976602317318938
10.4249/scholarpedia.5282
10.1080/01431160903475399
10.1109/TIP.2006.888195
10.1007/978-3-540-87536-9_98
10.1109/IGARSS.2009.5418265
10.1016/j.rse.2009.02.004
10.1109/TGRS.2011.2141999
10.1109/TGRS.2011.2168230
10.1162/NECO_a_00171
10.1016/S0034-4257(97)00162-4
10.1109/TGRS.2011.2168534
10.1109/TIP.2015.2475625
10.1109/TGRS.2010.2066979
10.1109/36.843009
10.1016/0034-4257(95)00233-2
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
DBID 97E
RIA
RIE
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
DOI 10.1109/TGRS.2019.2930682
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList Aerospace Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1558-0644
EndPage 9992
ExternalDocumentID 10_1109_TGRS_2019_2930682
8824216
Genre orig-research
GrantInformation_xml – fundername: National Basic Research Program of China (973 Program); National Key Research and Development Program
  grantid: 2017YFC1502505
  funderid: 10.13039/501100012166
– fundername: National Key R&D Program of China
  grantid: 2018YFA0605500
– fundername: Natural Science Foundation of Hubei Province
  grantid: 2018CFA050
  funderid: 10.13039/501100003819
– fundername: National Natural Science Foundation of China
  grantid: 61601333; 61822113; 41801285; 41871243
  funderid: 10.13039/501100001809
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
VH1
Y6R
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
ID FETCH-LOGICAL-c359t-c01ba4fd8c13d81e7e85c1627cbd5c9f028ef06d170d55c618f55cdecf9b03083
IEDL.DBID RIE
ISICitedReferencesCount 279
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000505701800036&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0196-2892
IngestDate Mon Sep 29 16:40:40 EDT 2025
Tue Nov 18 22:24:33 EST 2025
Sat Nov 29 02:50:01 EST 2025
Wed Aug 27 02:43:05 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c359t-c01ba4fd8c13d81e7e85c1627cbd5c9f028ef06d170d55c618f55cdecf9b03083
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6461-8377
0000-0001-6890-3650
0000-0002-9129-2453
0000-0002-0059-8458
PQID 2317727391
PQPubID 85465
PageCount 17
ParticipantIDs crossref_citationtrail_10_1109_TGRS_2019_2930682
crossref_primary_10_1109_TGRS_2019_2930682
proquest_journals_2317727391
ieee_primary_8824216
PublicationCentury 2000
PublicationDate 2019-12-01
PublicationDateYYYYMMDD 2019-12-01
PublicationDate_xml – month: 12
  year: 2019
  text: 2019-12-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on geoscience and remote sensing
PublicationTitleAbbrev TGRS
PublicationYear 2019
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref14
ref11
ren (ref40) 2015
ref10
nielsen (ref15) 1997
ref17
ref16
ref19
ref18
ref46
ref45
ref48
ref47
ref41
ref44
ref49
ref8
ref7
ref9
ref3
ref6
ref5
du (ref4) 2012; 14
ref35
ref34
ref36
ref31
petersen (ref43) 2012
ref30
ref33
andrew (ref42) 2013
ref32
krizhevsky (ref39) 2012
ref2
ref1
bengio (ref37) 2007
ref24
ref23
ref26
ref25
ref20
ref22
ref21
hinton (ref38) 2006; 313
ref28
ref27
ref29
References_xml – ident: ref28
  doi: 10.1109/TGRS.2013.2266673
– year: 1997
  ident: ref15
  article-title: Multivariate alteration detection (MAD) in multispectral, bi-temporal image data: A new approach to change detection studies
– volume: 313
  start-page: 504
  year: 2006
  ident: ref38
  article-title: Reducing the dimensionality of data with neural networks
  publication-title: Science
  doi: 10.1126/science.1127647
– ident: ref18
  doi: 10.1109/TGRS.2008.916643
– ident: ref11
  doi: 10.1016/S0034-4257(97)00112-0
– ident: ref8
  doi: 10.1016/j.rse.2008.07.018
– ident: ref3
  doi: 10.1109/TGRS.2012.2197860
– ident: ref26
  doi: 10.1080/0143116031000101675
– ident: ref32
  doi: 10.1109/TPAMI.2011.157
– start-page: 153
  year: 2007
  ident: ref37
  article-title: Greedy layer-wise training of deep networks
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref49
  doi: 10.1109/TPAMI.2011.272
– ident: ref9
  doi: 10.1016/j.rse.2007.06.013
– ident: ref33
  doi: 10.1109/CVPR.2014.336
– ident: ref36
  doi: 10.1109/TGRS.2016.2642125
– ident: ref21
  doi: 10.1016/j.rse.2007.08.012
– ident: ref47
  doi: 10.1162/0899766042321814
– ident: ref6
  doi: 10.1016/j.rse.2010.02.018
– ident: ref41
  doi: 10.1109/CVPR.2015.7298965
– start-page: 91
  year: 2015
  ident: ref40
  article-title: Faster R-CNN: Towards real-time object detection with region proposal networks
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref29
  doi: 10.1016/j.rse.2017.07.009
– ident: ref2
  doi: 10.1016/j.neucom.2012.08.056
– ident: ref1
  doi: 10.1080/01431168908903939
– ident: ref45
  doi: 10.1109/LGRS.2016.2611001
– ident: ref10
  doi: 10.3390/rs10070980
– ident: ref46
  doi: 10.1109/LGRS.2018.2876616
– ident: ref13
  doi: 10.1080/01431160801950162
– ident: ref27
  doi: 10.1080/0143116031000139863
– ident: ref23
  doi: 10.1016/j.rse.2007.10.002
– ident: ref7
  doi: 10.1080/02757259609532305
– ident: ref30
  doi: 10.1162/089976602317318938
– ident: ref31
  doi: 10.4249/scholarpedia.5282
– ident: ref19
  doi: 10.1080/01431160903475399
– ident: ref44
  doi: 10.1109/TIP.2006.888195
– ident: ref34
  doi: 10.1007/978-3-540-87536-9_98
– volume: 14
  start-page: 272
  year: 2012
  ident: ref4
  article-title: A discriminative manifold learning based dimension reduction method for hyperspectral classification
  publication-title: Int J Fuzzy Syst
– ident: ref17
  doi: 10.1109/IGARSS.2009.5418265
– ident: ref5
  doi: 10.1016/j.rse.2009.02.004
– start-page: 1247
  year: 2013
  ident: ref42
  article-title: Deep canonical correlation analysis
  publication-title: Proc Int Conf Mach Learn
– ident: ref25
  doi: 10.1109/TGRS.2011.2141999
– year: 2012
  ident: ref43
  publication-title: The Matrix Cookbook Version 20121115
– start-page: 1097
  year: 2012
  ident: ref39
  article-title: ImageNet classification with deep convolutional neural networks
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref24
  doi: 10.1109/TGRS.2011.2168230
– ident: ref35
  doi: 10.1162/NECO_a_00171
– ident: ref14
  doi: 10.1016/S0034-4257(97)00162-4
– ident: ref20
  doi: 10.1109/TGRS.2011.2168534
– ident: ref48
  doi: 10.1109/TIP.2015.2475625
– ident: ref22
  doi: 10.1109/TGRS.2010.2066979
– ident: ref12
  doi: 10.1109/36.843009
– ident: ref16
  doi: 10.1016/0034-4257(95)00233-2
SSID ssj0014517
Score 2.689005
Snippet Change detection has been a hotspot in the remote sensing technology for a long time. With the increasing availability of multi-temporal remote sensing images,...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 9976
SubjectTerms Algorithms
Analysis
Artificial neural networks
Change detection
Change detection algorithms
Components
Datasets
Deep learning
deep network
Detection
Detection algorithms
Eigenvalues and eigenfunctions
Feature extraction
Image detection
Imagery
Machine learning
Mapping
Methods
Remote sensing
remote sensing images
slow feature analysis (SFA)
Training
Vector analysis
Title Unsupervised Deep Slow Feature Analysis for Change Detection in Multi-Temporal Remote Sensing Images
URI https://ieeexplore.ieee.org/document/8824216
https://www.proquest.com/docview/2317727391
Volume 57
WOSCitedRecordID wos000505701800036&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-0644
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014517
  issn: 0196-2892
  databaseCode: RIE
  dateStart: 19800101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwEB0BolJ7AApFLKXIh56qGuzEie1jBaXlgip2kbhF6_GkQlqyq81u-fvYTnbVqqhST8nBjqK8ZD4yb94AfDSeJNa54wU5y5XyGXe2FrzWztlxhpQhpmET-ubG3N_bHxvwed0LQ0SJfEZn8TTV8v0Ul_FX2XmIBlUmy03Y1Fp3vVrrioEqZN8aXfKQRGR9BVMKez76djuMJC57FnybKE32hw9KQ1X-ssTJvVzt_t-N7cFOH0ayLx3ub2GDmn1485u44D68SuRObA_A3zXtchaNQkueXRLN2HAyfWIx_FvOia2ESVgIYFnXbhBWLRJJq2EPDUtdunzUqVhN2C0FfIkNI_e9-cmuH4NNat_B3dXX0cV33k9X4JgXdsFRSDdWtTcoc28kaTIFyjLT6HyBAa_MUC1KL7XwRYGlNHU4eMLauihykx_CVjNt6AiYGltnXG2810rFBIaMQ507WWhpSYkBiNXzrrCXHo8TMCZVSkGErSJEVYSo6iEawKf1llmnu_GvxQcRk_XCHo4BnKxArfovs61CPKtjzGbl8cu73sPreO2OsnICW4v5kj7ANv5aPLTz0_TSPQOKktWV
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VAoIeeLQgtg_qAyeEWzuxY_tYlb7UskLdrdRbtLYnVaUlu9rswt-v7WRXIBBST_FhrET5nHlkvpkB-KQ9clfllkq0hgrhM2pNxWilrDWjzGHmXBo2ofp9fXtrvq_Bl1UtDCIm8hkexGXK5fuJW8RfZYfBGxQZL57AUynCoq3WWuUMhORdcXRBQxiRdTlMzszh8Ox6EGlc5iBYN1bo7A8rlMaq_KWLk4E5ff24R3sDrzpHkhy1yL-FNaw3YeO39oKb8DzRO12zBf6mbhbTqBYa9OQr4pQMxpNfJDqAixmSZWsSElxY0hYcBKl5omnV5L4mqU6XDts-VmNyjQFhJIPIfq_vyMWPoJWad3BzejI8PqfdfAXqcmnm1DFuR6Ly2vHca44KtXS8yJSzXrqAWKaxYoXninkpXcF1FS4eXWVsbHOTv4f1elLjByBiZKy2lfZeCRFDGNTWqdxyqbhBwXrAlu-7dF3z8TgDY1ymIISZMkJURojKDqIefF5tmbadN_4nvBUxWQl2cPRgdwlq2X2bTRk8WhW9NsO3_71rH16cD79dlVcX_csdeBnv0xJYdmF9PlvgHjxzP-f3zexjOoAPzw7Y3A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unsupervised+Deep+Slow+Feature+Analysis+for+Change+Detection+in+Multi-Temporal+Remote+Sensing+Images&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=Du%2C+Bo&rft.au=Ru%2C+Lixiang&rft.au=Wu%2C+Chen&rft.au=Zhang%2C+Liangpei&rft.date=2019-12-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0196-2892&rft.eissn=1558-0644&rft.volume=57&rft.issue=12&rft.spage=9976&rft_id=info:doi/10.1109%2FTGRS.2019.2930682&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon