Generative neural network based spectrum sharing using linear sum assignment problems

Spectrum management and resource allocation (RA) problems are challenging and critical in a vast number of research areas such as wireless communications and computer networks. The traditional approaches for solving such problems usually consume time and memory, especially for large-size problems. R...

Full description

Saved in:
Bibliographic Details
Published in:China communications Vol. 17; no. 2; pp. 14 - 29
Main Authors: Zaky, Ahmed B., Huang, Joshua Zhexue, Wu, Kaishun, ElHalawany, Basem M.
Format: Journal Article
Language:English
Published: China Institute of Communications 01.02.2020
Benha University,Benha,13511,Egypt
Big Data Institute,Shenzhen University,518060,China
Benha University,Benha,13511,Egypt%Big Data Institute,Shenzhen University,518060,China%Guangdong Laboratory of Artificial Intelligence and Digital Economy(SZ),Shenzhen University,Shenzhen 518060,China
PCL Research Center of Networks and Communications,Peng Cheng Laboratory,Shenzhen 518060,China%Guangdong Laboratory of Artificial Intelligence and Digital Economy(SZ),Shenzhen University,Shenzhen 518060,China
Subjects:
ISSN:1673-5447
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Spectrum management and resource allocation (RA) problems are challenging and critical in a vast number of research areas such as wireless communications and computer networks. The traditional approaches for solving such problems usually consume time and memory, especially for large-size problems. Recently different machine learning approaches have been considered as potential promising techniques for combinatorial optimization problems, especially the generative model of the deep neural networks. In this work, we propose a resource allocation deep autoencoder network, as one of the promising generative models, for enabling spectrum sharing in underlay device-to-device (D2D) communication by solving linear sum assignment problems (LSAPs). Specifically, we investigate the performance of three different architectures for the conditional variational autoencoders (CVAE). The three proposed architecture are the convolutional neural network (CVAE-CNN) autoencoder, the feed-forward neural network (CVAE-FNN) autoencoder, and the hybrid (H-CVAE) autoencoder. The simulation results show that the proposed approach could be used as a replacement of the conventional RA techniques, such as the Hungarian algorithm, due to its ability to find solutions of LASPs of different sizes with high accuracy and very fast execution time. Moreover, the simulation results reveal that the accuracy of the proposed hybrid autoencoder architecture outperforms the other proposed architectures and the state-of-the-art DNN techniques.
AbstractList Spectrum management and resource allocation(RA)problems are challenging and critical in a vast number of research areas such as wireless communications and computer networks.The traditional approaches for solv-ing such problems usually consume time and memory,especially for large-size problems.Recently different machine learning approach-es have been considered as potential promis-ing techniques for combinatorial optimization problems,especially the generative model of the deep neural networks.In this work,we propose a resource allocation deep autoen-coder network,as one of the promising gener-ative models,for enabling spectrum sharing in underlay device-to-device(D2D)communi-cation by solving linear sum assignment prob-lems(LSAPs).Specifically,we investigate the performance of three different architectures for the conditional variational autoencoders(CVAE).The three proposed architecture are the convolutional neural network(CVAE-CNN)autoencoder,the feed-forward neural network(CVAE-FNN)autoencoder,and the hybrid(H-CVAE)autoencoder.The simula-tion results show that the proposed approach could be used as a replacement of the conven-tional RA techniques,such as the Hungarian algorithm,due to its ability to find solutions of LASPs of different sizes with high accuracy and very fast execution time.Moreover,the simulation results reveal that the accuracy of the proposed hybrid autoencoder architecture outperforms the other proposed architectures and the state-of-the-art DNN techniques.
Spectrum management and resource allocation (RA) problems are challenging and critical in a vast number of research areas such as wireless communications and computer networks. The traditional approaches for solving such problems usually consume time and memory, especially for large-size problems. Recently different machine learning approaches have been considered as potential promising techniques for combinatorial optimization problems, especially the generative model of the deep neural networks. In this work, we propose a resource allocation deep autoencoder network, as one of the promising generative models, for enabling spectrum sharing in underlay device-to-device (D2D) communication by solving linear sum assignment problems (LSAPs). Specifically, we investigate the performance of three different architectures for the conditional variational autoencoders (CVAE). The three proposed architecture are the convolutional neural network (CVAE-CNN) autoencoder, the feed-forward neural network (CVAE-FNN) autoencoder, and the hybrid (H-CVAE) autoencoder. The simulation results show that the proposed approach could be used as a replacement of the conventional RA techniques, such as the Hungarian algorithm, due to its ability to find solutions of LASPs of different sizes with high accuracy and very fast execution time. Moreover, the simulation results reveal that the accuracy of the proposed hybrid autoencoder architecture outperforms the other proposed architectures and the state-of-the-art DNN techniques.
Author ElHalawany, Basem M.
Zaky, Ahmed B.
Wu, Kaishun
Huang, Joshua Zhexue
AuthorAffiliation Big Data Institute,Shenzhen University,518060,China;Benha University,Benha,13511,Egypt%Big Data Institute,Shenzhen University,518060,China%Guangdong Laboratory of Artificial Intelligence and Digital Economy(SZ),Shenzhen University,Shenzhen 518060,China;PCL Research Center of Networks and Communications,Peng Cheng Laboratory,Shenzhen 518060,China%Guangdong Laboratory of Artificial Intelligence and Digital Economy(SZ),Shenzhen University,Shenzhen 518060,China;Benha University,Benha,13511,Egypt
AuthorAffiliation_xml – name: Big Data Institute,Shenzhen University,518060,China;Benha University,Benha,13511,Egypt%Big Data Institute,Shenzhen University,518060,China%Guangdong Laboratory of Artificial Intelligence and Digital Economy(SZ),Shenzhen University,Shenzhen 518060,China;PCL Research Center of Networks and Communications,Peng Cheng Laboratory,Shenzhen 518060,China%Guangdong Laboratory of Artificial Intelligence and Digital Economy(SZ),Shenzhen University,Shenzhen 518060,China;Benha University,Benha,13511,Egypt
Author_xml – sequence: 1
  givenname: Ahmed B.
  surname: Zaky
  fullname: Zaky, Ahmed B.
  organization: Big Data Institute, Shenzhen University, 518060, China; Benha University, Benha, 13511, Egypt
– sequence: 2
  givenname: Joshua Zhexue
  surname: Huang
  fullname: Huang, Joshua Zhexue
  organization: Big Data Institute, Shenzhen University, 518060, China
– sequence: 3
  givenname: Kaishun
  surname: Wu
  fullname: Wu, Kaishun
  organization: Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen 518060, China; PCL Research Center of Networks and Communications, Peng Cheng Laboratory, Shenzhen 518060, China
– sequence: 4
  givenname: Basem M.
  surname: ElHalawany
  fullname: ElHalawany, Basem M.
  organization: Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen 518060, China; Benha University, Benha, 13511, Egypt
BookMark eNp9kDFPwzAQhT0UiVK6I7FkYUxw7MSJRxRBASGx0NmynXNISZzKTinw63EbxMDA6XQ33PvudO8MzexgAaGLFCeE8pRfP1ZVQjDBCSYJxmSG5ikraJxnWXGKlt5vcIiSMcrIHK1XYMHJsX2HyMLOyS60cT-4t0hJD3Xkt6BHt-sj_ypda5to5w-1ay1IF_kwkN63je3BjtHWDaqD3p-jEyM7D8ufvkDru9uX6j5-el49VDdPsaY5H2OljVEpZ3XKVaE5ZZpILsuM16XUjBKdq5pmitU401SleckNaMkLwk1hgGK6QFfT3r20RtpGbIads-Gi-GrGj4MJxww6Num0G7x3YIRux_D0YEcn206kWBy9E8E7ccAEJmIC8R9w69peus__kMsJaQHgV86DgvCMfgOogH9S
CODEN CCHOBE
CitedBy_id crossref_primary_10_1016_j_comnet_2023_109581
crossref_primary_10_1016_j_eswa_2024_125985
crossref_primary_10_1002_ett_4352
crossref_primary_10_1002_ett_4470
crossref_primary_10_1109_JSYST_2021_3089536
crossref_primary_10_3390_electronics10020169
crossref_primary_10_1016_j_phycom_2024_102423
crossref_primary_10_3390_s22145216
crossref_primary_10_1016_j_phycom_2023_102133
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 97E
RIA
RIE
AAYXX
CITATION
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.23919/JCC.2020.02.002
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Economics
EndPage 29
ExternalDocumentID zgtx202002002
10_23919_JCC_2020_02_002
9020294
Genre orig-research
GrantInformation_xml – fundername: This research was supported in part by the China NSFC Grant 61872248,Guangdong NSF 2017A030312008,Fok Ying-Tong Education Foundation for Young Teachers in the Higher Education Institutions of China; GDUPS
  funderid: (Grant 161064); (2015)
GroupedDBID -SI
-SJ
-S~
0R~
29B
4.4
5GY
6IK
92H
92I
97E
AAHTB
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABPEJ
ABQJQ
ABVLG
AENEX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
AZLTO
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CAJEI
CAJEJ
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
Q--
Q-9
RIA
RIE
RNS
TCJ
TGT
U1G
U5S
U5T
AAYXX
CITATION
2B.
4A8
93N
PSX
RIG
ID FETCH-LOGICAL-c359t-bcffb196d19b7c936c2a9a849d8ac632c5bd34b6d04c3b1589feca9729f7fe303
IEDL.DBID RIE
ISICitedReferencesCount 15
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000516755300003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1673-5447
IngestDate Thu May 29 03:54:25 EDT 2025
Sat Nov 29 04:28:51 EST 2025
Tue Nov 18 21:23:40 EST 2025
Wed Aug 27 02:17:10 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords generative models
autoencoder
resource allocation
linear sum assignment problems
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c359t-bcffb196d19b7c936c2a9a849d8ac632c5bd34b6d04c3b1589feca9729f7fe303
PageCount 16
ParticipantIDs ieee_primary_9020294
crossref_citationtrail_10_23919_JCC_2020_02_002
wanfang_journals_zgtx202002002
crossref_primary_10_23919_JCC_2020_02_002
PublicationCentury 2000
PublicationDate 2020-02-01
PublicationDateYYYYMMDD 2020-02-01
PublicationDate_xml – month: 02
  year: 2020
  text: 2020-02-01
  day: 01
PublicationDecade 2020
PublicationTitle China communications
PublicationTitleAbbrev ChinaComm
PublicationTitle_FL China Communications
PublicationYear 2020
Publisher China Institute of Communications
Benha University,Benha,13511,Egypt
Big Data Institute,Shenzhen University,518060,China
Benha University,Benha,13511,Egypt%Big Data Institute,Shenzhen University,518060,China%Guangdong Laboratory of Artificial Intelligence and Digital Economy(SZ),Shenzhen University,Shenzhen 518060,China
PCL Research Center of Networks and Communications,Peng Cheng Laboratory,Shenzhen 518060,China%Guangdong Laboratory of Artificial Intelligence and Digital Economy(SZ),Shenzhen University,Shenzhen 518060,China
Publisher_xml – name: China Institute of Communications
– name: Benha University,Benha,13511,Egypt%Big Data Institute,Shenzhen University,518060,China%Guangdong Laboratory of Artificial Intelligence and Digital Economy(SZ),Shenzhen University,Shenzhen 518060,China
– name: Benha University,Benha,13511,Egypt
– name: Big Data Institute,Shenzhen University,518060,China
– name: PCL Research Center of Networks and Communications,Peng Cheng Laboratory,Shenzhen 518060,China%Guangdong Laboratory of Artificial Intelligence and Digital Economy(SZ),Shenzhen University,Shenzhen 518060,China
SSID ssj0000866362
Score 2.271643
Snippet Spectrum management and resource allocation (RA) problems are challenging and critical in a vast number of research areas such as wireless communications and...
Spectrum management and resource allocation(RA)problems are challenging and critical in a vast number of research areas such as wireless communications and...
SourceID wanfang
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 14
SubjectTerms autoencoder
Computer architecture
Device-to-device communication
generative models
linear sum assignment problems
Machine learning
Neural networks
Optimization
resource allocation
Resource management
Wireless communication
Title Generative neural network based spectrum sharing using linear sum assignment problems
URI https://ieeexplore.ieee.org/document/9020294
https://d.wanfangdata.com.cn/periodical/zgtx202002002
Volume 17
WOSCitedRecordID wos000516755300003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  issn: 1673-5447
  databaseCode: RIE
  dateStart: 20130101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://ieeexplore.ieee.org/
  omitProxy: false
  ssIdentifier: ssj0000866362
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB50EfTiaxXXFzl4EazbJmnSHGVRREQ8qHgrea4L2pXtroi_3iSti4IIQg89zECZSTrfvAGOsHWFo8Yl1ORhqLZKE0kMSRSxTmdE5ixmTB-u-c1N8fgobhfgZN4LY62NxWf2NLzGXL4Z61kIlfWFxzZY0EVY5Jw1vVrzeIqH5ozE_aEZ4yHfT3mTlcREZKJ_NRh4ZxCnzYBO_MMKxbUqsWmncrIafrMvF2v_-7J1WG1xJDprFL8BC7bahOWvNuO6C_fNQOnwN0NhaKUnrpqSbxQsl0Gxx3Iye0H1kwzBPRRK4IcowE45Qf6AIo-rR8NYLYDavTP1FtxfnN8NLpN2h0KiSS6midLOKX_LTCYU14IwjaWQBRWmkJoRrHNlCFXMpFQTleWFcFZL4SG34856-7YNnWpc2R1AWFopKDOGeZeQYq60BzMFk1ypQgme9qD_JdNStwPGw56L59I7GlELpddCGbRQprj0WujB8ZzjtRmu8QdtN4h9TtdKvAeHrdrK9vLV5cdw-h4447P7O98erASSpv56Hzpe3vYAlvTbdFRPDuPR-gTOAMy0
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9swED_abJC-rNvS0uwj1cNeBnVjS7JsPY7QkG1p2EMy8ib0mQZaZ8TJGPvrJ8lu2GAMBn7wwx2YO8n3k-7udwDvsHWlo8Yl1OSBVFuliSSGJIpYpzMicxYzpl-nxWxWLpf8yxFcHXphrLWx-Mxeh9eYyzcbvQ9XZUPusQ3m9Bie5IHWrunWOtyoeHDOSJwgmrEiZPxp0eQlMeEZH34ajfxxEKcNRSf-Iw7FwSqxbadyslr9FmHGp__3bc_hWYsk0YfG9S_gyFYvofvYaFz3YNFQSof_GQq0lV64aoq-UYhdBsUuy-3-AdV3MlzvoVAEv0IBeMot8ksUeWS9XsV6AdROnqnPYDG-mY8mSTtFIdEk57tEaeeU32cm46rQnDCNJZcl5aaUmhGsc2UIVcykVBOV5SV3VkvuQbcrnPUR7hw61aayF4CwtJJTZgzzh0KKC6U9nCmZLJQqFS_SPgwfbSp0SzEeJl3cC3_UiF4Q3gsieEGkWHgv9OH9QeNbQ6_xD9leMPtBrrV4Hwat20S7_Wrxc7X7ETTj8-rvepfQncxvp2L6cfb5NZwE8aYa-w10vO3tW3iqv-_W9XYQl9kvokLP_Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Generative+Neural+Network+Based+Spectrum+Sharing+Using+Linear+Sum+Assignment+Problems&rft.jtitle=%E4%B8%AD%E5%9B%BD%E9%80%9A%E4%BF%A1%EF%BC%88%E8%8B%B1%E6%96%87%E7%89%88%EF%BC%89&rft.au=Ahmed+B.Zaky&rft.au=Joshua+Zhexue+Huang&rft.au=Kaishun+Wu&rft.au=Basem+M.ElHalawany&rft.date=2020-02-01&rft.pub=Benha+University%2CBenha%2C13511%2CEgypt&rft.issn=1673-5447&rft.volume=17&rft.issue=2&rft.spage=14&rft.epage=29&rft_id=info:doi/10.23919%2FJCC.2020.02.002&rft.externalDocID=zgtx202002002
thumbnail_s http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fzgtx%2Fzgtx.jpg