HEDN: multi-oriented hierarchical extraction and dual-frequency decoupling network for 3D medical image segmentation
Previous 3D encoder-decoder segmentation architectures struggled with fine-grained feature decomposition, resulting in unclear feature hierarchies when fused across layers. Furthermore, the blurred nature of contour boundaries in medical imaging limits the focus on high-frequency contour features. T...
Uloženo v:
| Vydáno v: | Medical & biological engineering & computing Ročník 63; číslo 1; s. 267 - 291 |
|---|---|
| Hlavní autoři: | , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.01.2025
Springer Nature B.V |
| Témata: | |
| ISSN: | 0140-0118, 1741-0444, 1741-0444 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Previous 3D encoder-decoder segmentation architectures struggled with fine-grained feature decomposition, resulting in unclear feature hierarchies when fused across layers. Furthermore, the blurred nature of contour boundaries in medical imaging limits the focus on high-frequency contour features. To address these challenges, we propose a Multi-oriented Hierarchical Extraction and Dual-frequency Decoupling Network (HEDN), which consists of three modules: Encoder-Decoder Module (E-DM), Multi-oriented Hierarchical Extraction Module (Multi-HEM), and Dual-frequency Decoupling Module (Dual-DM). The E-DM performs the basic encoding and decoding tasks, while Multi-HEM decomposes and fuses spatial and slice-level features in 3D, enriching the feature hierarchy by weighting them through 3D fusion. Dual-DM separates high-frequency features from the reconstructed network using self-supervision. Finally, the self-supervised high-frequency features separated by Dual-DM are inserted into the process following Multi-HEM, enhancing interactions and complementarities between contour features and hierarchical features, thereby mutually reinforcing both aspects. On the Synapse dataset, HEDN outperforms existing methods, boosting Dice Similarity Score (DSC) by 1.38% and decreasing 95% Hausdorff Distance (HD95) by 1.03 mm. Likewise, on the Automatic Cardiac Diagnosis Challenge (ACDC) dataset, HEDN achieves 0.5% performance gains across all categories.
Graphical abstract |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ISSN: | 0140-0118 1741-0444 1741-0444 |
| DOI: | 10.1007/s11517-024-03192-y |