Physical Activity Recognition From Smartphone Accelerometer Data for User Context Awareness Sensing

Physical activity recognition of everyday activities such as sitting, standing, laying, walking, and jogging was performed, through the use of smartphone accelerometer data. Activity classification was done on a remote server through the use of machine learning algorithms, data was received from the...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on systems, man, and cybernetics. Systems Ročník 47; číslo 12; s. 3142 - 3149
Hlavní autori: Wannenburg, Johan, Malekian, Reza
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York IEEE 01.12.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:2168-2216, 2168-2232
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Physical activity recognition of everyday activities such as sitting, standing, laying, walking, and jogging was performed, through the use of smartphone accelerometer data. Activity classification was done on a remote server through the use of machine learning algorithms, data was received from the smartphone wirelessly. The smartphone was placed in the subject's trouser pocket while data was gathered. A large sample set was used to train the classifiers and then a test set was used to verify the algorithm accuracies. Ten different classifier algorithm configurations were evaluated to determine which performed best overall, as well as, which algorithms performed best for specific activity classes. Based on the results obtained, very accurate predictions could be made for offline activity recognition. The kNN and kStar algorithms both obtained an overall accuracy of 99.01%.
AbstractList Physical activity recognition of everyday activities such as sitting, standing, laying, walking, and jogging was performed, through the use of smartphone accelerometer data. Activity classification was done on a remote server through the use of machine learning algorithms, data was received from the smartphone wirelessly. The smartphone was placed in the subject's trouser pocket while data was gathered. A large sample set was used to train the classifiers and then a test set was used to verify the algorithm accuracies. Ten different classifier algorithm configurations were evaluated to determine which performed best overall, as well as, which algorithms performed best for specific activity classes. Based on the results obtained, very accurate predictions could be made for offline activity recognition. The kNN and kStar algorithms both obtained an overall accuracy of 99.01%.
Author Wannenburg, Johan
Malekian, Reza
Author_xml – sequence: 1
  givenname: Johan
  surname: Wannenburg
  fullname: Wannenburg, Johan
  email: johan.wannenburg@gmail.com
  organization: Dept. of Electr., Electron., & Comput. Eng., Univ. of Pretoria, Pretoria, South Africa
– sequence: 2
  givenname: Reza
  surname: Malekian
  fullname: Malekian, Reza
  email: reza.malekian@ieee.org
  organization: Dept. of Electr., Electron., & Comput. Eng., Univ. of Pretoria, Pretoria, South Africa
BookMark eNp9kE1PAjEQhhujiYj8AOOliWew7W67u0eyippgNALnTSmzULK02BaVf283EA4ePHU6877z8Vyhc2MNIHRDyYBSUtxPJ6_lgBEqBowLxklxhjqMirzPWMLOTzEVl6jn_ZoQQlkuEiI6SL2v9l4r2eChCvpLhz3-AGWXRgdtDR45u8GTjXRhu4ozo0hBAzEJARx-kEHi2jo88_FXWhPgJ-Dht3RgwHs8AeO1WV6ji1o2HnrHt4tmo8dp-dwfvz29lMNxXyW8CH0JaVrMOSVikamcy7zmitTFgkEd92dEzpVcgFA5SWOpKLgkiZJ8zvI6FVmiki66O_TdOvu5Ax-qtd05E0dWjGZpKhIedV2UHVTKWe8d1JXSQbbXBid1U1FStVCrFmrVQq2OUKOT_nFunY5s9v96bg8eDQAnfZZmIhdF8guBWIVY
CODEN ITSMFE
CitedBy_id crossref_primary_10_1016_j_enbuild_2021_111699
crossref_primary_10_1109_ACCESS_2020_2964237
crossref_primary_10_1007_s12652_017_0592_3
crossref_primary_10_1109_JSEN_2020_3023964
crossref_primary_10_3390_s18113604
crossref_primary_10_1016_j_ijhcs_2021_102650
crossref_primary_10_1093_gigascience_giab044
crossref_primary_10_1109_JSEN_2019_2911204
crossref_primary_10_1109_JIOT_2020_3033173
crossref_primary_10_1007_s11277_020_07903_0
crossref_primary_10_1177_1550147719894532
crossref_primary_10_1109_JSEN_2023_3282171
crossref_primary_10_1016_j_future_2023_01_006
crossref_primary_10_3390_s18061965
crossref_primary_10_1109_ACCESS_2023_3338137
crossref_primary_10_1007_s11042_022_12261_z
crossref_primary_10_1109_ACCESS_2021_3111323
crossref_primary_10_3390_s18092822
crossref_primary_10_1109_JIOT_2019_2936580
crossref_primary_10_1109_TSMC_2018_2824903
crossref_primary_10_1007_s41870_024_02305_y
crossref_primary_10_1016_j_procs_2020_10_007
crossref_primary_10_1038_s41746_021_00514_4
crossref_primary_10_3390_s20185114
crossref_primary_10_1109_ACCESS_2017_2775180
crossref_primary_10_1109_JERM_2018_2858562
crossref_primary_10_1007_s10044_021_00995_9
crossref_primary_10_1049_iet_net_2018_5122
crossref_primary_10_1109_JSYST_2018_2890571
crossref_primary_10_1007_s10796_020_09992_5
crossref_primary_10_1109_ACCESS_2022_3140373
crossref_primary_10_1007_s11036_024_02362_4
crossref_primary_10_1038_s41598_024_63195_5
crossref_primary_10_1016_j_neunet_2021_11_011
crossref_primary_10_1109_TIP_2021_3086590
crossref_primary_10_3390_info9040094
crossref_primary_10_1016_j_measurement_2018_01_027
crossref_primary_10_1109_TSMC_2023_3292146
crossref_primary_10_1007_s12652_018_0766_7
crossref_primary_10_1016_j_cie_2020_106953
crossref_primary_10_3390_s21165479
crossref_primary_10_1080_10400435_2023_2177775
crossref_primary_10_1109_COMST_2019_2914030
crossref_primary_10_1016_j_future_2022_03_006
crossref_primary_10_1145_3569484
crossref_primary_10_3390_s22239176
crossref_primary_10_3390_s22239451
crossref_primary_10_1002_spe_2846
crossref_primary_10_1155_2022_4356974
crossref_primary_10_1109_ACCESS_2021_3105581
crossref_primary_10_1109_TSMC_2020_2970905
crossref_primary_10_1109_ACCESS_2020_3037715
crossref_primary_10_1109_TNSRE_2024_3366907
crossref_primary_10_3390_s21144638
crossref_primary_10_1016_j_robot_2022_104353
crossref_primary_10_1109_JSEN_2018_2844122
crossref_primary_10_1587_transinf_2020EDP7228
crossref_primary_10_3390_s18030838
crossref_primary_10_3390_s19194242
crossref_primary_10_1109_TSMC_2018_2791603
crossref_primary_10_3390_s23115155
crossref_primary_10_1016_j_enbuild_2023_113216
crossref_primary_10_3390_s20051523
crossref_primary_10_1016_j_enbenv_2023_09_001
crossref_primary_10_3389_frobt_2021_749274
crossref_primary_10_3390_s19163468
crossref_primary_10_1109_JIOT_2023_3282680
crossref_primary_10_1109_JIOT_2022_3209970
crossref_primary_10_1109_TSMC_2018_2819026
crossref_primary_10_3390_s20154117
crossref_primary_10_1088_1742_6596_1341_4_042002
crossref_primary_10_1109_TSMC_2019_2912206
crossref_primary_10_1016_j_enbuild_2023_113808
crossref_primary_10_1109_ACCESS_2019_2913393
crossref_primary_10_3390_s21103551
crossref_primary_10_1155_2022_9540033
crossref_primary_10_1007_s12652_017_0668_0
crossref_primary_10_1007_s11042_020_10046_w
crossref_primary_10_1109_JSEN_2022_3153610
crossref_primary_10_1109_MITS_2019_2903551
crossref_primary_10_1109_TITS_2024_3387834
crossref_primary_10_3390_electronics9030509
crossref_primary_10_3390_s18041061
crossref_primary_10_1016_j_neucom_2021_10_044
crossref_primary_10_1007_s11042_021_11410_0
crossref_primary_10_3390_app9224833
crossref_primary_10_3390_s20236786
crossref_primary_10_1109_TSMC_2021_3102834
crossref_primary_10_1109_JSEN_2017_2782492
crossref_primary_10_3390_s20082216
crossref_primary_10_1016_j_eswa_2024_123143
Cites_doi 10.1016/S0966-6362(01)00199-0
10.1109/TITB.2005.856864
10.1016/j.procs.2014.07.009
10.3390/s100201154
10.1109/TBME.2003.812189
10.1016/j.medengphy.2011.05.002
10.1109/ICSMC.2009.5346042
10.1007/s12668-013-0088-3
10.1016/j.gaitpost.2006.09.012
10.3390/s100807772
10.1145/1964897.1964918
10.1016/j.eswa.2014.04.018
10.1109/CIDM.2013.6597218
10.1145/1656274.1656278
10.1109/TBME.2011.2160723
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
H8D
JQ2
L7M
L~C
L~D
DOI 10.1109/TSMC.2016.2562509
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Aerospace Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Aerospace Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2168-2232
EndPage 3149
ExternalDocumentID 10_1109_TSMC_2016_2562509
7476869
Genre orig-research
GrantInformation_xml – fundername: National Research Foundation
  grantid: 90908
  funderid: 10.13039/501100001321
– fundername: Research Development Programme
  grantid: AOX220
GroupedDBID 0R~
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFS
ACIWK
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
H8D
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c359t-ae449b5106d7c85a8f5c0f9d2ef16820abcade6c8048f5995a03ca5b28f4673c3
IEDL.DBID RIE
ISICitedReferencesCount 125
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000416262600004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2168-2216
IngestDate Sun Nov 09 08:39:00 EST 2025
Sat Nov 29 03:45:26 EST 2025
Tue Nov 18 22:31:27 EST 2025
Tue Aug 26 16:38:57 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c359t-ae449b5106d7c85a8f5c0f9d2ef16820abcade6c8048f5995a03ca5b28f4673c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2763-8085
PQID 2174463567
PQPubID 75739
PageCount 8
ParticipantIDs crossref_citationtrail_10_1109_TSMC_2016_2562509
proquest_journals_2174463567
crossref_primary_10_1109_TSMC_2016_2562509
ieee_primary_7476869
PublicationCentury 2000
PublicationDate 2017-12-01
PublicationDateYYYYMMDD 2017-12-01
PublicationDate_xml – month: 12
  year: 2017
  text: 2017-12-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on systems, man, and cybernetics. Systems
PublicationTitleAbbrev TSMC
PublicationYear 2017
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
kansiz (ref1) 2013; 2
ref20
ref11
mahmood (ref21) 2013; 15
ref10
bao (ref7) 2004
ref2
ref17
ref19
ravi (ref16) 2005; 3
ref8
ref9
ref4
ref3
ref6
ref5
morales (ref18) 2014; 2014
References_xml – ident: ref10
  doi: 10.1016/S0966-6362(01)00199-0
– ident: ref17
  doi: 10.1109/TITB.2005.856864
– volume: 3
  start-page: 1541
  year: 2005
  ident: ref16
  article-title: Activity recognition from accelerometer data
  publication-title: Proc Nat Conf Artif Intell
– start-page: 1
  year: 2004
  ident: ref7
  article-title: Activity recognition from user-annotated acceleration data
  publication-title: Proc Pervasive
– volume: 2014
  start-page: 1
  year: 2014
  ident: ref18
  article-title: Human activity recognition by smartphones regardless of device orientation
  publication-title: Proc IS&T/SPIE Electron Imag
– ident: ref3
  doi: 10.1016/j.procs.2014.07.009
– ident: ref9
  doi: 10.3390/s100201154
– ident: ref13
  doi: 10.1109/TBME.2003.812189
– ident: ref15
  doi: 10.1016/j.medengphy.2011.05.002
– ident: ref19
  doi: 10.1109/ICSMC.2009.5346042
– ident: ref8
  doi: 10.1007/s12668-013-0088-3
– volume: 2
  start-page: 796
  year: 2013
  ident: ref1
  article-title: Selection of time-domain features for fall detection based on supervised learning
  publication-title: Proc World Congr Eng Comput Sci
– ident: ref11
  doi: 10.1016/j.gaitpost.2006.09.012
– ident: ref4
  doi: 10.3390/s100807772
– ident: ref6
  doi: 10.1145/1964897.1964918
– ident: ref5
  doi: 10.1016/j.eswa.2014.04.018
– ident: ref2
  doi: 10.1109/CIDM.2013.6597218
– ident: ref12
  doi: 10.1109/TITB.2005.856864
– ident: ref20
  doi: 10.1145/1656274.1656278
– ident: ref14
  doi: 10.1109/TBME.2011.2160723
– volume: 15
  start-page: 107
  year: 2013
  ident: ref21
  article-title: Intrusion detection system based on K-star classifier and feature set reduction
  publication-title: Int Org Sci Res J Comput Eng
SSID ssj0001286306
Score 2.4374647
Snippet Physical activity recognition of everyday activities such as sitting, standing, laying, walking, and jogging was performed, through the use of smartphone...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3142
SubjectTerms Accelerometer
Accelerometers
Activity recognition
Algorithms
Classifiers
Exercise
Feature extraction
Hidden Markov models
Machine learning
Machine learning algorithms
Sensors
Smart phones
smartphone
Smartphones
Title Physical Activity Recognition From Smartphone Accelerometer Data for User Context Awareness Sensing
URI https://ieeexplore.ieee.org/document/7476869
https://www.proquest.com/docview/2174463567
Volume 47
WOSCitedRecordID wos000416262600004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2168-2232
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001286306
  issn: 2168-2216
  databaseCode: RIE
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NSwMxEB1UPOjBrypWq-TgSVzdZnfzcSxq8WIRq9Dbkk0TEWwr7Vb9-c6k21JQBC_LHhIIeUnmJXl5A3DWL7iWTiZRbJSI0qLJI420IUqFTRX3EjmDD8kmZKejej39sAIXi7cwzrkgPnOX9Bvu8vsjO6WjsiukvkIJvQqrUorZW62l8xQlkpBKkzcFgo_f6hKzGeurp-79Nem4xCUnxk_yw6UwFPKq_FiMQ4Rpb_-vbTuwVTFJ1ppBvwsrbrgHm0v-gjWwDxUKrGVnWSLY41wwNBqy9ng0YN0BDh4SqDssZDEIkX8Bdja7MaVhSGnZM45SFlysvkrW-qTXY7g8si5J34cv-_Dcvn26vouqrAqRTTJdRsalqS5wKoq-tCozymc29rrPnceO47EpSJgvrMK57cmOzMSJNVnBlcdFNbHJAawNsVGHwLzLuOPKOY2kJBUJVi0Ul9yZwhfe2zrE807ObWU5Tpkv3vKw9Yh1TrjkhEte4VKH80WV95nfxl-FawTEomCFQR0acyTzakZOctp6pWTGJ49-r3UMG5xCdpCqNGCtHE_dCazbj_J1Mj4Ng-0b8yPSqA
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PixoxFH7Y7UK7h_7YbamtbXPoadnRMZPJJEdxK5aqSFXwNmRishSqFp3t9s_ve3EUYcvCXoY5JBDyJXlfki_fA_iyKLjOXJZEsVEyEkWbRxppQySkFYr7DDmDD8kmstFIzed6XIOrw1sY51wQn7km_Ya7_MXa3tJRWQupr1RSP4GnqRA83r3WOjpRUTIJyTR5WyL8-K2uMduxbk0nwy4puWSTE-cnAeJRIAqZVe4txyHG9F4-rnWv4EXFJVlnB_5rqLnVOZwdOQxegB1XOLCO3eWJYD_2kqH1ivU26yWbLHH4kETdYSGLYYgcDLC72bUpDUNSy2Y4Tlnwsfpbss4dvR_DBZJNSPy-unkDs97XabcfVXkVIpukuoyME0IXOBnlIrMqNcqnNvZ6wZ3HjuOxKUiaL63C2e3JkMzEiTVpwZXHZTWxyVs4WWGj3gHzLuWOK-c00hIhE6xaKJ5xZwpfeG_rEO87ObeV6TjlvviVh81HrHPCJSdc8gqXOlweqvzeOW48VPiCgDgUrDCoQ2OPZF7NyW1Omy9BdnzZ-__X-gzP-tPhIB98G33_AM85BfAgXGnASbm5dR_h1P4pf243n8LA-wcOSNXv
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Physical+Activity+Recognition+From+Smartphone+Accelerometer+Data+for+User+Context+Awareness+Sensing&rft.jtitle=IEEE+transactions+on+systems%2C+man%2C+and+cybernetics.+Systems&rft.au=Wannenburg%2C+Johan&rft.au=Malekian%2C+Reza&rft.date=2017-12-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=2168-2216&rft.eissn=2168-2232&rft.volume=47&rft.issue=12&rft.spage=3142&rft_id=info:doi/10.1109%2FTSMC.2016.2562509&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2216&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2216&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2216&client=summon