A Multiobjective Evolutionary Programming Algorithm and Its Applications to Power Generation Expansion Planning

The generation expansion planning (GEP) problem is defined as the problem of determining WHAT, WHEN, and WHERE new generation units should be installed over a planning horizon to satisfy the expected energy demand. This paper presents a framework to determine the number of new generating units (e.g....

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on systems, man and cybernetics. Part A, Systems and humans Ročník 39; číslo 5; s. 1086 - 1096
Hlavní autori: Meza, J.L.C., Yildirim, M.B., Masud, A.S.M.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: IEEE 01.09.2009
Predmet:
ISSN:1083-4427, 1558-2426
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The generation expansion planning (GEP) problem is defined as the problem of determining WHAT, WHEN, and WHERE new generation units should be installed over a planning horizon to satisfy the expected energy demand. This paper presents a framework to determine the number of new generating units (e.g., conventional steam units, coal units, combined cycle modules, nuclear plants, gas turbines, wind farms, and geothermal and hydro units), power generation capacity for those units, number of new circuits on the network, the voltage phase angle at each node, and the amount of required imported fuel for a single-period generation expansion plan. The resulting mathematical program is a mixed-integer bilinear multiobjective GEP model. The proposed framework includes a multiobjective evolutionary programming algorithm to obtain an approximation of the Pareto front for the multiobjective optimization problem and analytical hierarchy process to select the best alternative. A Mexican power system case study is utilized to illustrate the proposed framework. Results show coherent decisions given the objectives and scenarios considered. Some sensitivity analysis is presented when considering different fuel price scenarios.
AbstractList The generation expansion planning (GEP) problem is defined as the problem of determining WHAT, WHEN, and WHERE new generation units should be installed over a planning horizon to satisfy the expected energy demand. This paper presents a framework to determine the number of new generating units (e.g., conventional steam units, coal units, combined cycle modules, nuclear plants, gas turbines, wind farms, and geothermal and hydro units), power generation capacity for those units, number of new circuits on the network, the voltage phase angle at each node, and the amount of required imported fuel for a single-period generation expansion plan. The resulting mathematical program is a mixed-integer bilinear multiobjective GEP model. The proposed framework includes a multiobjective evolutionary programming algorithm to obtain an approximation of the Pareto front for the multiobjective optimization problem and analytical hierarchy process to select the best alternative. A Mexican power system case study is utilized to illustrate the proposed framework. Results show coherent decisions given the objectives and scenarios considered. Some sensitivity analysis is presented when considering different fuel price scenarios.
Author Meza, J.L.C.
Yildirim, M.B.
Masud, A.S.M.
Author_xml – sequence: 1
  givenname: J.L.C.
  surname: Meza
  fullname: Meza, J.L.C.
  organization: Inst. de Investig. Electr., Cuernavaca, Mexico
– sequence: 2
  givenname: M.B.
  surname: Yildirim
  fullname: Yildirim, M.B.
– sequence: 3
  givenname: A.S.M.
  surname: Masud
  fullname: Masud, A.S.M.
BookMark eNp9kU1v1DAQhi1UJNrCH4CLb3BJ8XfsY7RaSqVWrEQ5R44zu7hK7GB7W_j3eHcrDhx6sUej5xnZ816gsxADIPSekitKifl8__1u1V0xQkw9mNRKv0LnVErdMMHUWa2J5o0QrH2DLnJ-IIQKYcQ5ih2-20_Fx-EBXPGPgNePcdrXRrDpD96kuEt2nn3Y4W7axeTLzxnbMOKbknG3LJN39gBnXCLexCdI-BoCpGMTr38vNuRDtZlsCHXKW_R6a6cM757vS_Tjy_p-9bW5_XZ9s-puG8elKY110gzCbmk7buXAwIhRK9EacDCApQqEZYYpaS0fHOWjUMwasAQ44aOSml-ij6e5S4q_9pBLP_vsYKrPgLjPvVZtyyVraSU_vUhS1VJWN8dlRfUJdSnmnGDbO1-OPy3J-qmnpD-k0R_T6A9p9M9pVJX9py7Jz3XFL0sfTpIHgH-CrAzXLf8LROaaSA
CODEN ITSHFX
CitedBy_id crossref_primary_10_1049_stg2_12065
crossref_primary_10_1016_j_est_2017_01_003
crossref_primary_10_1002_oca_913
crossref_primary_10_1016_j_epsr_2013_04_001
crossref_primary_10_1016_j_enconman_2015_01_030
crossref_primary_10_1016_j_ijepes_2012_04_014
crossref_primary_10_1016_j_apenergy_2013_10_042
crossref_primary_10_1016_j_rser_2024_114406
crossref_primary_10_1016_j_ijepes_2013_04_013
crossref_primary_10_1155_2018_1438196
crossref_primary_10_1016_j_ins_2013_02_014
crossref_primary_10_1080_15325008_2020_1793840
crossref_primary_10_1016_j_rser_2015_10_116
crossref_primary_10_1088_1755_1315_558_5_052021
crossref_primary_10_1016_j_compchemeng_2018_02_012
crossref_primary_10_1109_TSTE_2018_2789398
crossref_primary_10_17533_udea_redin_12471
crossref_primary_10_1016_j_epsr_2011_12_008
crossref_primary_10_1080_15435075_2014_888999
crossref_primary_10_1016_j_eswa_2015_05_036
crossref_primary_10_1016_j_ejor_2017_09_007
crossref_primary_10_1109_TPWRS_2013_2287457
crossref_primary_10_1177_0309524X19849862
crossref_primary_10_3390_en14144179
crossref_primary_10_1016_j_enconman_2022_116023
crossref_primary_10_1186_s44147_024_00529_0
crossref_primary_10_1002_oca_924
crossref_primary_10_1016_j_asoc_2019_02_041
crossref_primary_10_1016_j_energy_2024_131999
crossref_primary_10_1016_j_apenergy_2015_05_087
crossref_primary_10_1002_jnm_1869
crossref_primary_10_1016_j_knosys_2021_107131
crossref_primary_10_1016_j_rser_2016_11_147
crossref_primary_10_1061__ASCE_EY_1943_7897_0000769
crossref_primary_10_1007_s11227_022_04609_x
crossref_primary_10_1016_j_apenergy_2019_03_178
crossref_primary_10_1016_j_apenergy_2017_01_025
crossref_primary_10_1016_j_rser_2016_09_046
crossref_primary_10_1016_j_apenergy_2024_122832
crossref_primary_10_1080_19392699_2023_2298381
crossref_primary_10_1007_s40722_017_0092_8
crossref_primary_10_3390_su10072417
crossref_primary_10_1016_j_epsr_2010_05_007
crossref_primary_10_1109_TCYB_2015_2461651
crossref_primary_10_1002_dac_5450
crossref_primary_10_1016_j_apenergy_2011_06_004
crossref_primary_10_1109_TPWRS_2013_2296352
crossref_primary_10_1109_TPWRS_2014_2351374
Cites_doi 10.1504/IJGEI.1999.000835
10.1007/978-1-4757-5184-0
10.1080/05695558208974602
10.1007/978-3-642-45511-7
10.1109/MELCON.2000.879711
10.1016/j.energy.2003.10.012
10.1007/BF03325101
10.1007/s10107-003-0467-6
10.1109/CEC.1999.785492
10.1109/17.277407
10.1109/72.265956
10.1016/S0142-0615(01)00005-9
10.1177/003754979506400605
10.1109/TPWRS.2004.840451
10.1109/TPWRS.2007.895178
10.1504/IJGEI.1999.000844
10.1109/TSMCB.2006.886164
10.1002/er.4440190507
10.1016/S0967-0661(02)00081-3
10.1109/59.744462
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
7TB
8FD
F28
FR3
JQ2
L7M
L~C
L~D
7U1
C1K
DOI 10.1109/TSMCA.2009.2025868
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Risk Abstracts
Environmental Sciences and Pollution Management
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Computer and Information Systems Abstracts Professional
Risk Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList
Risk Abstracts
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 1558-2426
EndPage 1096
ExternalDocumentID 10_1109_TSMCA_2009_2025868
5200387
Genre orig-research
GroupedDBID -~X
0R~
29I
4.4
5VS
6IK
85S
97E
AAJGR
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFS
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
F5P
HZ~
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
PZZ
RIA
RIE
RNS
VH1
VJK
AAYXX
CITATION
7SC
7SP
7TB
8FD
F28
FR3
JQ2
L7M
L~C
L~D
7U1
C1K
ID FETCH-LOGICAL-c359t-ac59b4af17df5b2e94d86479ecebea16e4a29265aa3bc13d462a9ea0e303d6583
IEDL.DBID RIE
ISICitedReferencesCount 54
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000269155600012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1083-4427
IngestDate Tue Oct 07 09:21:17 EDT 2025
Fri Jul 11 06:35:30 EDT 2025
Sat Nov 29 06:24:55 EST 2025
Tue Nov 18 21:27:22 EST 2025
Tue Aug 26 16:47:39 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c359t-ac59b4af17df5b2e94d86479ecebea16e4a29265aa3bc13d462a9ea0e303d6583
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1671244235
PQPubID 23500
PageCount 11
ParticipantIDs proquest_miscellaneous_1671244235
crossref_citationtrail_10_1109_TSMCA_2009_2025868
crossref_primary_10_1109_TSMCA_2009_2025868
ieee_primary_5200387
proquest_miscellaneous_867735271
PublicationCentury 2000
PublicationDate 2009-09-01
PublicationDateYYYYMMDD 2009-09-01
PublicationDate_xml – month: 09
  year: 2009
  text: 2009-09-01
  day: 01
PublicationDecade 2000
PublicationTitle IEEE transactions on systems, man and cybernetics. Part A, Systems and humans
PublicationTitleAbbrev TSMCA
PublicationYear 2009
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref12
climaco (ref6) 1990; 2
ref14
ref30
ref11
ref32
ref2
ref19
ref18
(ref17) 1997
deb (ref10) 2001
abraham (ref1) 2005
ref20
nieva (ref23) 2005
fonseca (ref15) 1993
mills (ref22) 1996; 13
coello (ref8) 1999; 1
ref27
weisstein (ref31) 2006
ref29
ref7
keeney (ref24) 1995
hwang (ref16) 1979
ref9
ref4
saaty (ref25) 1980
ref3
ref5
masud (ref21) 2007
(ref26) 2005
vladimir (ref28) 1999; 12
References_xml – year: 2006
  ident: ref31
  article-title: k-means clustering algorithm
  publication-title: From MathWorldA Wolfram web resource
– volume: 12
  start-page: 60
  year: 1999
  ident: ref28
  article-title: incorporating environmental concerns into electric system expansion planning using a multi-criteria decision support system
  publication-title: Int J Global Energy Issues
  doi: 10.1504/IJGEI.1999.000835
– ident: ref9
  doi: 10.1007/978-1-4757-5184-0
– ident: ref11
  doi: 10.1080/05695558208974602
– year: 1979
  ident: ref16
  publication-title: Multiple Objective Decision Making Methods and Applications
  doi: 10.1007/978-3-642-45511-7
– volume: 13
  start-page: 293
  year: 1996
  ident: ref22
  article-title: improving electricity planninguse of a multicriteria decision making model
  publication-title: Int Trans Oper Res
– ident: ref19
  doi: 10.1109/MELCON.2000.879711
– year: 1997
  ident: ref17
  publication-title: Decades Tools User's Manual
– year: 2005
  ident: ref1
  publication-title: Theoretical Advances and Applications
– start-page: 1
  year: 2005
  ident: ref26
  publication-title: Direccion General de Planeacion Energetica Prospectiva del Sector Electrico (20052014)
– ident: ref2
  doi: 10.1016/j.energy.2003.10.012
– volume: 2
  start-page: 194
  year: 1990
  ident: ref6
  article-title: on the use of multicriteria optimization for electric energy planning
  publication-title: Int J Global Energy Issues
– volume: 1
  start-page: 269
  year: 1999
  ident: ref8
  article-title: a comprehensive survey of evolutionary-based multiobjective optimization techniques
  publication-title: Knowl Inf Syst
  doi: 10.1007/BF03325101
– ident: ref27
  doi: 10.1007/s10107-003-0467-6
– year: 1980
  ident: ref25
  publication-title: The Analytic Hierarchy Process
– ident: ref4
  doi: 10.1109/CEC.1999.785492
– ident: ref20
  doi: 10.1109/17.277407
– year: 2001
  ident: ref10
  publication-title: Multi-Objective Optimization Using Evolutionary Algorithms
– ident: ref13
  doi: 10.1109/72.265956
– ident: ref29
  doi: 10.1016/S0142-0615(01)00005-9
– ident: ref14
  doi: 10.1177/003754979506400605
– start-page: 416
  year: 1993
  ident: ref15
  article-title: genetic algorithms for multiobjective optimization: formulation, discussion and generalization
  publication-title: Proc 5th Int Conf Genetic Algorithms
– ident: ref18
  doi: 10.1109/TPWRS.2004.840451
– ident: ref5
  doi: 10.1109/TPWRS.2007.895178
– ident: ref32
  doi: 10.1504/IJGEI.1999.000844
– ident: ref30
  doi: 10.1109/TSMCB.2006.886164
– ident: ref7
  doi: 10.1002/er.4440190507
– ident: ref12
  doi: 10.1016/S0967-0661(02)00081-3
– year: 2007
  ident: ref21
  article-title: a multi-objective model for power generation expansion planning
  publication-title: Ind Eng Res Conf
– start-page: 1
  year: 2005
  ident: ref23
  article-title: a model for long term generation planning under uncertainty
  publication-title: Proc IERE 5th Gen Meeting South East Asia Forum
– ident: ref3
  doi: 10.1109/59.744462
– year: 1995
  ident: ref24
  publication-title: Decisions With Multiple Objectives Preferences and Value Tradeoffs
SSID ssj0014494
Score 2.2157605
Snippet The generation expansion planning (GEP) problem is defined as the problem of determining WHAT, WHEN, and WHERE new generation units should be installed over a...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1086
SubjectTerms Algorithms
Analytical hierarchy process (AHP)
Evolutionary algorithms
evolutionary programming
Fuels
generation expansion planning (GEP)
Genetic programming
Geothermal power generation
Hydraulic turbines
Mathematical analysis
Mathematical models
multicriteria optimization
Nuclear power generation
operations research
optimization methods
Power generation
Power generation planning
Power system modeling
Sensitivity analysis
transmission expansion planning
Wind energy generation
Wind power generation
Wind turbines
Title A Multiobjective Evolutionary Programming Algorithm and Its Applications to Power Generation Expansion Planning
URI https://ieeexplore.ieee.org/document/5200387
https://www.proquest.com/docview/1671244235
https://www.proquest.com/docview/867735271
Volume 39
WOSCitedRecordID wos000269155600012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-2426
  dateEnd: 20121231
  omitProxy: false
  ssIdentifier: ssj0014494
  issn: 1083-4427
  databaseCode: RIE
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ba9swFD6kYQ_rw7r0QrN2RYM9dLRuo4st69GElO1hJdAO8mZkSe6F1i6JE9p_X0lWQmDroG_GSAfjTzo60tH5PoDvODEkNpJEJdYkYpqzqLBDI9JlGhNNqaZBbIJfXqaTiRh34HRVC2OM8ZfPzJl79Ll8Xau5Oyo7dxRBNOUbsMF50tZqrTIGjHnRQ2xDiogxwpcFMgNxfn31e5i11JR2qx-njlZ1bRHyqip_uWK_vlxsve_LPsOnEEeirAW-Bx1TbcPmGrvgNvTCvJ2h40Au_WMH6gz5mtu6uG9dHRotwuiT0xc0bq9rPVoDKHu4qad3ze0jkpVGv5oZytay3aip0dhJrKHWuHuJRs_WubjzN7QUQ9qFPxej6-HPKIguRIrGoomkikXBZIm5LuOCGMF0mjAujLJwSwstk0SQJJaSFgpTzRIihZEDY9dCbcMZugfdqq7MPiAuJHH7HVlQC49WzvEWhf1N1q4yJe4DXqKQq8BI7oQxHnK_MxmI3CPnlDJFHpDrw8mqz1PLx_Hf1jsOq1XLAFMfvi3Bzu1scikSWZl6Pstxwl3AQ2jcB_RGG8cAaMNWjr_82_oBfGxTTu4i2iF0m-ncfIUPatHczaZHftS-AoIm62A
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3faxQxEB5qFdSHalvFq1Uj-KDotpcfu9k8LuVKi-1x4Al9W7JJVlvaXbnbK_a_N5PNHQf-AN-WJRmW_ZLJJJP5PoB3NHMsdZolNbUsEVaKpPJDI7F1njLLueVRbEKOx_nFhZpswKdVLYxzLlw-cwf4GHL5tjULPCo7RIognst7cB-Vs2K11ipnIESQPaQ-qEiEYHJZIjNUh9Mv50dFT07pN_tpjsSqa8tQ0FX5zRmHFeb4yf9921PYipEkKXrot2HDNTvweI1fcAe248ydk_eRXvrDLrQFCVW3bXXVOzsyuo3jT8_uyKS_sHXjDZDi-ls7u-y-3xDdWHLazUmxlu8mXUsmKLJGeuP4kox-eveCJ3BkKYf0DL4ej6ZHJ0mUXUgMT1WXaJOqSuiaSlunFXNK2DwTUjnjAdceXKGZYlmqNa8M5VZkTCunh86vhtYHNPw5bDZt414AkUoz3PHoint4rEHXW1X-N3m7xtV0AHSJQmkiJzlKY1yXYW8yVGVADrUyVRmRG8DHVZ8fPSPHP1vvIlarlhGmAbxdgl36-YRJEt24djEvaSYx5GE8HQD5SxvkAPSBq6R7f7b-Bh6eTM_PyrPT8eeX8KhPQOG1tH3Y7GYL9woemNvucj57HUbwL-Zh7qk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Multiobjective+Evolutionary+Programming+Algorithm+and+Its+Applications+to+Power+Generation+Expansion+Planning&rft.jtitle=IEEE+transactions+on+systems%2C+man+and+cybernetics.+Part+A%2C+Systems+and+humans&rft.au=Meza%2C+J.L.C.&rft.au=Yildirim%2C+M.B.&rft.au=Masud%2C+A.S.M.&rft.date=2009-09-01&rft.issn=1083-4427&rft.eissn=1558-2426&rft.volume=39&rft.issue=5&rft.spage=1086&rft.epage=1096&rft_id=info:doi/10.1109%2FTSMCA.2009.2025868&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TSMCA_2009_2025868
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1083-4427&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1083-4427&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1083-4427&client=summon