A Multiobjective Evolutionary Algorithm Using Gaussian Process-Based Inverse Modeling

To approximate the Pareto front, most existing multiobjective evolutionary algorithms store the nondominated solutions found so far in the population or in an external archive during the search. Such algorithms often require a high degree of diversity of the stored solutions and only a limited numbe...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on evolutionary computation Ročník 19; číslo 6; s. 838 - 856
Hlavní autori: Ran Cheng, Yaochu Jin, Narukawa, Kaname, Sendhoff, Bernhard
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York IEEE 01.12.2015
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:1089-778X, 1941-0026
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract To approximate the Pareto front, most existing multiobjective evolutionary algorithms store the nondominated solutions found so far in the population or in an external archive during the search. Such algorithms often require a high degree of diversity of the stored solutions and only a limited number of solutions can be achieved. By contrast, model-based algorithms can alleviate the requirement on solution diversity and in principle, as many solutions as needed can be generated. This paper proposes a new model-based method for representing and searching nondominated solutions. The main idea is to construct Gaussian process-based inverse models that map all found nondominated solutions from the objective space to the decision space. These inverse models are then used to create offspring by sampling the objective space. To facilitate inverse modeling, the multivariate inverse function is decomposed into a group of univariate functions, where the number of inverse models is reduced using a random grouping technique. Extensive empirical simulations demonstrate that the proposed algorithm exhibits robust search performance on a variety of medium to high dimensional multiobjective optimization test problems. Additional nondominated solutions are generated a posteriori using the constructed models to increase the density of solutions in the preferred regions at a low computational cost.
AbstractList To approximate the Pareto front, most existing multiobjective evolutionary algorithms store the nondominated solutions found so far in the population or in an external archive during the search. Such algorithms often require a high degree of diversity of the stored solutions and only a limited number of solutions can be achieved. By contrast, model-based algorithms can alleviate the requirement on solution diversity and in principle, as many solutions as needed can be generated. This paper proposes a new model-based method for representing and searching nondominated solutions. The main idea is to construct Gaussian process-based inverse models that map all found nondominated solutions from the objective space to the decision space. These inverse models are then used to create offspring by sampling the objective space. To facilitate inverse modeling, the multivariate inverse function is decomposed into a group of univariate functions, where the number of inverse models is reduced using a random grouping technique. Extensive empirical simulations demonstrate that the proposed algorithm exhibits robust search performance on a variety of medium to high dimensional multiobjective optimization test problems. Additional nondominated solutions are generated a posteriori using the constructed models to increase the density of solutions in the preferred regions at a low computational cost.
Author Sendhoff, Bernhard
Yaochu Jin
Narukawa, Kaname
Ran Cheng
Author_xml – sequence: 1
  surname: Ran Cheng
  fullname: Ran Cheng
  organization: Dept. of Comput., Univ. of Surrey, Guildford, UK
– sequence: 2
  surname: Yaochu Jin
  fullname: Yaochu Jin
  email: yaochu.jin@surrey.ac.uk
  organization: Dept. of Comput., Univ. of Surrey, Guildford, UK
– sequence: 3
  givenname: Kaname
  surname: Narukawa
  fullname: Narukawa, Kaname
  organization: Honda Res. Inst. Eur., Offenbach, Germany
– sequence: 4
  givenname: Bernhard
  surname: Sendhoff
  fullname: Sendhoff, Bernhard
  organization: Honda Res. Inst. Eur., Offenbach, Germany
BookMark eNp9kMFOAjEQhhuDiYg-gPGyiefFTru7bY9IEEkgegDjbVN2ByxZttjukvj2dgPx4MHTTCbfP5P5rkmvtjUScgd0CEDV43LyPh4yCumQcZVSwS9IH1QCMaUs64WeShULIT-uyLX3O0ohSUH1yWoULdqqMXa9w6IxR4wmR1u1YVBr9x2Nqq11pvncRytv6m001a33RtfRm7MFeh8_aY9lNKuP6DxGC1tiFbgbcrnRlcfbcx2Q1fNkOX6J56_T2Xg0jwueqibWa4UgsACUKEueca3WgmGRKZWJUpWMpUyD5okAjpqWhdqsKQjFAiiYzviAPJz2Hpz9atE3-c62rg4ncxBcyjSBRAZKnKjCWe8dbvLCNLp7sXHaVDnQvHOYdw7zzmF-dhiS8Cd5cGYfxPybuT9lDCL-8oKCVJLyHwKjfzw
CODEN ITEVF5
CitedBy_id crossref_primary_10_1109_TCYB_2017_2711038
crossref_primary_10_1007_s00500_020_05175_1
crossref_primary_10_1016_j_tws_2020_107248
crossref_primary_10_1109_TNNLS_2021_3113158
crossref_primary_10_1016_j_ins_2023_02_043
crossref_primary_10_1109_TAI_2024_3444736
crossref_primary_10_1109_TCYB_2020_3017049
crossref_primary_10_1109_TEVC_2022_3166815
crossref_primary_10_1016_j_compbiomed_2023_107727
crossref_primary_10_1109_TCYB_2019_2894664
crossref_primary_10_1016_j_asoc_2023_110672
crossref_primary_10_3390_a18030164
crossref_primary_10_1109_ACCESS_2019_2945818
crossref_primary_10_1109_TCYB_2019_2952881
crossref_primary_10_1007_s13042_024_02221_4
crossref_primary_10_1109_TEVC_2022_3161363
crossref_primary_10_1016_j_ins_2021_06_054
crossref_primary_10_1016_j_swevo_2022_101198
crossref_primary_10_1109_ACCESS_2016_2605759
crossref_primary_10_1109_ACCESS_2021_3107530
crossref_primary_10_1007_s00500_019_04518_x
crossref_primary_10_1016_j_swevo_2023_101235
crossref_primary_10_1109_TCYB_2016_2586191
crossref_primary_10_1145_3470971
crossref_primary_10_1016_j_knosys_2023_110801
crossref_primary_10_1016_j_eswa_2023_122370
crossref_primary_10_1016_j_neucom_2019_02_054
crossref_primary_10_1007_s00500_021_05895_y
crossref_primary_10_1016_j_ins_2020_03_111
crossref_primary_10_1109_TEVC_2023_3281666
crossref_primary_10_1016_j_swevo_2022_101073
crossref_primary_10_1109_TEVC_2017_2785224
crossref_primary_10_1109_MCI_2017_2742868
crossref_primary_10_1016_j_swevo_2018_04_009
crossref_primary_10_1109_TEVC_2023_3296488
crossref_primary_10_4218_etrij_2021_0245
crossref_primary_10_1016_j_ins_2022_07_018
crossref_primary_10_1016_j_swevo_2024_101504
crossref_primary_10_1109_TEVC_2016_2622301
crossref_primary_10_1016_j_neucom_2024_129247
crossref_primary_10_1016_j_swevo_2024_101628
crossref_primary_10_1109_TFUZZ_2020_2973121
crossref_primary_10_1007_s10489_018_1358_0
crossref_primary_10_1016_j_eswa_2023_120198
crossref_primary_10_1109_JAS_2022_105875
crossref_primary_10_1155_2021_4296642
crossref_primary_10_1007_s10489_017_0998_9
crossref_primary_10_1111_coin_12315
crossref_primary_10_1109_TEVC_2017_2744328
crossref_primary_10_1016_j_swevo_2023_101261
crossref_primary_10_1109_TCYB_2019_2949204
crossref_primary_10_1016_j_knosys_2020_106612
crossref_primary_10_1109_TEVC_2023_3250350
crossref_primary_10_1016_j_asoc_2023_110581
crossref_primary_10_1007_s12293_019_00282_5
crossref_primary_10_1016_j_engappai_2025_110089
crossref_primary_10_1002_mcda_1605
crossref_primary_10_1109_ACCESS_2021_3110853
crossref_primary_10_1016_j_asoc_2025_113921
crossref_primary_10_1016_j_eswa_2019_01_075
crossref_primary_10_1109_TCYB_2020_2985081
crossref_primary_10_1016_j_swevo_2023_101258
crossref_primary_10_1109_TETCI_2019_2961190
crossref_primary_10_1016_j_advengsoft_2022_103397
crossref_primary_10_1016_j_eswa_2023_120290
crossref_primary_10_1007_s11071_021_07180_x
crossref_primary_10_1016_j_asoc_2022_109614
crossref_primary_10_1016_j_swevo_2023_101392
crossref_primary_10_1016_j_asoc_2024_111341
crossref_primary_10_1016_j_asoc_2025_113386
crossref_primary_10_1016_j_eswa_2025_129460
crossref_primary_10_1109_MCI_2022_3180913
crossref_primary_10_1109_MCI_2023_3304080
crossref_primary_10_1016_j_asoc_2017_09_033
crossref_primary_10_1016_j_jocs_2015_09_003
crossref_primary_10_1002_widm_1267
crossref_primary_10_1016_j_ins_2022_08_072
crossref_primary_10_1016_j_swevo_2020_100759
crossref_primary_10_1109_TETCI_2022_3220812
crossref_primary_10_1016_j_artint_2019_08_003
crossref_primary_10_1016_j_swevo_2016_12_002
crossref_primary_10_1109_TETCI_2018_2872055
crossref_primary_10_1109_ACCESS_2024_3398351
crossref_primary_10_1016_j_swevo_2023_101281
crossref_primary_10_1109_ACCESS_2022_3188762
crossref_primary_10_1016_j_ins_2021_08_027
crossref_primary_10_1016_j_knosys_2015_09_032
crossref_primary_10_1109_TEVC_2022_3199775
crossref_primary_10_1007_s10489_023_04596_3
crossref_primary_10_1016_j_engappai_2018_09_009
crossref_primary_10_1080_09540091_2025_2523960
crossref_primary_10_1109_TEVC_2022_3213006
crossref_primary_10_3390_math11132820
crossref_primary_10_1109_TCOMM_2023_3277878
crossref_primary_10_1016_j_asoc_2023_110233
crossref_primary_10_1109_TEVC_2023_3319494
crossref_primary_10_1109_TCYB_2019_2906383
crossref_primary_10_1007_s44196_025_00884_7
crossref_primary_10_1016_j_jpdc_2022_06_016
crossref_primary_10_1002_cpe_6566
crossref_primary_10_1002_int_22885
crossref_primary_10_1007_s10489_023_04663_9
crossref_primary_10_1002_widm_1158
crossref_primary_10_1109_ACCESS_2018_2877402
crossref_primary_10_1109_TEVC_2020_3004027
crossref_primary_10_1016_j_ins_2021_04_011
crossref_primary_10_1007_s40747_021_00362_5
crossref_primary_10_1016_j_egyr_2023_04_014
crossref_primary_10_1007_s12293_025_00459_1
crossref_primary_10_1109_TEVC_2022_3144880
crossref_primary_10_1109_TCYB_2016_2600577
crossref_primary_10_1515_jiip_2024_0061
crossref_primary_10_1007_s12293_019_00280_7
crossref_primary_10_1109_TCYB_2021_3070434
crossref_primary_10_1007_s12293_018_0264_7
crossref_primary_10_1016_j_cjche_2024_11_004
crossref_primary_10_1007_s40747_017_0057_5
crossref_primary_10_1088_1742_6596_2759_1_012004
crossref_primary_10_1016_j_ins_2024_120940
crossref_primary_10_1109_TEVC_2022_3205165
crossref_primary_10_1109_TMECH_2024_3384292
crossref_primary_10_1016_j_asoc_2022_109430
crossref_primary_10_1109_TNNLS_2023_3297624
crossref_primary_10_1016_j_asoc_2021_107613
crossref_primary_10_1109_TEVC_2024_3355221
crossref_primary_10_1109_TCYB_2021_3125071
crossref_primary_10_1109_TETCI_2018_2849380
crossref_primary_10_1016_j_ejor_2023_08_023
crossref_primary_10_1038_s41598_024_64570_y
crossref_primary_10_1007_s10489_022_03920_7
crossref_primary_10_1016_j_swevo_2020_100670
crossref_primary_10_1007_s00500_016_2323_7
crossref_primary_10_1109_TSMC_2024_3454051
crossref_primary_10_1109_TEVC_2016_2631279
crossref_primary_10_1109_TEVC_2018_2866854
crossref_primary_10_1016_j_psep_2022_12_005
crossref_primary_10_1109_ACCESS_2019_2941123
crossref_primary_10_3390_electronics9111945
crossref_primary_10_1108_EC_06_2021_0337
crossref_primary_10_1016_j_asoc_2018_02_033
crossref_primary_10_1016_j_physa_2018_08_077
crossref_primary_10_1109_TEVC_2019_2922419
crossref_primary_10_1109_TCYB_2022_3178929
crossref_primary_10_1016_j_engappai_2019_08_014
crossref_primary_10_1109_TEVC_2016_2555315
crossref_primary_10_1007_s00500_023_07978_4
crossref_primary_10_1016_j_swevo_2025_102061
crossref_primary_10_1007_s13042_024_02481_0
crossref_primary_10_1109_TEVC_2019_2918140
crossref_primary_10_1016_j_asoc_2024_111881
crossref_primary_10_1038_srep33870
crossref_primary_10_1007_s00500_021_06613_4
crossref_primary_10_3390_electronics11121834
crossref_primary_10_1007_s13748_022_00283_5
crossref_primary_10_1109_JSTARS_2019_2893621
crossref_primary_10_1109_TCYB_2020_2979930
crossref_primary_10_1007_s10489_022_03561_w
crossref_primary_10_1007_s12293_023_00387_y
crossref_primary_10_1016_j_isatra_2022_09_046
crossref_primary_10_1109_ACCESS_2021_3131807
crossref_primary_10_1109_TCYB_2018_2805695
crossref_primary_10_1109_TEVC_2017_2749619
crossref_primary_10_1007_s40747_022_00759_w
crossref_primary_10_1016_j_knosys_2017_10_025
crossref_primary_10_1109_TCYB_2016_2554622
crossref_primary_10_1109_TCYB_2022_3225341
crossref_primary_10_1109_TEVC_2016_2519378
crossref_primary_10_1515_amcs_2017_0029
crossref_primary_10_1109_ACCESS_2019_2897597
crossref_primary_10_1007_s10489_024_05270_y
crossref_primary_10_1109_TSMC_2022_3186546
crossref_primary_10_1016_j_swevo_2023_101419
crossref_primary_10_1109_TEVC_2021_3060899
crossref_primary_10_1109_TEVC_2023_3306523
crossref_primary_10_1109_TEVC_2023_3321603
crossref_primary_10_1145_3674152
crossref_primary_10_1109_TCYB_2024_3501360
crossref_primary_10_1016_j_swevo_2024_101574
crossref_primary_10_1016_j_swevo_2025_102149
crossref_primary_10_1007_s40747_018_0080_1
crossref_primary_10_1016_j_ins_2021_08_054
crossref_primary_10_1016_j_knosys_2022_108141
crossref_primary_10_1002_int_22381
crossref_primary_10_1109_TCYB_2021_3098186
crossref_primary_10_1016_j_ejor_2017_06_018
crossref_primary_10_1007_s10489_022_03900_x
crossref_primary_10_1007_s00500_023_08923_1
crossref_primary_10_1007_s00500_023_08886_3
crossref_primary_10_1016_j_asoc_2020_107002
crossref_primary_10_1016_j_ins_2019_06_001
crossref_primary_10_1109_ACCESS_2025_3541271
crossref_primary_10_1109_TSMC_2021_3069986
crossref_primary_10_1002_est2_70254
crossref_primary_10_1016_j_swevo_2025_101982
crossref_primary_10_1007_s40747_023_01262_6
crossref_primary_10_1016_j_swevo_2023_101317
crossref_primary_10_1109_TETCI_2024_3369629
crossref_primary_10_1016_j_isatra_2021_01_053
crossref_primary_10_1109_TETCI_2022_3146882
crossref_primary_10_1109_TEVC_2022_3154231
crossref_primary_10_3233_JIFS_169996
crossref_primary_10_1016_j_asoc_2024_111967
crossref_primary_10_1016_j_swevo_2023_101431
crossref_primary_10_1007_s10489_017_1133_7
crossref_primary_10_1016_j_swevo_2019_05_008
crossref_primary_10_1109_TEVC_2025_3537986
crossref_primary_10_1016_j_swevo_2020_100741
crossref_primary_10_1109_TCYB_2016_2602561
crossref_primary_10_1007_s00158_019_02256_0
crossref_primary_10_1016_j_chemolab_2018_04_006
crossref_primary_10_1016_j_ins_2020_01_048
crossref_primary_10_1109_TCYB_2016_2519450
crossref_primary_10_12677_AIRR_2016_51001
crossref_primary_10_1016_j_ins_2016_06_007
crossref_primary_10_1109_TEVC_2021_3099487
crossref_primary_10_1007_s11633_020_1253_0
crossref_primary_10_1109_TETCI_2017_2669104
crossref_primary_10_1016_j_asoc_2023_110407
crossref_primary_10_1016_j_swevo_2025_102136
crossref_primary_10_1109_ACCESS_2020_2978487
crossref_primary_10_1109_TEVC_2025_3529938
crossref_primary_10_1016_j_ins_2023_02_062
crossref_primary_10_1109_TEVC_2022_3193294
crossref_primary_10_1109_TASE_2023_3330148
crossref_primary_10_1109_TCYB_2023_3336870
crossref_primary_10_1016_j_asoc_2023_110892
crossref_primary_10_1038_s41598_023_33414_6
crossref_primary_10_1016_j_ins_2024_121079
crossref_primary_10_1109_JAS_2025_125111
crossref_primary_10_1109_TEVC_2018_2865495
crossref_primary_10_1016_j_eswa_2022_119080
crossref_primary_10_1109_TSMC_2019_2956288
crossref_primary_10_1109_TSMC_2024_3446822
crossref_primary_10_1007_s41965_024_00174_9
crossref_primary_10_1109_TSMC_2019_2898456
crossref_primary_10_1016_j_ins_2022_08_039
crossref_primary_10_1007_s00521_023_08505_0
crossref_primary_10_1007_s12293_021_00330_z
crossref_primary_10_1109_TEVC_2018_2881153
crossref_primary_10_1007_s10489_021_02669_9
crossref_primary_10_1016_j_ins_2019_05_091
crossref_primary_10_1109_ACCESS_2020_3046002
crossref_primary_10_1016_j_swevo_2023_101462
crossref_primary_10_1016_j_eswa_2024_125684
crossref_primary_10_1016_j_ins_2022_08_030
crossref_primary_10_1007_s00521_019_04660_5
crossref_primary_10_1016_j_swevo_2023_101466
crossref_primary_10_1016_j_swevo_2024_101763
Cites_doi 10.1007/978-3-540-34954-9_10
10.1109/TEVC.2012.2227326
10.1109/CEC.2007.4424730
10.1109/CEC.2008.4631121
10.1016/j.asoc.2012.06.008
10.1016/j.asoc.2012.11.049
10.1007/3-540-44719-9_6
10.1109/TEVC.2012.2196800
10.1023/A:1008202821328
10.1162/neco.1997.9.7.1493
10.1007/978-1-4615-1539-5
10.1016/S0377-2217(01)00104-7
10.1109/TEVC.2013.2281534
10.1016/j.swevo.2011.03.001
10.1007/3-540-36970-8_20
10.1007/978-3-540-70928-2_64
10.1109/TSMCB.2012.2209115
10.1109/ICEC.1994.350037
10.1016/j.ins.2008.02.017
10.1007/3-540-36970-8_9
10.1109/TNNLS.2013.2275918
10.1109/TEVC.2013.2281533
10.1109/CEC.2002.1007032
10.1109/TEVC.2013.2241768
10.1109/CEC.2012.6252954
10.1109/TEVC.2008.925798
10.1016/j.ins.2011.08.027
10.1007/s00500-003-0328-5
10.1016/j.swevo.2011.05.001
10.1109/5326.704576
10.1057/jors.2013.71
10.1109/TEVC.2003.810761
10.1007/978-3-642-04045-0_27
10.1109/TEVC.2005.861417
10.1007/978-3-540-30217-9_84
10.1109/TEVC.2014.2353672
10.1016/j.ejor.2006.08.008
10.1007/978-1-4614-6940-7_15
10.1145/1830483.1830578
10.1109/CEC.2004.1331086
10.1109/TEVC.2011.2112662
10.1007/3-540-44719-9_7
10.1145/1569901.1569987
10.1109/TEVC.2010.2077298
10.1109/4235.797969
10.1007/BFb0056872
10.1109/TEVC.2005.846356
10.1016/j.ins.2012.06.007
10.1109/TEVC.2013.2248012
10.1162/EVCO_a_00128
10.1162/evco.1994.2.3.221
10.1109/4235.996017
10.1162/106365600568202
10.1007/978-3-540-31880-4_30
10.1109/TEVC.2010.2051446
10.1007/978-3-642-41278-3_67
10.1109/TEVC.2007.892759
10.1109/TEVC.2013.2281524
10.1109/TEVC.2009.2015575
10.1007/3-540-36970-8_31
10.1007/978-3-642-37140-0_25
10.1109/TEVC.2007.894202
10.1007/3-540-45356-3_82
10.1109/TFUZZ.2012.2201338
10.1007/s10957-004-6468-7
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Dec 2015
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Dec 2015
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TEVC.2015.2395073
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1941-0026
EndPage 856
ExternalDocumentID 3883754891
10_1109_TEVC_2015_2395073
7018980
Genre orig-research
GrantInformation_xml – fundername: Honda Research Institute Europe
– fundername: Joint Research Fund for Overseas Chinese, Hong Kong and Macao Scholars of the National Natural Science Foundation of China
  grantid: 61428302
– fundername: Engineering and Physical Sciences Research Council
  grantid: EP/M017869/1
  funderid: 10.13039/501100000266
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
5VS
6IF
6IK
6IL
6IN
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ADZIZ
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CHZPO
CS3
EBS
EJD
HZ~
H~9
IEGSK
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RIL
RNS
TN5
VH1
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
RIG
ID FETCH-LOGICAL-c359t-ab9e17ec1e8e8d363a9b72ec69967d9d2252a1a34713ea0dc9fb017923a972a63
IEDL.DBID RIE
ISICitedReferencesCount 302
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000366105600006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1089-778X
IngestDate Sun Jun 29 13:16:54 EDT 2025
Tue Nov 18 21:55:22 EST 2025
Sat Nov 29 03:13:47 EST 2025
Tue Aug 26 16:40:05 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords inverse modeling
multiobjective optimization (MOO)
random grouping
Gaussian processes (GPs)
Estimation of distribution algorithms (EDAs)
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c359t-ab9e17ec1e8e8d363a9b72ec69967d9d2252a1a34713ea0dc9fb017923a972a63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 1738854148
PQPubID 85418
PageCount 19
ParticipantIDs ieee_primary_7018980
crossref_citationtrail_10_1109_TEVC_2015_2395073
crossref_primary_10_1109_TEVC_2015_2395073
proquest_journals_1738854148
PublicationCentury 2000
PublicationDate 2015-Dec.
2015-12-00
20151201
PublicationDateYYYYMMDD 2015-12-01
PublicationDate_xml – month: 12
  year: 2015
  text: 2015-Dec.
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on evolutionary computation
PublicationTitleAbbrev TEVC
PublicationYear 2015
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref56
ref12
corne (ref17) 2000
ref59
ref15
ref14
ref53
ref52
ref55
ref11
ref54
ref10
costa (ref35) 2003
jin (ref5) 2001
zhou (ref68) 2005; 3
murata (ref6) 2001
ref46
snelson (ref58) 2007
ref45
ref47
ref42
ref41
ref44
jain (ref78) 2013
bader (ref27) 2010
ref49
ref8
okabe (ref43) 2002
ref7
ref9
ref3
ref40
thierens (ref39) 2001
zitzler (ref20) 1998
ref80
jin (ref4) 2001
ref79
jin (ref28) 2003; 3
ref37
ref36
ref75
ref31
ref74
ref30
ref77
ref76
ref32
pelikan (ref33) 2006
ref1
ref38
deb (ref62) 2001
li (ref51) 2012; 16
ref71
ref70
ref73
ref72
zitzler (ref19) 2004
ref24
ref67
ref23
zitzler (ref16) 2002
ref26
ref69
ref25
ref64
ref63
corne (ref18) 2001
ref66
ref22
ref65
ref21
ref29
martí (ref34) 2010
giagkiozis (ref48) 2012
cornell (ref57) 2011
ref60
schaffer (ref2) 1985
ref61
rasmussen (ref50) 2006
fonseca (ref13) 1993; 93
References_xml – start-page: 223
  year: 2006
  ident: ref33
  article-title: Multiobjective estimation of distribution algorithms
  publication-title: Scalable Optimization Via Probabilistic Modeling
  doi: 10.1007/978-3-540-34954-9_10
– ident: ref80
  doi: 10.1109/TEVC.2012.2227326
– ident: ref22
  doi: 10.1109/CEC.2007.4424730
– ident: ref79
  doi: 10.1109/CEC.2008.4631121
– ident: ref63
  doi: 10.1016/j.asoc.2012.06.008
– ident: ref42
  doi: 10.1016/j.asoc.2012.11.049
– start-page: 82
  year: 2001
  ident: ref6
  article-title: Specification of genetic search directions in cellular multi-objective genetic algorithms
  publication-title: Proc Evol Multi-Criterion Optim (EMO)
  doi: 10.1007/3-540-44719-9_6
– ident: ref74
  doi: 10.1109/TEVC.2012.2196800
– ident: ref72
  doi: 10.1023/A:1008202821328
– start-page: 93
  year: 1985
  ident: ref2
  article-title: Multiple objective optimization with vector evaluated genetic algorithms
  publication-title: Proc 7th Int Conf Genetic Algorithms
– ident: ref47
  doi: 10.1162/neco.1997.9.7.1493
– ident: ref32
  doi: 10.1007/978-1-4615-1539-5
– ident: ref30
  doi: 10.1016/S0377-2217(01)00104-7
– start-page: 1042
  year: 2001
  ident: ref5
  article-title: Dynamic weighted aggregation for evolutionary multi-objective optimization: Why does it work and how?
  publication-title: Proc Genet Evol Comput Conf
– ident: ref77
  doi: 10.1109/TEVC.2013.2281534
– ident: ref1
  doi: 10.1016/j.swevo.2011.03.001
– start-page: 282
  year: 2003
  ident: ref35
  article-title: MOPED: A multi-objective parzen-based estimation of distribution algorithm for continuous problems
  publication-title: Proc Evol Multi-Criterion Optim (EMO)
  doi: 10.1007/3-540-36970-8_20
– ident: ref24
  doi: 10.1007/978-3-540-70928-2_64
– ident: ref70
  doi: 10.1109/TSMCB.2012.2209115
– year: 2001
  ident: ref62
  publication-title: Multi-Objective Optimization Using Evolutionary Algorithms
– year: 2011
  ident: ref57
  publication-title: Experiments with Mixtures Designs Models and the Analysis of Mixture Data
– ident: ref12
  doi: 10.1109/ICEC.1994.350037
– ident: ref52
  doi: 10.1016/j.ins.2008.02.017
– ident: ref31
  doi: 10.1007/3-540-36970-8_9
– ident: ref60
  doi: 10.1109/TNNLS.2013.2275918
– ident: ref56
  doi: 10.1109/TEVC.2013.2281533
– ident: ref67
  doi: 10.1109/CEC.2002.1007032
– ident: ref37
  doi: 10.1109/TEVC.2013.2241768
– ident: ref61
  doi: 10.1109/CEC.2012.6252954
– ident: ref64
  doi: 10.1109/TEVC.2008.925798
– ident: ref69
  doi: 10.1016/j.ins.2011.08.027
– ident: ref55
  doi: 10.1007/s00500-003-0328-5
– year: 2006
  ident: ref50
  publication-title: Gaussian Processes for Machine Learning
– ident: ref53
  doi: 10.1016/j.swevo.2011.05.001
– ident: ref3
  doi: 10.1109/5326.704576
– ident: ref75
  doi: 10.1057/jors.2013.71
– ident: ref44
  doi: 10.1109/TEVC.2003.810761
– start-page: 313
  year: 2010
  ident: ref27
  article-title: Faster hypervolume-based search using Monte Carlo sampling
  publication-title: Multiple Criteria Decision Making for Sustainable Energy and Transportation Systems
  doi: 10.1007/978-3-642-04045-0_27
– ident: ref65
  doi: 10.1109/TEVC.2005.861417
– start-page: 832
  year: 2004
  ident: ref19
  article-title: Indicator-based selection in multiobjective search
  publication-title: Parallel Problem Solving from Nature-PPSN VIII
  doi: 10.1007/978-3-540-30217-9_84
– start-page: 247
  year: 2002
  ident: ref43
  article-title: On the dynamics of evolutionary multi-objective optimization
  publication-title: Proc Genet Evol Comput Conf
– ident: ref10
  doi: 10.1109/TEVC.2014.2353672
– start-page: 283
  year: 2001
  ident: ref18
  article-title: PESA-II: Region-based selection in evolutionary multiobjective optimization
  publication-title: Proc Genet Evol Comput Conf
– ident: ref21
  doi: 10.1016/j.ejor.2006.08.008
– ident: ref76
  doi: 10.1007/978-1-4614-6940-7_15
– ident: ref23
  doi: 10.1145/1830483.1830578
– ident: ref38
  doi: 10.1109/CEC.2004.1331086
– volume: 16
  start-page: 210
  year: 2012
  ident: ref51
  article-title: Cooperatively coevolving particle swarms for large scale optimization
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/TEVC.2011.2112662
– start-page: 96
  year: 2001
  ident: ref4
  article-title: Adapting weighted aggregation for multiobjective evolution strategies
  publication-title: Proc Evol Multi-Criterion Optim (EMO)
  doi: 10.1007/3-540-44719-9_7
– ident: ref36
  doi: 10.1145/1569901.1569987
– ident: ref26
  doi: 10.1109/TEVC.2010.2077298
– ident: ref15
  doi: 10.1109/4235.797969
– start-page: 292
  year: 1998
  ident: ref20
  article-title: Multiobjective optimization using evolutionary algorithms-A comparative case study
  publication-title: Parallel Problem Solving from Nature (PPSN V)
  doi: 10.1007/BFb0056872
– year: 2007
  ident: ref58
  article-title: Flexible and efficient Gaussian process models for machine learning
– ident: ref59
  doi: 10.1109/TEVC.2005.846356
– ident: ref71
  doi: 10.1016/j.ins.2012.06.007
– ident: ref54
  doi: 10.1109/TEVC.2013.2248012
– ident: ref49
  doi: 10.1162/EVCO_a_00128
– ident: ref11
  doi: 10.1162/evco.1994.2.3.221
– ident: ref14
  doi: 10.1109/4235.996017
– ident: ref66
  doi: 10.1162/106365600568202
– ident: ref40
  doi: 10.1007/978-3-540-31880-4_30
– ident: ref8
  doi: 10.1109/TEVC.2010.2051446
– year: 2010
  ident: ref34
  article-title: On current model-building methods for multi-objective estimation of distribution algorithms: Shortcommings and directions for improvement
– volume: 3
  start-page: 2568
  year: 2005
  ident: ref68
  article-title: A model-based evolutionary algorithm for bi-objective optimization
  publication-title: Proc IEEE Congr Evol Comput
– ident: ref9
  doi: 10.1007/978-3-642-41278-3_67
– year: 2012
  ident: ref48
  article-title: Increasing the density of available Pareto optimal solutions
– ident: ref7
  doi: 10.1109/TEVC.2007.892759
– ident: ref41
  doi: 10.1109/TEVC.2013.2281524
– ident: ref25
  doi: 10.1109/TEVC.2009.2015575
– volume: 3
  start-page: 1910
  year: 2003
  ident: ref28
  article-title: Connectedness, regularity and the success of local search in evolutionary multi-objective optimization
  publication-title: Proc IEEE Congr Evol Comput
– ident: ref29
  doi: 10.1007/3-540-36970-8_31
– volume: 93
  start-page: 416
  year: 1993
  ident: ref13
  article-title: Genetic algorithms for multiobjective optimization: Formulation discussion and generalization
  publication-title: Proc 7th Int Conf Genetic Algorithms
– start-page: 307
  year: 2013
  ident: ref78
  article-title: An improved adaptive approach for elitist nondominated sorting genetic algorithm for many-objective optimization
  publication-title: Proc Evol Multi-Criterion Optim (EMO)
  doi: 10.1007/978-3-642-37140-0_25
– start-page: 663
  year: 2001
  ident: ref39
  article-title: Multi-objective mixture-based iterated density estimation evolutionary algorithms
  publication-title: Proc Genet Evol Comput Conf
– ident: ref46
  doi: 10.1109/TEVC.2007.894202
– start-page: 839
  year: 2000
  ident: ref17
  article-title: The Pareto envelope-based selection algorithm for multiobjective optimization
  publication-title: Parallel Problem Solving from Nature PPSN VI
  doi: 10.1007/3-540-45356-3_82
– ident: ref73
  doi: 10.1109/TFUZZ.2012.2201338
– ident: ref45
  doi: 10.1007/s10957-004-6468-7
– start-page: 95
  year: 2002
  ident: ref16
  article-title: SPEA2: Improving the strength Pareto evolutionary algorithm
  publication-title: Evolutionary Methods for Design Optimization and Control
SSID ssj0014519
Score 2.6033683
Snippet To approximate the Pareto front, most existing multiobjective evolutionary algorithms store the nondominated solutions found so far in the population or in an...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 838
SubjectTerms Algorithms
estimation of distribution algorithms
Gaussian processes
inverse modeling
Inverse problems
Job shops
Multiobjective optimization
Pareto optimization
random grouping
Sociology
Stochastic models
Vectors
Title A Multiobjective Evolutionary Algorithm Using Gaussian Process-Based Inverse Modeling
URI https://ieeexplore.ieee.org/document/7018980
https://www.proquest.com/docview/1738854148
Volume 19
WOSCitedRecordID wos000366105600006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0026
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014519
  issn: 1089-778X
  databaseCode: RIE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT8IwFH9B4kEPoqARRdODJ-NgW9naHpGAnogHMNyWru38CIIZg8T_3rYrRKMx8bbDa7Ps1_e1vvd-AFeRH_Is86Wnw93M60Zp5LGIdb1MpqEKqdROS1iyCTIa0emUPVTgZtsLo5SyxWeqbR7tXb5ciJX5VdYhfkAZ1Qn6DiFx2au1vTEwY1LKYnqmI0Y6dTeYgc8648Fj3xRxRe0QMx3_4G8-yJKq_LDE1r0Ma_97sUM4cGEk6pW4H0FFzetQ21A0IKexddj_Mm-wAZMesg23i_S1tHNosHZHj-cfqDd7WuQvxfMbsoUE6I6vlqbHErluAu9WuzyJzGiOfKmQoVEzzezHMBkOxv17z_EqeAJHrPB4ylRAlAgUVVTiGHOWklCJWOc-RDKpVTzkAcfab2HFfSlYlhrFDbUgCXmMT6A6X8zVKSCu7UOUYp3oagS4tg9c-lmcComl0pECbYK_-dKJcEPHDffFLLHJh88SA05iwEkcOE243i55Lydu_CXcMGhsBR0QTWht4EycTi6TgGBKDes5Pft91Tnsmb3LYpUWVIt8pS5gV6yLl2V-aY_bJxGZ0hQ
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFH-ICurB-YnTqTl4Eqtpsq7JcY7pRB0epuxW0iTVydyk-wD_e5M0G4oieOvhhZT-8r6a994P4CTCRGQZVoEJd7OgGqVRwCNeDTKVEk2YMk5LOrKJuN1m3S5_WICzeS-M1toVn-lz--ju8tVQTuyvsosYh4wzk6AvRdUqwUW31vzOwA5KKcrpuYkZWdffYYaYX3SaTw1bxhWdE8pNBES_eSFHq_LDFjsHc1X636ttwLoPJFG9QH4TFvRgC0ozkgbkdXYL1r5MHNyGxzpyLbfD9LWwdKg59YdP5B-o3n8e5r3xyxtypQToWkxGtssS-X6C4NI4PYXscI58pJElUrPt7DvweNXsNFqBZ1YIJI34OBAp12GsZaiZZorWqOBpTLSsmewnVlwZJSciFNR4LqoFVpJnqVVdYgRjImp0FxYHw4HeAySMhYhSalJdg4AwFkIonNVSqajSJlZgZcCzL51IP3bcsl_0E5d-YJ5YcBILTuLBKcPpfMl7MXPjL-Fti8Zc0ANRhsoMzsRr5SgJY8qY5T1n-7-vOoaVVuf-Lrm7ad8ewKrdpyhdqcDiOJ_oQ1iW03FvlB-5o_cJJ9fVWw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Multiobjective+Evolutionary+Algorithm+Using+Gaussian+Process-Based+Inverse+Modeling&rft.jtitle=IEEE+transactions+on+evolutionary+computation&rft.au=Cheng%2C+Ran&rft.au=Jin%2C+Yaochu&rft.au=Narukawa%2C+Kaname&rft.au=Sendhoff%2C+Bernhard&rft.date=2015-12-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1089-778X&rft.eissn=1941-0026&rft.volume=19&rft.issue=6&rft.spage=838&rft_id=info:doi/10.1109%2FTEVC.2015.2395073&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3883754891
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-778X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-778X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-778X&client=summon