A Multiobjective Evolutionary Algorithm Using Gaussian Process-Based Inverse Modeling
To approximate the Pareto front, most existing multiobjective evolutionary algorithms store the nondominated solutions found so far in the population or in an external archive during the search. Such algorithms often require a high degree of diversity of the stored solutions and only a limited numbe...
Uložené v:
| Vydané v: | IEEE transactions on evolutionary computation Ročník 19; číslo 6; s. 838 - 856 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
IEEE
01.12.2015
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 1089-778X, 1941-0026 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | To approximate the Pareto front, most existing multiobjective evolutionary algorithms store the nondominated solutions found so far in the population or in an external archive during the search. Such algorithms often require a high degree of diversity of the stored solutions and only a limited number of solutions can be achieved. By contrast, model-based algorithms can alleviate the requirement on solution diversity and in principle, as many solutions as needed can be generated. This paper proposes a new model-based method for representing and searching nondominated solutions. The main idea is to construct Gaussian process-based inverse models that map all found nondominated solutions from the objective space to the decision space. These inverse models are then used to create offspring by sampling the objective space. To facilitate inverse modeling, the multivariate inverse function is decomposed into a group of univariate functions, where the number of inverse models is reduced using a random grouping technique. Extensive empirical simulations demonstrate that the proposed algorithm exhibits robust search performance on a variety of medium to high dimensional multiobjective optimization test problems. Additional nondominated solutions are generated a posteriori using the constructed models to increase the density of solutions in the preferred regions at a low computational cost. |
|---|---|
| AbstractList | To approximate the Pareto front, most existing multiobjective evolutionary algorithms store the nondominated solutions found so far in the population or in an external archive during the search. Such algorithms often require a high degree of diversity of the stored solutions and only a limited number of solutions can be achieved. By contrast, model-based algorithms can alleviate the requirement on solution diversity and in principle, as many solutions as needed can be generated. This paper proposes a new model-based method for representing and searching nondominated solutions. The main idea is to construct Gaussian process-based inverse models that map all found nondominated solutions from the objective space to the decision space. These inverse models are then used to create offspring by sampling the objective space. To facilitate inverse modeling, the multivariate inverse function is decomposed into a group of univariate functions, where the number of inverse models is reduced using a random grouping technique. Extensive empirical simulations demonstrate that the proposed algorithm exhibits robust search performance on a variety of medium to high dimensional multiobjective optimization test problems. Additional nondominated solutions are generated a posteriori using the constructed models to increase the density of solutions in the preferred regions at a low computational cost. |
| Author | Sendhoff, Bernhard Yaochu Jin Narukawa, Kaname Ran Cheng |
| Author_xml | – sequence: 1 surname: Ran Cheng fullname: Ran Cheng organization: Dept. of Comput., Univ. of Surrey, Guildford, UK – sequence: 2 surname: Yaochu Jin fullname: Yaochu Jin email: yaochu.jin@surrey.ac.uk organization: Dept. of Comput., Univ. of Surrey, Guildford, UK – sequence: 3 givenname: Kaname surname: Narukawa fullname: Narukawa, Kaname organization: Honda Res. Inst. Eur., Offenbach, Germany – sequence: 4 givenname: Bernhard surname: Sendhoff fullname: Sendhoff, Bernhard organization: Honda Res. Inst. Eur., Offenbach, Germany |
| BookMark | eNp9kMFOAjEQhhuDiYg-gPGyiefFTru7bY9IEEkgegDjbVN2ByxZttjukvj2dgPx4MHTTCbfP5P5rkmvtjUScgd0CEDV43LyPh4yCumQcZVSwS9IH1QCMaUs64WeShULIT-uyLX3O0ohSUH1yWoULdqqMXa9w6IxR4wmR1u1YVBr9x2Nqq11pvncRytv6m001a33RtfRm7MFeh8_aY9lNKuP6DxGC1tiFbgbcrnRlcfbcx2Q1fNkOX6J56_T2Xg0jwueqibWa4UgsACUKEueca3WgmGRKZWJUpWMpUyD5okAjpqWhdqsKQjFAiiYzviAPJz2Hpz9atE3-c62rg4ncxBcyjSBRAZKnKjCWe8dbvLCNLp7sXHaVDnQvHOYdw7zzmF-dhiS8Cd5cGYfxPybuT9lDCL-8oKCVJLyHwKjfzw |
| CODEN | ITEVF5 |
| CitedBy_id | crossref_primary_10_1109_TCYB_2017_2711038 crossref_primary_10_1007_s00500_020_05175_1 crossref_primary_10_1016_j_tws_2020_107248 crossref_primary_10_1109_TNNLS_2021_3113158 crossref_primary_10_1016_j_ins_2023_02_043 crossref_primary_10_1109_TAI_2024_3444736 crossref_primary_10_1109_TCYB_2020_3017049 crossref_primary_10_1109_TEVC_2022_3166815 crossref_primary_10_1016_j_compbiomed_2023_107727 crossref_primary_10_1109_TCYB_2019_2894664 crossref_primary_10_1016_j_asoc_2023_110672 crossref_primary_10_3390_a18030164 crossref_primary_10_1109_ACCESS_2019_2945818 crossref_primary_10_1109_TCYB_2019_2952881 crossref_primary_10_1007_s13042_024_02221_4 crossref_primary_10_1109_TEVC_2022_3161363 crossref_primary_10_1016_j_ins_2021_06_054 crossref_primary_10_1016_j_swevo_2022_101198 crossref_primary_10_1109_ACCESS_2016_2605759 crossref_primary_10_1109_ACCESS_2021_3107530 crossref_primary_10_1007_s00500_019_04518_x crossref_primary_10_1016_j_swevo_2023_101235 crossref_primary_10_1109_TCYB_2016_2586191 crossref_primary_10_1145_3470971 crossref_primary_10_1016_j_knosys_2023_110801 crossref_primary_10_1016_j_eswa_2023_122370 crossref_primary_10_1016_j_neucom_2019_02_054 crossref_primary_10_1007_s00500_021_05895_y crossref_primary_10_1016_j_ins_2020_03_111 crossref_primary_10_1109_TEVC_2023_3281666 crossref_primary_10_1016_j_swevo_2022_101073 crossref_primary_10_1109_TEVC_2017_2785224 crossref_primary_10_1109_MCI_2017_2742868 crossref_primary_10_1016_j_swevo_2018_04_009 crossref_primary_10_1109_TEVC_2023_3296488 crossref_primary_10_4218_etrij_2021_0245 crossref_primary_10_1016_j_ins_2022_07_018 crossref_primary_10_1016_j_swevo_2024_101504 crossref_primary_10_1109_TEVC_2016_2622301 crossref_primary_10_1016_j_neucom_2024_129247 crossref_primary_10_1016_j_swevo_2024_101628 crossref_primary_10_1109_TFUZZ_2020_2973121 crossref_primary_10_1007_s10489_018_1358_0 crossref_primary_10_1016_j_eswa_2023_120198 crossref_primary_10_1109_JAS_2022_105875 crossref_primary_10_1155_2021_4296642 crossref_primary_10_1007_s10489_017_0998_9 crossref_primary_10_1111_coin_12315 crossref_primary_10_1109_TEVC_2017_2744328 crossref_primary_10_1016_j_swevo_2023_101261 crossref_primary_10_1109_TCYB_2019_2949204 crossref_primary_10_1016_j_knosys_2020_106612 crossref_primary_10_1109_TEVC_2023_3250350 crossref_primary_10_1016_j_asoc_2023_110581 crossref_primary_10_1007_s12293_019_00282_5 crossref_primary_10_1016_j_engappai_2025_110089 crossref_primary_10_1002_mcda_1605 crossref_primary_10_1109_ACCESS_2021_3110853 crossref_primary_10_1016_j_asoc_2025_113921 crossref_primary_10_1016_j_eswa_2019_01_075 crossref_primary_10_1109_TCYB_2020_2985081 crossref_primary_10_1016_j_swevo_2023_101258 crossref_primary_10_1109_TETCI_2019_2961190 crossref_primary_10_1016_j_advengsoft_2022_103397 crossref_primary_10_1016_j_eswa_2023_120290 crossref_primary_10_1007_s11071_021_07180_x crossref_primary_10_1016_j_asoc_2022_109614 crossref_primary_10_1016_j_swevo_2023_101392 crossref_primary_10_1016_j_asoc_2024_111341 crossref_primary_10_1016_j_asoc_2025_113386 crossref_primary_10_1016_j_eswa_2025_129460 crossref_primary_10_1109_MCI_2022_3180913 crossref_primary_10_1109_MCI_2023_3304080 crossref_primary_10_1016_j_asoc_2017_09_033 crossref_primary_10_1016_j_jocs_2015_09_003 crossref_primary_10_1002_widm_1267 crossref_primary_10_1016_j_ins_2022_08_072 crossref_primary_10_1016_j_swevo_2020_100759 crossref_primary_10_1109_TETCI_2022_3220812 crossref_primary_10_1016_j_artint_2019_08_003 crossref_primary_10_1016_j_swevo_2016_12_002 crossref_primary_10_1109_TETCI_2018_2872055 crossref_primary_10_1109_ACCESS_2024_3398351 crossref_primary_10_1016_j_swevo_2023_101281 crossref_primary_10_1109_ACCESS_2022_3188762 crossref_primary_10_1016_j_ins_2021_08_027 crossref_primary_10_1016_j_knosys_2015_09_032 crossref_primary_10_1109_TEVC_2022_3199775 crossref_primary_10_1007_s10489_023_04596_3 crossref_primary_10_1016_j_engappai_2018_09_009 crossref_primary_10_1080_09540091_2025_2523960 crossref_primary_10_1109_TEVC_2022_3213006 crossref_primary_10_3390_math11132820 crossref_primary_10_1109_TCOMM_2023_3277878 crossref_primary_10_1016_j_asoc_2023_110233 crossref_primary_10_1109_TEVC_2023_3319494 crossref_primary_10_1109_TCYB_2019_2906383 crossref_primary_10_1007_s44196_025_00884_7 crossref_primary_10_1016_j_jpdc_2022_06_016 crossref_primary_10_1002_cpe_6566 crossref_primary_10_1002_int_22885 crossref_primary_10_1007_s10489_023_04663_9 crossref_primary_10_1002_widm_1158 crossref_primary_10_1109_ACCESS_2018_2877402 crossref_primary_10_1109_TEVC_2020_3004027 crossref_primary_10_1016_j_ins_2021_04_011 crossref_primary_10_1007_s40747_021_00362_5 crossref_primary_10_1016_j_egyr_2023_04_014 crossref_primary_10_1007_s12293_025_00459_1 crossref_primary_10_1109_TEVC_2022_3144880 crossref_primary_10_1109_TCYB_2016_2600577 crossref_primary_10_1515_jiip_2024_0061 crossref_primary_10_1007_s12293_019_00280_7 crossref_primary_10_1109_TCYB_2021_3070434 crossref_primary_10_1007_s12293_018_0264_7 crossref_primary_10_1016_j_cjche_2024_11_004 crossref_primary_10_1007_s40747_017_0057_5 crossref_primary_10_1088_1742_6596_2759_1_012004 crossref_primary_10_1016_j_ins_2024_120940 crossref_primary_10_1109_TEVC_2022_3205165 crossref_primary_10_1109_TMECH_2024_3384292 crossref_primary_10_1016_j_asoc_2022_109430 crossref_primary_10_1109_TNNLS_2023_3297624 crossref_primary_10_1016_j_asoc_2021_107613 crossref_primary_10_1109_TEVC_2024_3355221 crossref_primary_10_1109_TCYB_2021_3125071 crossref_primary_10_1109_TETCI_2018_2849380 crossref_primary_10_1016_j_ejor_2023_08_023 crossref_primary_10_1038_s41598_024_64570_y crossref_primary_10_1007_s10489_022_03920_7 crossref_primary_10_1016_j_swevo_2020_100670 crossref_primary_10_1007_s00500_016_2323_7 crossref_primary_10_1109_TSMC_2024_3454051 crossref_primary_10_1109_TEVC_2016_2631279 crossref_primary_10_1109_TEVC_2018_2866854 crossref_primary_10_1016_j_psep_2022_12_005 crossref_primary_10_1109_ACCESS_2019_2941123 crossref_primary_10_3390_electronics9111945 crossref_primary_10_1108_EC_06_2021_0337 crossref_primary_10_1016_j_asoc_2018_02_033 crossref_primary_10_1016_j_physa_2018_08_077 crossref_primary_10_1109_TEVC_2019_2922419 crossref_primary_10_1109_TCYB_2022_3178929 crossref_primary_10_1016_j_engappai_2019_08_014 crossref_primary_10_1109_TEVC_2016_2555315 crossref_primary_10_1007_s00500_023_07978_4 crossref_primary_10_1016_j_swevo_2025_102061 crossref_primary_10_1007_s13042_024_02481_0 crossref_primary_10_1109_TEVC_2019_2918140 crossref_primary_10_1016_j_asoc_2024_111881 crossref_primary_10_1038_srep33870 crossref_primary_10_1007_s00500_021_06613_4 crossref_primary_10_3390_electronics11121834 crossref_primary_10_1007_s13748_022_00283_5 crossref_primary_10_1109_JSTARS_2019_2893621 crossref_primary_10_1109_TCYB_2020_2979930 crossref_primary_10_1007_s10489_022_03561_w crossref_primary_10_1007_s12293_023_00387_y crossref_primary_10_1016_j_isatra_2022_09_046 crossref_primary_10_1109_ACCESS_2021_3131807 crossref_primary_10_1109_TCYB_2018_2805695 crossref_primary_10_1109_TEVC_2017_2749619 crossref_primary_10_1007_s40747_022_00759_w crossref_primary_10_1016_j_knosys_2017_10_025 crossref_primary_10_1109_TCYB_2016_2554622 crossref_primary_10_1109_TCYB_2022_3225341 crossref_primary_10_1109_TEVC_2016_2519378 crossref_primary_10_1515_amcs_2017_0029 crossref_primary_10_1109_ACCESS_2019_2897597 crossref_primary_10_1007_s10489_024_05270_y crossref_primary_10_1109_TSMC_2022_3186546 crossref_primary_10_1016_j_swevo_2023_101419 crossref_primary_10_1109_TEVC_2021_3060899 crossref_primary_10_1109_TEVC_2023_3306523 crossref_primary_10_1109_TEVC_2023_3321603 crossref_primary_10_1145_3674152 crossref_primary_10_1109_TCYB_2024_3501360 crossref_primary_10_1016_j_swevo_2024_101574 crossref_primary_10_1016_j_swevo_2025_102149 crossref_primary_10_1007_s40747_018_0080_1 crossref_primary_10_1016_j_ins_2021_08_054 crossref_primary_10_1016_j_knosys_2022_108141 crossref_primary_10_1002_int_22381 crossref_primary_10_1109_TCYB_2021_3098186 crossref_primary_10_1016_j_ejor_2017_06_018 crossref_primary_10_1007_s10489_022_03900_x crossref_primary_10_1007_s00500_023_08923_1 crossref_primary_10_1007_s00500_023_08886_3 crossref_primary_10_1016_j_asoc_2020_107002 crossref_primary_10_1016_j_ins_2019_06_001 crossref_primary_10_1109_ACCESS_2025_3541271 crossref_primary_10_1109_TSMC_2021_3069986 crossref_primary_10_1002_est2_70254 crossref_primary_10_1016_j_swevo_2025_101982 crossref_primary_10_1007_s40747_023_01262_6 crossref_primary_10_1016_j_swevo_2023_101317 crossref_primary_10_1109_TETCI_2024_3369629 crossref_primary_10_1016_j_isatra_2021_01_053 crossref_primary_10_1109_TETCI_2022_3146882 crossref_primary_10_1109_TEVC_2022_3154231 crossref_primary_10_3233_JIFS_169996 crossref_primary_10_1016_j_asoc_2024_111967 crossref_primary_10_1016_j_swevo_2023_101431 crossref_primary_10_1007_s10489_017_1133_7 crossref_primary_10_1016_j_swevo_2019_05_008 crossref_primary_10_1109_TEVC_2025_3537986 crossref_primary_10_1016_j_swevo_2020_100741 crossref_primary_10_1109_TCYB_2016_2602561 crossref_primary_10_1007_s00158_019_02256_0 crossref_primary_10_1016_j_chemolab_2018_04_006 crossref_primary_10_1016_j_ins_2020_01_048 crossref_primary_10_1109_TCYB_2016_2519450 crossref_primary_10_12677_AIRR_2016_51001 crossref_primary_10_1016_j_ins_2016_06_007 crossref_primary_10_1109_TEVC_2021_3099487 crossref_primary_10_1007_s11633_020_1253_0 crossref_primary_10_1109_TETCI_2017_2669104 crossref_primary_10_1016_j_asoc_2023_110407 crossref_primary_10_1016_j_swevo_2025_102136 crossref_primary_10_1109_ACCESS_2020_2978487 crossref_primary_10_1109_TEVC_2025_3529938 crossref_primary_10_1016_j_ins_2023_02_062 crossref_primary_10_1109_TEVC_2022_3193294 crossref_primary_10_1109_TASE_2023_3330148 crossref_primary_10_1109_TCYB_2023_3336870 crossref_primary_10_1016_j_asoc_2023_110892 crossref_primary_10_1038_s41598_023_33414_6 crossref_primary_10_1016_j_ins_2024_121079 crossref_primary_10_1109_JAS_2025_125111 crossref_primary_10_1109_TEVC_2018_2865495 crossref_primary_10_1016_j_eswa_2022_119080 crossref_primary_10_1109_TSMC_2019_2956288 crossref_primary_10_1109_TSMC_2024_3446822 crossref_primary_10_1007_s41965_024_00174_9 crossref_primary_10_1109_TSMC_2019_2898456 crossref_primary_10_1016_j_ins_2022_08_039 crossref_primary_10_1007_s00521_023_08505_0 crossref_primary_10_1007_s12293_021_00330_z crossref_primary_10_1109_TEVC_2018_2881153 crossref_primary_10_1007_s10489_021_02669_9 crossref_primary_10_1016_j_ins_2019_05_091 crossref_primary_10_1109_ACCESS_2020_3046002 crossref_primary_10_1016_j_swevo_2023_101462 crossref_primary_10_1016_j_eswa_2024_125684 crossref_primary_10_1016_j_ins_2022_08_030 crossref_primary_10_1007_s00521_019_04660_5 crossref_primary_10_1016_j_swevo_2023_101466 crossref_primary_10_1016_j_swevo_2024_101763 |
| Cites_doi | 10.1007/978-3-540-34954-9_10 10.1109/TEVC.2012.2227326 10.1109/CEC.2007.4424730 10.1109/CEC.2008.4631121 10.1016/j.asoc.2012.06.008 10.1016/j.asoc.2012.11.049 10.1007/3-540-44719-9_6 10.1109/TEVC.2012.2196800 10.1023/A:1008202821328 10.1162/neco.1997.9.7.1493 10.1007/978-1-4615-1539-5 10.1016/S0377-2217(01)00104-7 10.1109/TEVC.2013.2281534 10.1016/j.swevo.2011.03.001 10.1007/3-540-36970-8_20 10.1007/978-3-540-70928-2_64 10.1109/TSMCB.2012.2209115 10.1109/ICEC.1994.350037 10.1016/j.ins.2008.02.017 10.1007/3-540-36970-8_9 10.1109/TNNLS.2013.2275918 10.1109/TEVC.2013.2281533 10.1109/CEC.2002.1007032 10.1109/TEVC.2013.2241768 10.1109/CEC.2012.6252954 10.1109/TEVC.2008.925798 10.1016/j.ins.2011.08.027 10.1007/s00500-003-0328-5 10.1016/j.swevo.2011.05.001 10.1109/5326.704576 10.1057/jors.2013.71 10.1109/TEVC.2003.810761 10.1007/978-3-642-04045-0_27 10.1109/TEVC.2005.861417 10.1007/978-3-540-30217-9_84 10.1109/TEVC.2014.2353672 10.1016/j.ejor.2006.08.008 10.1007/978-1-4614-6940-7_15 10.1145/1830483.1830578 10.1109/CEC.2004.1331086 10.1109/TEVC.2011.2112662 10.1007/3-540-44719-9_7 10.1145/1569901.1569987 10.1109/TEVC.2010.2077298 10.1109/4235.797969 10.1007/BFb0056872 10.1109/TEVC.2005.846356 10.1016/j.ins.2012.06.007 10.1109/TEVC.2013.2248012 10.1162/EVCO_a_00128 10.1162/evco.1994.2.3.221 10.1109/4235.996017 10.1162/106365600568202 10.1007/978-3-540-31880-4_30 10.1109/TEVC.2010.2051446 10.1007/978-3-642-41278-3_67 10.1109/TEVC.2007.892759 10.1109/TEVC.2013.2281524 10.1109/TEVC.2009.2015575 10.1007/3-540-36970-8_31 10.1007/978-3-642-37140-0_25 10.1109/TEVC.2007.894202 10.1007/3-540-45356-3_82 10.1109/TFUZZ.2012.2201338 10.1007/s10957-004-6468-7 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Dec 2015 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Dec 2015 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/TEVC.2015.2395073 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1941-0026 |
| EndPage | 856 |
| ExternalDocumentID | 3883754891 10_1109_TEVC_2015_2395073 7018980 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Honda Research Institute Europe – fundername: Joint Research Fund for Overseas Chinese, Hong Kong and Macao Scholars of the National Natural Science Foundation of China grantid: 61428302 – fundername: Engineering and Physical Sciences Research Council grantid: EP/M017869/1 funderid: 10.13039/501100000266 |
| GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 5VS 6IF 6IK 6IL 6IN 97E AAJGR AARMG AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG ACGFO ACGFS ACIWK ADZIZ AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CHZPO CS3 EBS EJD HZ~ H~9 IEGSK IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIE RIL RNS TN5 VH1 AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D RIG |
| ID | FETCH-LOGICAL-c359t-ab9e17ec1e8e8d363a9b72ec69967d9d2252a1a34713ea0dc9fb017923a972a63 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 302 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000366105600006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1089-778X |
| IngestDate | Sun Jun 29 13:16:54 EDT 2025 Tue Nov 18 21:55:22 EST 2025 Sat Nov 29 03:13:47 EST 2025 Tue Aug 26 16:40:05 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Keywords | inverse modeling multiobjective optimization (MOO) random grouping Gaussian processes (GPs) Estimation of distribution algorithms (EDAs) |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c359t-ab9e17ec1e8e8d363a9b72ec69967d9d2252a1a34713ea0dc9fb017923a972a63 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 1738854148 |
| PQPubID | 85418 |
| PageCount | 19 |
| ParticipantIDs | ieee_primary_7018980 crossref_citationtrail_10_1109_TEVC_2015_2395073 crossref_primary_10_1109_TEVC_2015_2395073 proquest_journals_1738854148 |
| PublicationCentury | 2000 |
| PublicationDate | 2015-Dec. 2015-12-00 20151201 |
| PublicationDateYYYYMMDD | 2015-12-01 |
| PublicationDate_xml | – month: 12 year: 2015 text: 2015-Dec. |
| PublicationDecade | 2010 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on evolutionary computation |
| PublicationTitleAbbrev | TEVC |
| PublicationYear | 2015 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref56 ref12 corne (ref17) 2000 ref59 ref15 ref14 ref53 ref52 ref55 ref11 ref54 ref10 costa (ref35) 2003 jin (ref5) 2001 zhou (ref68) 2005; 3 murata (ref6) 2001 ref46 snelson (ref58) 2007 ref45 ref47 ref42 ref41 ref44 jain (ref78) 2013 bader (ref27) 2010 ref49 ref8 okabe (ref43) 2002 ref7 ref9 ref3 ref40 thierens (ref39) 2001 zitzler (ref20) 1998 ref80 jin (ref4) 2001 ref79 jin (ref28) 2003; 3 ref37 ref36 ref75 ref31 ref74 ref30 ref77 ref76 ref32 pelikan (ref33) 2006 ref1 ref38 deb (ref62) 2001 li (ref51) 2012; 16 ref71 ref70 ref73 ref72 zitzler (ref19) 2004 ref24 ref67 ref23 zitzler (ref16) 2002 ref26 ref69 ref25 ref64 ref63 corne (ref18) 2001 ref66 ref22 ref65 ref21 ref29 martí (ref34) 2010 giagkiozis (ref48) 2012 cornell (ref57) 2011 ref60 schaffer (ref2) 1985 ref61 rasmussen (ref50) 2006 fonseca (ref13) 1993; 93 |
| References_xml | – start-page: 223 year: 2006 ident: ref33 article-title: Multiobjective estimation of distribution algorithms publication-title: Scalable Optimization Via Probabilistic Modeling doi: 10.1007/978-3-540-34954-9_10 – ident: ref80 doi: 10.1109/TEVC.2012.2227326 – ident: ref22 doi: 10.1109/CEC.2007.4424730 – ident: ref79 doi: 10.1109/CEC.2008.4631121 – ident: ref63 doi: 10.1016/j.asoc.2012.06.008 – ident: ref42 doi: 10.1016/j.asoc.2012.11.049 – start-page: 82 year: 2001 ident: ref6 article-title: Specification of genetic search directions in cellular multi-objective genetic algorithms publication-title: Proc Evol Multi-Criterion Optim (EMO) doi: 10.1007/3-540-44719-9_6 – ident: ref74 doi: 10.1109/TEVC.2012.2196800 – ident: ref72 doi: 10.1023/A:1008202821328 – start-page: 93 year: 1985 ident: ref2 article-title: Multiple objective optimization with vector evaluated genetic algorithms publication-title: Proc 7th Int Conf Genetic Algorithms – ident: ref47 doi: 10.1162/neco.1997.9.7.1493 – ident: ref32 doi: 10.1007/978-1-4615-1539-5 – ident: ref30 doi: 10.1016/S0377-2217(01)00104-7 – start-page: 1042 year: 2001 ident: ref5 article-title: Dynamic weighted aggregation for evolutionary multi-objective optimization: Why does it work and how? publication-title: Proc Genet Evol Comput Conf – ident: ref77 doi: 10.1109/TEVC.2013.2281534 – ident: ref1 doi: 10.1016/j.swevo.2011.03.001 – start-page: 282 year: 2003 ident: ref35 article-title: MOPED: A multi-objective parzen-based estimation of distribution algorithm for continuous problems publication-title: Proc Evol Multi-Criterion Optim (EMO) doi: 10.1007/3-540-36970-8_20 – ident: ref24 doi: 10.1007/978-3-540-70928-2_64 – ident: ref70 doi: 10.1109/TSMCB.2012.2209115 – year: 2001 ident: ref62 publication-title: Multi-Objective Optimization Using Evolutionary Algorithms – year: 2011 ident: ref57 publication-title: Experiments with Mixtures Designs Models and the Analysis of Mixture Data – ident: ref12 doi: 10.1109/ICEC.1994.350037 – ident: ref52 doi: 10.1016/j.ins.2008.02.017 – ident: ref31 doi: 10.1007/3-540-36970-8_9 – ident: ref60 doi: 10.1109/TNNLS.2013.2275918 – ident: ref56 doi: 10.1109/TEVC.2013.2281533 – ident: ref67 doi: 10.1109/CEC.2002.1007032 – ident: ref37 doi: 10.1109/TEVC.2013.2241768 – ident: ref61 doi: 10.1109/CEC.2012.6252954 – ident: ref64 doi: 10.1109/TEVC.2008.925798 – ident: ref69 doi: 10.1016/j.ins.2011.08.027 – ident: ref55 doi: 10.1007/s00500-003-0328-5 – year: 2006 ident: ref50 publication-title: Gaussian Processes for Machine Learning – ident: ref53 doi: 10.1016/j.swevo.2011.05.001 – ident: ref3 doi: 10.1109/5326.704576 – ident: ref75 doi: 10.1057/jors.2013.71 – ident: ref44 doi: 10.1109/TEVC.2003.810761 – start-page: 313 year: 2010 ident: ref27 article-title: Faster hypervolume-based search using Monte Carlo sampling publication-title: Multiple Criteria Decision Making for Sustainable Energy and Transportation Systems doi: 10.1007/978-3-642-04045-0_27 – ident: ref65 doi: 10.1109/TEVC.2005.861417 – start-page: 832 year: 2004 ident: ref19 article-title: Indicator-based selection in multiobjective search publication-title: Parallel Problem Solving from Nature-PPSN VIII doi: 10.1007/978-3-540-30217-9_84 – start-page: 247 year: 2002 ident: ref43 article-title: On the dynamics of evolutionary multi-objective optimization publication-title: Proc Genet Evol Comput Conf – ident: ref10 doi: 10.1109/TEVC.2014.2353672 – start-page: 283 year: 2001 ident: ref18 article-title: PESA-II: Region-based selection in evolutionary multiobjective optimization publication-title: Proc Genet Evol Comput Conf – ident: ref21 doi: 10.1016/j.ejor.2006.08.008 – ident: ref76 doi: 10.1007/978-1-4614-6940-7_15 – ident: ref23 doi: 10.1145/1830483.1830578 – ident: ref38 doi: 10.1109/CEC.2004.1331086 – volume: 16 start-page: 210 year: 2012 ident: ref51 article-title: Cooperatively coevolving particle swarms for large scale optimization publication-title: IEEE Trans Evol Comput doi: 10.1109/TEVC.2011.2112662 – start-page: 96 year: 2001 ident: ref4 article-title: Adapting weighted aggregation for multiobjective evolution strategies publication-title: Proc Evol Multi-Criterion Optim (EMO) doi: 10.1007/3-540-44719-9_7 – ident: ref36 doi: 10.1145/1569901.1569987 – ident: ref26 doi: 10.1109/TEVC.2010.2077298 – ident: ref15 doi: 10.1109/4235.797969 – start-page: 292 year: 1998 ident: ref20 article-title: Multiobjective optimization using evolutionary algorithms-A comparative case study publication-title: Parallel Problem Solving from Nature (PPSN V) doi: 10.1007/BFb0056872 – year: 2007 ident: ref58 article-title: Flexible and efficient Gaussian process models for machine learning – ident: ref59 doi: 10.1109/TEVC.2005.846356 – ident: ref71 doi: 10.1016/j.ins.2012.06.007 – ident: ref54 doi: 10.1109/TEVC.2013.2248012 – ident: ref49 doi: 10.1162/EVCO_a_00128 – ident: ref11 doi: 10.1162/evco.1994.2.3.221 – ident: ref14 doi: 10.1109/4235.996017 – ident: ref66 doi: 10.1162/106365600568202 – ident: ref40 doi: 10.1007/978-3-540-31880-4_30 – ident: ref8 doi: 10.1109/TEVC.2010.2051446 – year: 2010 ident: ref34 article-title: On current model-building methods for multi-objective estimation of distribution algorithms: Shortcommings and directions for improvement – volume: 3 start-page: 2568 year: 2005 ident: ref68 article-title: A model-based evolutionary algorithm for bi-objective optimization publication-title: Proc IEEE Congr Evol Comput – ident: ref9 doi: 10.1007/978-3-642-41278-3_67 – year: 2012 ident: ref48 article-title: Increasing the density of available Pareto optimal solutions – ident: ref7 doi: 10.1109/TEVC.2007.892759 – ident: ref41 doi: 10.1109/TEVC.2013.2281524 – ident: ref25 doi: 10.1109/TEVC.2009.2015575 – volume: 3 start-page: 1910 year: 2003 ident: ref28 article-title: Connectedness, regularity and the success of local search in evolutionary multi-objective optimization publication-title: Proc IEEE Congr Evol Comput – ident: ref29 doi: 10.1007/3-540-36970-8_31 – volume: 93 start-page: 416 year: 1993 ident: ref13 article-title: Genetic algorithms for multiobjective optimization: Formulation discussion and generalization publication-title: Proc 7th Int Conf Genetic Algorithms – start-page: 307 year: 2013 ident: ref78 article-title: An improved adaptive approach for elitist nondominated sorting genetic algorithm for many-objective optimization publication-title: Proc Evol Multi-Criterion Optim (EMO) doi: 10.1007/978-3-642-37140-0_25 – start-page: 663 year: 2001 ident: ref39 article-title: Multi-objective mixture-based iterated density estimation evolutionary algorithms publication-title: Proc Genet Evol Comput Conf – ident: ref46 doi: 10.1109/TEVC.2007.894202 – start-page: 839 year: 2000 ident: ref17 article-title: The Pareto envelope-based selection algorithm for multiobjective optimization publication-title: Parallel Problem Solving from Nature PPSN VI doi: 10.1007/3-540-45356-3_82 – ident: ref73 doi: 10.1109/TFUZZ.2012.2201338 – ident: ref45 doi: 10.1007/s10957-004-6468-7 – start-page: 95 year: 2002 ident: ref16 article-title: SPEA2: Improving the strength Pareto evolutionary algorithm publication-title: Evolutionary Methods for Design Optimization and Control |
| SSID | ssj0014519 |
| Score | 2.6033683 |
| Snippet | To approximate the Pareto front, most existing multiobjective evolutionary algorithms store the nondominated solutions found so far in the population or in an... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 838 |
| SubjectTerms | Algorithms estimation of distribution algorithms Gaussian processes inverse modeling Inverse problems Job shops Multiobjective optimization Pareto optimization random grouping Sociology Stochastic models Vectors |
| Title | A Multiobjective Evolutionary Algorithm Using Gaussian Process-Based Inverse Modeling |
| URI | https://ieeexplore.ieee.org/document/7018980 https://www.proquest.com/docview/1738854148 |
| Volume | 19 |
| WOSCitedRecordID | wos000366105600006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1941-0026 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014519 issn: 1089-778X databaseCode: RIE dateStart: 19970101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT8IwFH9B4kEPoqARRdODJ-NgW9naHpGAnogHMNyWru38CIIZg8T_3rYrRKMx8bbDa7Ps1_e1vvd-AFeRH_Is86Wnw93M60Zp5LGIdb1MpqEKqdROS1iyCTIa0emUPVTgZtsLo5SyxWeqbR7tXb5ciJX5VdYhfkAZ1Qn6DiFx2au1vTEwY1LKYnqmI0Y6dTeYgc8648Fj3xRxRe0QMx3_4G8-yJKq_LDE1r0Ma_97sUM4cGEk6pW4H0FFzetQ21A0IKexddj_Mm-wAZMesg23i_S1tHNosHZHj-cfqDd7WuQvxfMbsoUE6I6vlqbHErluAu9WuzyJzGiOfKmQoVEzzezHMBkOxv17z_EqeAJHrPB4ylRAlAgUVVTiGHOWklCJWOc-RDKpVTzkAcfab2HFfSlYlhrFDbUgCXmMT6A6X8zVKSCu7UOUYp3oagS4tg9c-lmcComl0pECbYK_-dKJcEPHDffFLLHJh88SA05iwEkcOE243i55Lydu_CXcMGhsBR0QTWht4EycTi6TgGBKDes5Pft91Tnsmb3LYpUWVIt8pS5gV6yLl2V-aY_bJxGZ0hQ |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFH-ICurB-YnTqTl4Eqtpsq7JcY7pRB0epuxW0iTVydyk-wD_e5M0G4oieOvhhZT-8r6a994P4CTCRGQZVoEJd7OgGqVRwCNeDTKVEk2YMk5LOrKJuN1m3S5_WICzeS-M1toVn-lz--ju8tVQTuyvsosYh4wzk6AvRdUqwUW31vzOwA5KKcrpuYkZWdffYYaYX3SaTw1bxhWdE8pNBES_eSFHq_LDFjsHc1X636ttwLoPJFG9QH4TFvRgC0ozkgbkdXYL1r5MHNyGxzpyLbfD9LWwdKg59YdP5B-o3n8e5r3xyxtypQToWkxGtssS-X6C4NI4PYXscI58pJElUrPt7DvweNXsNFqBZ1YIJI34OBAp12GsZaiZZorWqOBpTLSsmewnVlwZJSciFNR4LqoFVpJnqVVdYgRjImp0FxYHw4HeAySMhYhSalJdg4AwFkIonNVSqajSJlZgZcCzL51IP3bcsl_0E5d-YJ5YcBILTuLBKcPpfMl7MXPjL-Fti8Zc0ANRhsoMzsRr5SgJY8qY5T1n-7-vOoaVVuf-Lrm7ad8ewKrdpyhdqcDiOJ_oQ1iW03FvlB-5o_cJJ9fVWw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Multiobjective+Evolutionary+Algorithm+Using+Gaussian+Process-Based+Inverse+Modeling&rft.jtitle=IEEE+transactions+on+evolutionary+computation&rft.au=Cheng%2C+Ran&rft.au=Jin%2C+Yaochu&rft.au=Narukawa%2C+Kaname&rft.au=Sendhoff%2C+Bernhard&rft.date=2015-12-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1089-778X&rft.eissn=1941-0026&rft.volume=19&rft.issue=6&rft.spage=838&rft_id=info:doi/10.1109%2FTEVC.2015.2395073&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3883754891 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-778X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-778X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-778X&client=summon |