LINEAR SYSTEMS ON IRREGULAR VARIETIES

Let $X$ be a normal complex projective variety, $T\subseteq X$ a subvariety of dimension $m$ (possibly $T=X$) and $a:X\rightarrow A$ a morphism to an abelian variety such that $\text{Pic}^{0}(A)$ injects into $\text{Pic}^{0}(T)$; let $L$ be a line bundle on $X$ and $\unicode[STIX]{x1D6FC}\in \text{P...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the Institute of Mathematics of Jussieu Vol. 19; no. 6; pp. 2087 - 2125
Main Authors: Barja, Miguel Ángel, Pardini, Rita, Stoppino, Lidia
Format: Journal Article Publication
Language:English
Published: Cambridge, UK Cambridge University Press 01.11.2020
Subjects:
ISSN:1474-7480, 1475-3030
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Let $X$ be a normal complex projective variety, $T\subseteq X$ a subvariety of dimension $m$ (possibly $T=X$) and $a:X\rightarrow A$ a morphism to an abelian variety such that $\text{Pic}^{0}(A)$ injects into $\text{Pic}^{0}(T)$; let $L$ be a line bundle on $X$ and $\unicode[STIX]{x1D6FC}\in \text{Pic}^{0}(A)$ a general element. We introduce two new ingredients for the study of linear systems on $X$. First of all, we show the existence of a factorization of the map $a$, called the eventual map of $L$ on $T$, which controls the behavior of the linear systems $|L\otimes \unicode[STIX]{x1D6FC}|_{|T}$, asymptotically with respect to the pullbacks to the connected étale covers $X^{(d)}\rightarrow X$ induced by the $d$-th multiplication map of $A$. Second, we define the so-called continuous rank function$x\mapsto h_{a}^{0}(X_{|T},L+xM)$, where $M$ is the pullback of an ample divisor of $A$. This function extends to a continuous function of $x\in \mathbb{R}$, which is differentiable except possibly at countably many points; when $X=T$ we compute the left derivative explicitly. As an application, we give quick short proofs of a wide range of new Clifford–Severi inequalities, i.e., geographical bounds of the form $$\begin{eqnarray}\displaystyle \text{vol}_{X|T}(L)\geqslant C(m)h_{a}^{0}(X_{|T},L), & & \displaystyle \nonumber\end{eqnarray}$$ where $C(m)={\mathcal{O}}(m!)$ depends on several geometrical properties of $X$, $L$ or $a$.
AbstractList Peer Reviewed
Let $X$ be a normal complex projective variety, $T\subseteq X$ a subvariety of dimension $m$ (possibly $T=X$) and $a:X\rightarrow A$ a morphism to an abelian variety such that $\text{Pic}^{0}(A)$ injects into $\text{Pic}^{0}(T)$; let $L$ be a line bundle on $X$ and $\unicode[STIX]{x1D6FC}\in \text{Pic}^{0}(A)$ a general element. We introduce two new ingredients for the study of linear systems on $X$. First of all, we show the existence of a factorization of the map $a$, called the eventual map of $L$ on $T$, which controls the behavior of the linear systems $|L\otimes \unicode[STIX]{x1D6FC}|_{|T}$, asymptotically with respect to the pullbacks to the connected étale covers $X^{(d)}\rightarrow X$ induced by the $d$-th multiplication map of $A$. Second, we define the so-called continuous rank function$x\mapsto h_{a}^{0}(X_{|T},L+xM)$, where $M$ is the pullback of an ample divisor of $A$. This function extends to a continuous function of $x\in \mathbb{R}$, which is differentiable except possibly at countably many points; when $X=T$ we compute the left derivative explicitly. As an application, we give quick short proofs of a wide range of new Clifford–Severi inequalities, i.e., geographical bounds of the form $$\begin{eqnarray}\displaystyle \text{vol}_{X|T}(L)\geqslant C(m)h_{a}^{0}(X_{|T},L), & & \displaystyle \nonumber\end{eqnarray}$$ where $C(m)={\mathcal{O}}(m!)$ depends on several geometrical properties of $X$, $L$ or $a$.
Let \(X\) be a normal complex projective variety, \(T\subseteq X\) a subvariety of dimension \(m\) (possibly \(T=X\)) and \(a:X\rightarrow A\) a morphism to an abelian variety such that \(\text{Pic}^{0}(A)\) injects into \(\text{Pic}^{0}(T)\); let \(L\) be a line bundle on \(X\) and \(\unicode[STIX]{x1D6FC}\in \text{Pic}^{0}(A)\) a general element.We introduce two new ingredients for the study of linear systems on \(X\). First of all, we show the existence of a factorization of the map \(a\), called the eventual map of \(L\) on \(T\), which controls the behavior of the linear systems \(|L\otimes \unicode[STIX]{x1D6FC}|_{|T}\), asymptotically with respect to the pullbacks to the connected étale covers \(X^{(d)}\rightarrow X\) induced by the \(d\)-th multiplication map of \(A\).Second, we define the so-called continuous rank function\(x\mapsto h_{a}^{0}(X_{|T},L+xM)\), where \(M\) is the pullback of an ample divisor of \(A\). This function extends to a continuous function of \(x\in \mathbb{R}\), which is differentiable except possibly at countably many points; when \(X=T\) we compute the left derivative explicitly.As an application, we give quick short proofs of a wide range of new Clifford–Severi inequalities, i.e., geographical bounds of the form \[\begin{eqnarray}\displaystyle \text{vol}_{X|T}(L)\geqslant C(m)h_{a}^{0}(X_{|T},L), & & \displaystyle \nonumber\end{eqnarray}\] where \(C(m)={\mathcal{O}}(m!)\) depends on several geometrical properties of \(X\), \(L\) or \(a\).
Let $X$ be a normal complex projective variety, $T\subseteq X$ a subvariety of dimension $m$ (possibly $T=X$ ) and $a:X\rightarrow A$ a morphism to an abelian variety such that $\text{Pic}^{0}(A)$ injects into $\text{Pic}^{0}(T)$ ; let $L$ be a line bundle on $X$ and $\unicode[STIX]{x1D6FC}\in \text{Pic}^{0}(A)$ a general element. We introduce two new ingredients for the study of linear systems on $X$ . First of all, we show the existence of a factorization of the map $a$ , called the eventual map of   $L$   on   $T$ , which controls the behavior of the linear systems $|L\otimes \unicode[STIX]{x1D6FC}|_{|T}$ , asymptotically with respect to the pullbacks to the connected étale covers $X^{(d)}\rightarrow X$ induced by the $d$ -th multiplication map of $A$ . Second, we define the so-called continuous rank function $x\mapsto h_{a}^{0}(X_{|T},L+xM)$ , where $M$ is the pullback of an ample divisor of $A$ . This function extends to a continuous function of $x\in \mathbb{R}$ , which is differentiable except possibly at countably many points; when $X=T$ we compute the left derivative explicitly. As an application, we give quick short proofs of a wide range of new Clifford–Severi inequalities , i.e., geographical bounds of the form $$\begin{eqnarray}\displaystyle \text{vol}_{X|T}(L)\geqslant C(m)h_{a}^{0}(X_{|T},L), & & \displaystyle \nonumber\end{eqnarray}$$ where $C(m)={\mathcal{O}}(m!)$ depends on several geometrical properties of $X$ , $L$ or $a$ .
Author Pardini, Rita
Barja, Miguel Ángel
Stoppino, Lidia
Author_xml – sequence: 1
  givenname: Miguel Ángel
  orcidid: 0000-0003-2822-3938
  surname: Barja
  fullname: Barja, Miguel Ángel
  email: miguel.angel.barja@upc.edu
  organization: 1Departament de Matemàtiques, Universitat Politècnica de Catalunya, Avda. Diagonal 647, 08028Barcelona, Spain (miguel.angel.barja@upc.edu)
– sequence: 2
  givenname: Rita
  orcidid: 0000-0002-8011-925X
  surname: Pardini
  fullname: Pardini, Rita
  email: rita.pardini@unipi.it
  organization: 2Dipartimento di Matematica, Università di Pisa, Largo B. Pontecorvo 5, I-56127 Pisa, Italy (rita.pardini@unipi.it)
– sequence: 3
  givenname: Lidia
  orcidid: 0000-0002-5086-3766
  surname: Stoppino
  fullname: Stoppino, Lidia
  email: lidia.stoppino@unipv.it
  organization: 3Dipartimento di Matematica, Università di Pavia, Via Ferrata 5, 27100, Pavia, Italy (lidia.stoppino@unipv.it)
BookMark eNp9kN9LwzAQx4NMcJv-Ab4NxMdqkmua9nGMOgt1g3YTfAppm0jH1s6ke9h_b-YGE0XvuPz4Hp-74wao17SNQuiW4AeCCX_Mic-dh5hE2FkQXaC-k5gHGHDv6-17h_wVGli7wpgGlJE-uk-TWTzORvlbvohf8tF8NkqyLJ4uUye-jrMkXiRxfo0utVxbdXO6h2j5FC8mz146nyaTceqVwKLOkzKEyiecAQ24UrQAHDEACVxDqHVYcVIoLSNS-D6m3I84p4wzh2l3VBEMETnWLe2uFEaVypSyE62sz59DUMypgABcL8fcHZmtaT92ynZi1e5M48YU1GcQBCGn3yub1lqjtNiaeiPNXhAsDhsUvzboGP6DKetOdnXbdEbW639JOJFyU5i6elfnof6mPgEQtn8S
CitedBy_id crossref_primary_10_2478_aupcsm_2021_0007
crossref_primary_10_1017_fms_2022_34
crossref_primary_10_1007_s00208_020_02082_6
crossref_primary_10_1007_s00208_025_03226_2
crossref_primary_10_1007_s00029_021_00757_9
crossref_primary_10_1112_plms_12348
crossref_primary_10_1515_crelle_2022_0017
crossref_primary_10_1515_advgeom_2023_0028
crossref_primary_10_1017_fms_2023_34
crossref_primary_10_1515_advgeom_2019_0011
Cites_doi 10.1353/ajm.0.0054
10.4310/PAMQ.2008.v4.n3.a1
10.1007/978-3-662-06307-1
10.1007/978-3-642-18810-7
10.4310/jdg/1214438689
10.4007/annals.2013.177.3.6
10.1007/s00222-004-0399-7
10.1007/BF01450841
10.1093/imrn/rnx127
10.1007/978-1-4757-5323-3
10.1353/ajm.2011.0000
10.1090/S1056-3911-08-00490-6
10.1007/s00208-007-0146-7
10.1007/s00208-014-1025-7
10.24033/asens.2109
10.1007/BFb0090889
10.1007/BF01202721
10.1007/s13348-016-0169-z
10.1090/S0894-0347-97-00223-3
10.1215/00127094-2871306
10.1002/mana.200310115
10.1007/BF01388711
10.1016/j.matpur.2015.11.012
10.24033/bsmf.2508
10.1007/978-3-642-18808-4
ContentType Journal Article
Publication
Contributor Universitat Politècnica de Catalunya. GEOMVAP - Geometria de Varietats i Aplicacions
Universitat Politècnica de Catalunya. Departament de Matemàtiques
Contributor_xml – sequence: 1
  fullname: Universitat Politècnica de Catalunya. Departament de Matemàtiques
– sequence: 2
  fullname: Universitat Politècnica de Catalunya. GEOMVAP - Geometria de Varietats i Aplicacions
Copyright Cambridge University Press 2019
Attribution-NonCommercial-NoDerivs 3.0 Spain info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-nd/3.0/es
Copyright_xml – notice: Cambridge University Press 2019
– notice: Attribution-NonCommercial-NoDerivs 3.0 Spain info:eu-repo/semantics/openAccess <a href="http://creativecommons.org/licenses/by-nc-nd/3.0/es/">http://creativecommons.org/licenses/by-nc-nd/3.0/es/</a>
DBID AAYXX
CITATION
3V.
7SC
7XB
88I
8AL
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L6V
L7M
L~C
L~D
M0N
M2P
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
XX2
DOI 10.1017/S1474748019000069
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Materials Science & Engineering
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Science Database
Engineering Database
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
ProQuest Central Basic
Recercat
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
ProQuest Computing
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList

Computer Science Database
CrossRef
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1475-3030
EndPage 2125
ExternalDocumentID oai_recercat_cat_2072_363417
10_1017_S1474748019000069
GroupedDBID -E.
.FH
09C
09E
0E1
0R~
29L
3V.
4.4
5GY
5VS
74X
74Y
7~V
88I
8FE
8FG
8R4
8R5
AAAZR
AABES
AABWE
AACJH
AAEED
AAGFV
AAKTX
AANRG
AARAB
AASVR
AAUKB
ABBXD
ABGDZ
ABITZ
ABJCF
ABJNI
ABKKG
ABMWE
ABMYL
ABQTM
ABQWD
ABROB
ABTCQ
ABUWG
ABZCX
ACBMC
ACCHT
ACGFS
ACGOD
ACIMK
ACIWK
ACQFJ
ACREK
ACUIJ
ACUYZ
ACWGA
ACYZP
ACZBM
ACZUX
ACZWT
ADCGK
ADDNB
ADFEC
ADFRT
ADGEJ
ADKIL
ADOCW
ADOVH
ADVJH
AEBAK
AEHGV
AEMTW
AENEX
AENGE
AEYYC
AFFUJ
AFKQG
AFKRA
AFKSM
AFLOS
AFLVW
AFUTZ
AGABE
AGBYD
AGJUD
AGOOT
AHQXX
AHRGI
AIGNW
AIHIV
AIOIP
AISIE
AJ7
AJCYY
AJPFC
AJQAS
ALMA_UNASSIGNED_HOLDINGS
ALVPG
ALWZO
AQJOH
ARABE
ARAPS
ATUCA
AUXHV
AZQEC
BBLKV
BENPR
BGHMG
BGLVJ
BLZWO
BMAJL
BPHCQ
C0O
CAG
CBIIA
CCPQU
CCQAD
CFAFE
CHEAL
CJCSC
COF
CS3
DC4
DOHLZ
DU5
DWQXO
EBS
EJD
GNUQQ
HCIFZ
HG-
HST
HZ~
I.6
IH6
IOEEP
IS6
I~P
J36
J38
J3A
J9A
JHPGK
JQKCU
K6V
K7-
KCGVB
KFECR
L6V
L98
LW7
M-V
M0N
M2P
M7S
NIKVX
O9-
OYBOY
P2P
P62
PQQKQ
PROAC
PTHSS
PYCCK
Q2X
RAMDC
RCA
ROL
RR0
S6-
S6U
SAAAG
T9M
UT1
WFFJZ
WQ3
WXU
WXY
WYP
ZYDXJ
AAYXX
ABVKB
ABVZP
ABXHF
ACDLN
AFFHD
AFZFC
AKMAY
AMVHM
CITATION
PHGZM
PHGZT
PQGLB
7SC
7XB
8AL
8FD
8FK
JQ2
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
PRINS
Q9U
XX2
ID FETCH-LOGICAL-c359t-aa83d41753267ee2b309533a37f38ff8d71befa91b4402749772575aa8f5aad93
IEDL.DBID K7-
ISICitedReferencesCount 17
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000581706900010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1474-7480
IngestDate Fri Nov 07 13:38:11 EST 2025
Fri Jul 25 19:25:24 EDT 2025
Tue Nov 18 21:42:10 EST 2025
Sat Nov 29 03:47:18 EST 2025
Wed Mar 13 05:46:34 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords irregular variety
14J35
Clifford-Severi inequalities
14C20
14J29
variety of maximal Albanese dimension
continuous rank function
14J40
eventual map
14J30
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c359t-aa83d41753267ee2b309533a37f38ff8d71befa91b4402749772575aa8f5aad93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8011-925X
0000-0002-5086-3766
0000-0003-2822-3938
OpenAccessLink https://recercat.cat/handle/2072/363417
PQID 2453668729
PQPubID 43618
PageCount 39
ParticipantIDs csuc_recercat_oai_recercat_cat_2072_363417
proquest_journals_2453668729
crossref_primary_10_1017_S1474748019000069
crossref_citationtrail_10_1017_S1474748019000069
cambridge_journals_10_1017_S1474748019000069
PublicationCentury 2000
PublicationDate 2020-11-01
PublicationDateYYYYMMDD 2020-11-01
PublicationDate_xml – month: 11
  year: 2020
  text: 2020-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Cambridge, UK
PublicationPlace_xml – name: Cambridge, UK
– name: Cambridge
PublicationTitle Journal of the Institute of Mathematics of Jussieu
PublicationTitleAlternate J. Inst. Math. Jussieu
PublicationYear 2020
Publisher Cambridge University Press
Publisher_xml – name: Cambridge University Press
References S1474748019000069_r30
Lazarsfeld (S1474748019000069_r22) 2004
S1474748019000069_r12
S1474748019000069_r33
S1474748019000069_r10
S1474748019000069_r16
S1474748019000069_r15
S1474748019000069_r13
S1474748019000069_r35
Chen (S1474748019000069_r11) 2007; 603
Pareschi (S1474748019000069_r31) 2011
S1474748019000069_r19
S1474748019000069_r18
S1474748019000069_r17
Catanese (S1474748019000069_r9) 1983
Reid (S1474748019000069_r32) 1978
Ein (S1474748019000069_r14) 2009; 131
Pardini (S1474748019000069_r26) 1991; 417
S1474748019000069_r7
S1474748019000069_r23
S1474748019000069_r6
S1474748019000069_r21
S1474748019000069_r8
S1474748019000069_r20
S1474748019000069_r27
S1474748019000069_r25
S1474748019000069_r24
S1474748019000069_r29
S1474748019000069_r28
Xiao (S1474748019000069_r34) 1987; 276
S1474748019000069_r3
S1474748019000069_r2
S1474748019000069_r5
S1474748019000069_r4
S1474748019000069_r1
References_xml – volume: 131
  start-page: 607
  year: 2009
  ident: S1474748019000069_r14
  article-title: Restricted volumes and base loci of linear series
  publication-title: Amer. J. Math.
  doi: 10.1353/ajm.0.0054
– ident: S1474748019000069_r30
  doi: 10.4310/PAMQ.2008.v4.n3.a1
– ident: S1474748019000069_r6
  doi: 10.1007/978-3-662-06307-1
– start-page: 90
  volume-title: Algebraic Geometry: Open Problems. Proc. Ravello 1982
  year: 1983
  ident: S1474748019000069_r9
– ident: S1474748019000069_r18
– ident: S1474748019000069_r20
– ident: S1474748019000069_r23
  doi: 10.1007/978-3-642-18810-7
– ident: S1474748019000069_r10
  doi: 10.4310/jdg/1214438689
– ident: S1474748019000069_r4
– ident: S1474748019000069_r17
  doi: 10.4007/annals.2013.177.3.6
– ident: S1474748019000069_r27
  doi: 10.1007/s00222-004-0399-7
– volume: 276
  start-page: 449
  year: 1987
  ident: S1474748019000069_r34
  article-title: Fibered algebraic surfaces with low slope
  publication-title: Math. Ann.
  doi: 10.1007/BF01450841
– ident: S1474748019000069_r25
  doi: 10.1093/imrn/rnx127
– volume: 417
  start-page: 191
  year: 1991
  ident: S1474748019000069_r26
  article-title: Abelian covers of algebraic varieties
  publication-title: J. Reine Angew. Math.
– ident: S1474748019000069_r1
  doi: 10.1007/978-1-4757-5323-3
– ident: S1474748019000069_r28
  doi: 10.1353/ajm.2011.0000
– ident: S1474748019000069_r7
  doi: 10.1090/S1056-3911-08-00490-6
– start-page: 534
  volume-title: 1 for Surfaces with Small c 1 2
  year: 1978
  ident: S1474748019000069_r32
– ident: S1474748019000069_r29
  doi: 10.1007/s00208-007-0146-7
– ident: S1474748019000069_r35
  doi: 10.1007/s00208-014-1025-7
– ident: S1474748019000069_r24
  doi: 10.24033/asens.2109
– ident: S1474748019000069_r15
  doi: 10.1007/BFb0090889
– ident: S1474748019000069_r21
– ident: S1474748019000069_r33
  doi: 10.1007/BF01202721
– ident: S1474748019000069_r5
– ident: S1474748019000069_r8
  doi: 10.1007/s13348-016-0169-z
– ident: S1474748019000069_r13
  doi: 10.1090/S0894-0347-97-00223-3
– ident: S1474748019000069_r2
  doi: 10.1215/00127094-2871306
– ident: S1474748019000069_r19
  doi: 10.1002/mana.200310115
– volume: 603
  start-page: 165
  year: 2007
  ident: S1474748019000069_r11
  article-title: The 5-canonical system on 3-folds of general type
  publication-title: J. Reine Angew. Math.
– ident: S1474748019000069_r16
  doi: 10.1007/BF01388711
– ident: S1474748019000069_r3
  doi: 10.1016/j.matpur.2015.11.012
– start-page: 141
  volume-title: Grassmannians, Moduli Spaces and Vector Bundles
  year: 2011
  ident: S1474748019000069_r31
– ident: S1474748019000069_r12
  doi: 10.24033/bsmf.2508
– volume-title: Positivity in Algebraic Geometry. I
  year: 2004
  ident: S1474748019000069_r22
  doi: 10.1007/978-3-642-18808-4
SSID ssj0026251
Score 2.2814698
Snippet Let $X$ be a normal complex projective variety, $T\subseteq X$ a subvariety of dimension $m$ (possibly $T=X$) and $a:X\rightarrow A$ a morphism to an abelian...
Let $X$ be a normal complex projective variety, $T\subseteq X$ a subvariety of dimension $m$ (possibly $T=X$ ) and $a:X\rightarrow A$ a morphism to an abelian...
Let \(X\) be a normal complex projective variety, \(T\subseteq X\) a subvariety of dimension \(m\) (possibly \(T=X\)) and \(a:X\rightarrow A\) a morphism to an...
Peer Reviewed
SourceID csuc
proquest
crossref
cambridge
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2087
SubjectTerms 14 Algebraic geometry
14C Cycles and subschemes
14J Surfaces and higher-dimensional varieties
Classificació AMS
Continuity (mathematics)
Linear systems
Manifolds (Mathematics)
Matemàtiques i estadística
Multiplication
Varietats (Matemàtica)
Àrees temàtiques de la UPC
Title LINEAR SYSTEMS ON IRREGULAR VARIETIES
URI https://www.cambridge.org/core/product/identifier/S1474748019000069/type/journal_article
https://www.proquest.com/docview/2453668729
https://recercat.cat/handle/2072/363417
Volume 19
WOSCitedRecordID wos000581706900010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1475-3030
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0026251
  issn: 1474-7480
  databaseCode: P5Z
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1475-3030
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0026251
  issn: 1474-7480
  databaseCode: K7-
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1475-3030
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0026251
  issn: 1474-7480
  databaseCode: M7S
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1475-3030
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0026251
  issn: 1474-7480
  databaseCode: BENPR
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 1475-3030
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0026251
  issn: 1474-7480
  databaseCode: M2P
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-Njgd4gPElysaUB3hBWCS2UztPU0HZVq0NVdqhwUvkOLaENHVb0_H3c5emGWhSX_aQk3KJJct3vg9__A7gg-beSZ1EjEtRMolJBUtia1hk0fhFZeiNaSQ9VlmmLy6SabvgVrfHKjc2sTHU1ZWlNfIvXMZiMNAYCx5d3zCqGkW7q20JjUewG3EekZ6fKdYlXBjbNwmXpDOHUne7mgQZTUziRUljspN_sRX-81E9W9_ae5a6cT_Hzx_a8T141gaewXCtKS9gxy1ewtNJh9pav4KP41GWDvNg9nM2Tyez4HsWjPI8PTkfI_PHMB-lcwweX8P5cTr_dsraMgrMijhZMWO0qCQhcvKBco6XgjDmhBHKC-29rlRUOm9QMlJSkooRIc7jGJt5JFUi3kBvcbVwbyFAd196HZZxKAzB8pSODEYpfahcJZKoD5-7QSzayVAX64Nkqrg35n0IN-Nc2BaSnCpjXG5r8qlrcr3G49j-MwqvQN_hltasCsLS7l7o4aHihRigK1d9ONjI767rd8J7t_3zPjzhlIk3txQPoLda3rr38Nj-Wf2ul4ew-zXNpvlho55IJ3xKVM2QTuNffwEr3OJY
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NS-NAFH9Id0E97JeKXb9yWC9iMJmZNJODLEXjWmyrtFX0FCeTGRCkalNX_Kf2b9z30ibuIvTmwUMCmeTBkPc98-b3AH5IZo2Qke8ywVNXYFLhRoFWrq_R-PmpZ5UqON0Ou115eRmdzcGf8iwMlVWWNrEw1NmdpjXyPSYC3mhIjAV_3j-41DWKdlfLFhoTsTgxz0-YsuX7rUPk7zZjR_Hg4NiddhVwNQ-isauU5JkggErWCI1hKSfINa54aLm0VmahnxqrcKJCUM6GARKKdYBkFm8ZgS-hyf8gyPoXpYL9KsHDXKJI8ATVOApZ7aISRDUN0pgfFS4i-hfL4T-fWNP5o37lGQp3d_T5vf2oL_BpGlg7zYkmfIU5M_wGi50KlTZfgu12qxs3e07_qj-IO33ntOu0er3413kbBy-avVY8wOB4Gc7fZJ4rUBveDc0qOBjOpFZ6aeBxRbBDqSGDmArrhSbjkV-H3YppyVTZ82RSKBcmr3hcB6_ka6KnkOvU-eN2FslORXI_wRuZ_TEKS4K-0Yy0GieEFV490MW8kCW8gaFKWIf1Ul5epv4iLN9nv96C-eNBp50go07WYIHRqkNxInMdauPRo9mAj_r3-CYfbRYq4cD1W4vWXzbaOec
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=LINEAR+SYSTEMS+ON+IRREGULAR+VARIETIES&rft.jtitle=Journal+of+the+Institute+of+Mathematics+of+Jussieu&rft.au=Barja%2C+Miguel+%C3%81ngel&rft.au=Pardini%2C+Rita&rft.au=Stoppino%2C+Lidia&rft.date=2020-11-01&rft.pub=Cambridge+University+Press&rft.issn=1474-7480&rft.eissn=1475-3030&rft.volume=19&rft.issue=6&rft.spage=2087&rft.epage=2125&rft_id=info:doi/10.1017%2FS1474748019000069&rft.externalDocID=10_1017_S1474748019000069
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1474-7480&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1474-7480&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1474-7480&client=summon