LINEAR SYSTEMS ON IRREGULAR VARIETIES
Let $X$ be a normal complex projective variety, $T\subseteq X$ a subvariety of dimension $m$ (possibly $T=X$) and $a:X\rightarrow A$ a morphism to an abelian variety such that $\text{Pic}^{0}(A)$ injects into $\text{Pic}^{0}(T)$; let $L$ be a line bundle on $X$ and $\unicode[STIX]{x1D6FC}\in \text{P...
Gespeichert in:
| Veröffentlicht in: | Journal of the Institute of Mathematics of Jussieu Jg. 19; H. 6; S. 2087 - 2125 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article Verlag |
| Sprache: | Englisch |
| Veröffentlicht: |
Cambridge, UK
Cambridge University Press
01.11.2020
|
| Schlagworte: | |
| ISSN: | 1474-7480, 1475-3030 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Let $X$ be a normal complex projective variety, $T\subseteq X$ a subvariety of dimension $m$ (possibly $T=X$) and $a:X\rightarrow A$ a morphism to an abelian variety such that $\text{Pic}^{0}(A)$ injects into $\text{Pic}^{0}(T)$; let $L$ be a line bundle on $X$ and $\unicode[STIX]{x1D6FC}\in \text{Pic}^{0}(A)$ a general element. We introduce two new ingredients for the study of linear systems on $X$. First of all, we show the existence of a factorization of the map $a$, called the eventual map of $L$ on $T$, which controls the behavior of the linear systems $|L\otimes \unicode[STIX]{x1D6FC}|_{|T}$, asymptotically with respect to the pullbacks to the connected étale covers $X^{(d)}\rightarrow X$ induced by the $d$-th multiplication map of $A$. Second, we define the so-called continuous rank function$x\mapsto h_{a}^{0}(X_{|T},L+xM)$, where $M$ is the pullback of an ample divisor of $A$. This function extends to a continuous function of $x\in \mathbb{R}$, which is differentiable except possibly at countably many points; when $X=T$ we compute the left derivative explicitly. As an application, we give quick short proofs of a wide range of new Clifford–Severi inequalities, i.e., geographical bounds of the form $$\begin{eqnarray}\displaystyle \text{vol}_{X|T}(L)\geqslant C(m)h_{a}^{0}(X_{|T},L), & & \displaystyle \nonumber\end{eqnarray}$$ where $C(m)={\mathcal{O}}(m!)$ depends on several geometrical properties of $X$, $L$ or $a$. |
|---|---|
| AbstractList | Peer Reviewed Let $X$ be a normal complex projective variety, $T\subseteq X$ a subvariety of dimension $m$ (possibly $T=X$) and $a:X\rightarrow A$ a morphism to an abelian variety such that $\text{Pic}^{0}(A)$ injects into $\text{Pic}^{0}(T)$; let $L$ be a line bundle on $X$ and $\unicode[STIX]{x1D6FC}\in \text{Pic}^{0}(A)$ a general element. We introduce two new ingredients for the study of linear systems on $X$. First of all, we show the existence of a factorization of the map $a$, called the eventual map of $L$ on $T$, which controls the behavior of the linear systems $|L\otimes \unicode[STIX]{x1D6FC}|_{|T}$, asymptotically with respect to the pullbacks to the connected étale covers $X^{(d)}\rightarrow X$ induced by the $d$-th multiplication map of $A$. Second, we define the so-called continuous rank function$x\mapsto h_{a}^{0}(X_{|T},L+xM)$, where $M$ is the pullback of an ample divisor of $A$. This function extends to a continuous function of $x\in \mathbb{R}$, which is differentiable except possibly at countably many points; when $X=T$ we compute the left derivative explicitly. As an application, we give quick short proofs of a wide range of new Clifford–Severi inequalities, i.e., geographical bounds of the form $$\begin{eqnarray}\displaystyle \text{vol}_{X|T}(L)\geqslant C(m)h_{a}^{0}(X_{|T},L), & & \displaystyle \nonumber\end{eqnarray}$$ where $C(m)={\mathcal{O}}(m!)$ depends on several geometrical properties of $X$, $L$ or $a$. Let \(X\) be a normal complex projective variety, \(T\subseteq X\) a subvariety of dimension \(m\) (possibly \(T=X\)) and \(a:X\rightarrow A\) a morphism to an abelian variety such that \(\text{Pic}^{0}(A)\) injects into \(\text{Pic}^{0}(T)\); let \(L\) be a line bundle on \(X\) and \(\unicode[STIX]{x1D6FC}\in \text{Pic}^{0}(A)\) a general element.We introduce two new ingredients for the study of linear systems on \(X\). First of all, we show the existence of a factorization of the map \(a\), called the eventual map of \(L\) on \(T\), which controls the behavior of the linear systems \(|L\otimes \unicode[STIX]{x1D6FC}|_{|T}\), asymptotically with respect to the pullbacks to the connected étale covers \(X^{(d)}\rightarrow X\) induced by the \(d\)-th multiplication map of \(A\).Second, we define the so-called continuous rank function\(x\mapsto h_{a}^{0}(X_{|T},L+xM)\), where \(M\) is the pullback of an ample divisor of \(A\). This function extends to a continuous function of \(x\in \mathbb{R}\), which is differentiable except possibly at countably many points; when \(X=T\) we compute the left derivative explicitly.As an application, we give quick short proofs of a wide range of new Clifford–Severi inequalities, i.e., geographical bounds of the form \[\begin{eqnarray}\displaystyle \text{vol}_{X|T}(L)\geqslant C(m)h_{a}^{0}(X_{|T},L), & & \displaystyle \nonumber\end{eqnarray}\] where \(C(m)={\mathcal{O}}(m!)\) depends on several geometrical properties of \(X\), \(L\) or \(a\). Let $X$ be a normal complex projective variety, $T\subseteq X$ a subvariety of dimension $m$ (possibly $T=X$ ) and $a:X\rightarrow A$ a morphism to an abelian variety such that $\text{Pic}^{0}(A)$ injects into $\text{Pic}^{0}(T)$ ; let $L$ be a line bundle on $X$ and $\unicode[STIX]{x1D6FC}\in \text{Pic}^{0}(A)$ a general element. We introduce two new ingredients for the study of linear systems on $X$ . First of all, we show the existence of a factorization of the map $a$ , called the eventual map of $L$ on $T$ , which controls the behavior of the linear systems $|L\otimes \unicode[STIX]{x1D6FC}|_{|T}$ , asymptotically with respect to the pullbacks to the connected étale covers $X^{(d)}\rightarrow X$ induced by the $d$ -th multiplication map of $A$ . Second, we define the so-called continuous rank function $x\mapsto h_{a}^{0}(X_{|T},L+xM)$ , where $M$ is the pullback of an ample divisor of $A$ . This function extends to a continuous function of $x\in \mathbb{R}$ , which is differentiable except possibly at countably many points; when $X=T$ we compute the left derivative explicitly. As an application, we give quick short proofs of a wide range of new Clifford–Severi inequalities , i.e., geographical bounds of the form $$\begin{eqnarray}\displaystyle \text{vol}_{X|T}(L)\geqslant C(m)h_{a}^{0}(X_{|T},L), & & \displaystyle \nonumber\end{eqnarray}$$ where $C(m)={\mathcal{O}}(m!)$ depends on several geometrical properties of $X$ , $L$ or $a$ . |
| Author | Pardini, Rita Barja, Miguel Ángel Stoppino, Lidia |
| Author_xml | – sequence: 1 givenname: Miguel Ángel orcidid: 0000-0003-2822-3938 surname: Barja fullname: Barja, Miguel Ángel email: miguel.angel.barja@upc.edu organization: 1Departament de Matemàtiques, Universitat Politècnica de Catalunya, Avda. Diagonal 647, 08028Barcelona, Spain (miguel.angel.barja@upc.edu) – sequence: 2 givenname: Rita orcidid: 0000-0002-8011-925X surname: Pardini fullname: Pardini, Rita email: rita.pardini@unipi.it organization: 2Dipartimento di Matematica, Università di Pisa, Largo B. Pontecorvo 5, I-56127 Pisa, Italy (rita.pardini@unipi.it) – sequence: 3 givenname: Lidia orcidid: 0000-0002-5086-3766 surname: Stoppino fullname: Stoppino, Lidia email: lidia.stoppino@unipv.it organization: 3Dipartimento di Matematica, Università di Pavia, Via Ferrata 5, 27100, Pavia, Italy (lidia.stoppino@unipv.it) |
| BookMark | eNp9kN9LwzAQx4NMcJv-Ab4NxMdqkmua9nGMOgt1g3YTfAppm0jH1s6ke9h_b-YGE0XvuPz4Hp-74wao17SNQuiW4AeCCX_Mic-dh5hE2FkQXaC-k5gHGHDv6-17h_wVGli7wpgGlJE-uk-TWTzORvlbvohf8tF8NkqyLJ4uUye-jrMkXiRxfo0utVxbdXO6h2j5FC8mz146nyaTceqVwKLOkzKEyiecAQ24UrQAHDEACVxDqHVYcVIoLSNS-D6m3I84p4wzh2l3VBEMETnWLe2uFEaVypSyE62sz59DUMypgABcL8fcHZmtaT92ynZi1e5M48YU1GcQBCGn3yub1lqjtNiaeiPNXhAsDhsUvzboGP6DKetOdnXbdEbW639JOJFyU5i6elfnof6mPgEQtn8S |
| CitedBy_id | crossref_primary_10_2478_aupcsm_2021_0007 crossref_primary_10_1017_fms_2022_34 crossref_primary_10_1007_s00208_020_02082_6 crossref_primary_10_1007_s00208_025_03226_2 crossref_primary_10_1007_s00029_021_00757_9 crossref_primary_10_1112_plms_12348 crossref_primary_10_1515_crelle_2022_0017 crossref_primary_10_1515_advgeom_2023_0028 crossref_primary_10_1017_fms_2023_34 crossref_primary_10_1515_advgeom_2019_0011 |
| Cites_doi | 10.1353/ajm.0.0054 10.4310/PAMQ.2008.v4.n3.a1 10.1007/978-3-662-06307-1 10.1007/978-3-642-18810-7 10.4310/jdg/1214438689 10.4007/annals.2013.177.3.6 10.1007/s00222-004-0399-7 10.1007/BF01450841 10.1093/imrn/rnx127 10.1007/978-1-4757-5323-3 10.1353/ajm.2011.0000 10.1090/S1056-3911-08-00490-6 10.1007/s00208-007-0146-7 10.1007/s00208-014-1025-7 10.24033/asens.2109 10.1007/BFb0090889 10.1007/BF01202721 10.1007/s13348-016-0169-z 10.1090/S0894-0347-97-00223-3 10.1215/00127094-2871306 10.1002/mana.200310115 10.1007/BF01388711 10.1016/j.matpur.2015.11.012 10.24033/bsmf.2508 10.1007/978-3-642-18808-4 |
| ContentType | Journal Article Publication |
| Contributor | Universitat Politècnica de Catalunya. GEOMVAP - Geometria de Varietats i Aplicacions Universitat Politècnica de Catalunya. Departament de Matemàtiques |
| Contributor_xml | – sequence: 1 fullname: Universitat Politècnica de Catalunya. Departament de Matemàtiques – sequence: 2 fullname: Universitat Politècnica de Catalunya. GEOMVAP - Geometria de Varietats i Aplicacions |
| Copyright | Cambridge University Press 2019 Attribution-NonCommercial-NoDerivs 3.0 Spain info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-nd/3.0/es |
| Copyright_xml | – notice: Cambridge University Press 2019 – notice: Attribution-NonCommercial-NoDerivs 3.0 Spain info:eu-repo/semantics/openAccess <a href="http://creativecommons.org/licenses/by-nc-nd/3.0/es/">http://creativecommons.org/licenses/by-nc-nd/3.0/es/</a> |
| DBID | AAYXX CITATION 3V. 7SC 7XB 88I 8AL 8FD 8FE 8FG 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L6V L7M L~C L~D M0N M2P M7S P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U XX2 |
| DOI | 10.1017/S1474748019000069 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Science Database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic Recercat |
| DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection ProQuest Computing Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) |
| DatabaseTitleList | Computer Science Database CrossRef |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EISSN | 1475-3030 |
| EndPage | 2125 |
| ExternalDocumentID | oai_recercat_cat_2072_363417 10_1017_S1474748019000069 |
| GroupedDBID | -E. .FH 09C 09E 0E1 0R~ 29L 3V. 4.4 5GY 5VS 74X 74Y 7~V 88I 8FE 8FG 8R4 8R5 AAAZR AABES AABWE AACJH AAEED AAGFV AAKTX AANRG AARAB AASVR AAUKB ABBXD ABGDZ ABITZ ABJCF ABJNI ABKKG ABMWE ABMYL ABQTM ABQWD ABROB ABTCQ ABUWG ABZCX ACBMC ACCHT ACGFS ACGOD ACIMK ACIWK ACQFJ ACREK ACUIJ ACUYZ ACWGA ACYZP ACZBM ACZUX ACZWT ADCGK ADDNB ADFEC ADFRT ADGEJ ADKIL ADOCW ADOVH ADVJH AEBAK AEHGV AEMTW AENEX AENGE AEYYC AFFUJ AFKQG AFKRA AFKSM AFLOS AFLVW AFUTZ AGABE AGBYD AGJUD AGOOT AHQXX AHRGI AIGNW AIHIV AIOIP AISIE AJ7 AJCYY AJPFC AJQAS ALMA_UNASSIGNED_HOLDINGS ALVPG ALWZO AQJOH ARABE ARAPS ATUCA AUXHV AZQEC BBLKV BENPR BGHMG BGLVJ BLZWO BMAJL BPHCQ C0O CAG CBIIA CCPQU CCQAD CFAFE CHEAL CJCSC COF CS3 DC4 DOHLZ DU5 DWQXO EBS EJD GNUQQ HCIFZ HG- HST HZ~ I.6 IH6 IOEEP IS6 I~P J36 J38 J3A J9A JHPGK JQKCU K6V K7- KCGVB KFECR L6V L98 LW7 M-V M0N M2P M7S NIKVX O9- OYBOY P2P P62 PQQKQ PROAC PTHSS PYCCK Q2X RAMDC RCA ROL RR0 S6- S6U SAAAG T9M UT1 WFFJZ WQ3 WXU WXY WYP ZYDXJ AAYXX ABVKB ABVZP ABXHF ACDLN AFFHD AFZFC AKMAY AMVHM CITATION PHGZM PHGZT PQGLB 7SC 7XB 8AL 8FD 8FK JQ2 L7M L~C L~D PKEHL PQEST PQUKI PRINS Q9U XX2 |
| ID | FETCH-LOGICAL-c359t-aa83d41753267ee2b309533a37f38ff8d71befa91b4402749772575aa8f5aad93 |
| IEDL.DBID | K7- |
| ISICitedReferencesCount | 17 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000581706900010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1474-7480 |
| IngestDate | Fri Nov 07 13:38:11 EST 2025 Fri Jul 25 19:25:24 EDT 2025 Tue Nov 18 21:42:10 EST 2025 Sat Nov 29 03:47:18 EST 2025 Wed Mar 13 05:46:34 EDT 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Keywords | irregular variety 14J35 Clifford-Severi inequalities 14C20 14J29 variety of maximal Albanese dimension continuous rank function 14J40 eventual map 14J30 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c359t-aa83d41753267ee2b309533a37f38ff8d71befa91b4402749772575aa8f5aad93 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-8011-925X 0000-0002-5086-3766 0000-0003-2822-3938 |
| OpenAccessLink | https://recercat.cat/handle/2072/363417 |
| PQID | 2453668729 |
| PQPubID | 43618 |
| PageCount | 39 |
| ParticipantIDs | csuc_recercat_oai_recercat_cat_2072_363417 proquest_journals_2453668729 crossref_primary_10_1017_S1474748019000069 crossref_citationtrail_10_1017_S1474748019000069 cambridge_journals_10_1017_S1474748019000069 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-11-01 |
| PublicationDateYYYYMMDD | 2020-11-01 |
| PublicationDate_xml | – month: 11 year: 2020 text: 2020-11-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Cambridge, UK |
| PublicationPlace_xml | – name: Cambridge, UK – name: Cambridge |
| PublicationTitle | Journal of the Institute of Mathematics of Jussieu |
| PublicationTitleAlternate | J. Inst. Math. Jussieu |
| PublicationYear | 2020 |
| Publisher | Cambridge University Press |
| Publisher_xml | – name: Cambridge University Press |
| References | S1474748019000069_r30 Lazarsfeld (S1474748019000069_r22) 2004 S1474748019000069_r12 S1474748019000069_r33 S1474748019000069_r10 S1474748019000069_r16 S1474748019000069_r15 S1474748019000069_r13 S1474748019000069_r35 Chen (S1474748019000069_r11) 2007; 603 Pareschi (S1474748019000069_r31) 2011 S1474748019000069_r19 S1474748019000069_r18 S1474748019000069_r17 Catanese (S1474748019000069_r9) 1983 Reid (S1474748019000069_r32) 1978 Ein (S1474748019000069_r14) 2009; 131 Pardini (S1474748019000069_r26) 1991; 417 S1474748019000069_r7 S1474748019000069_r23 S1474748019000069_r6 S1474748019000069_r21 S1474748019000069_r8 S1474748019000069_r20 S1474748019000069_r27 S1474748019000069_r25 S1474748019000069_r24 S1474748019000069_r29 S1474748019000069_r28 Xiao (S1474748019000069_r34) 1987; 276 S1474748019000069_r3 S1474748019000069_r2 S1474748019000069_r5 S1474748019000069_r4 S1474748019000069_r1 |
| References_xml | – volume: 131 start-page: 607 year: 2009 ident: S1474748019000069_r14 article-title: Restricted volumes and base loci of linear series publication-title: Amer. J. Math. doi: 10.1353/ajm.0.0054 – ident: S1474748019000069_r30 doi: 10.4310/PAMQ.2008.v4.n3.a1 – ident: S1474748019000069_r6 doi: 10.1007/978-3-662-06307-1 – start-page: 90 volume-title: Algebraic Geometry: Open Problems. Proc. Ravello 1982 year: 1983 ident: S1474748019000069_r9 – ident: S1474748019000069_r18 – ident: S1474748019000069_r20 – ident: S1474748019000069_r23 doi: 10.1007/978-3-642-18810-7 – ident: S1474748019000069_r10 doi: 10.4310/jdg/1214438689 – ident: S1474748019000069_r4 – ident: S1474748019000069_r17 doi: 10.4007/annals.2013.177.3.6 – ident: S1474748019000069_r27 doi: 10.1007/s00222-004-0399-7 – volume: 276 start-page: 449 year: 1987 ident: S1474748019000069_r34 article-title: Fibered algebraic surfaces with low slope publication-title: Math. Ann. doi: 10.1007/BF01450841 – ident: S1474748019000069_r25 doi: 10.1093/imrn/rnx127 – volume: 417 start-page: 191 year: 1991 ident: S1474748019000069_r26 article-title: Abelian covers of algebraic varieties publication-title: J. Reine Angew. Math. – ident: S1474748019000069_r1 doi: 10.1007/978-1-4757-5323-3 – ident: S1474748019000069_r28 doi: 10.1353/ajm.2011.0000 – ident: S1474748019000069_r7 doi: 10.1090/S1056-3911-08-00490-6 – start-page: 534 volume-title: 1 for Surfaces with Small c 1 2 year: 1978 ident: S1474748019000069_r32 – ident: S1474748019000069_r29 doi: 10.1007/s00208-007-0146-7 – ident: S1474748019000069_r35 doi: 10.1007/s00208-014-1025-7 – ident: S1474748019000069_r24 doi: 10.24033/asens.2109 – ident: S1474748019000069_r15 doi: 10.1007/BFb0090889 – ident: S1474748019000069_r21 – ident: S1474748019000069_r33 doi: 10.1007/BF01202721 – ident: S1474748019000069_r5 – ident: S1474748019000069_r8 doi: 10.1007/s13348-016-0169-z – ident: S1474748019000069_r13 doi: 10.1090/S0894-0347-97-00223-3 – ident: S1474748019000069_r2 doi: 10.1215/00127094-2871306 – ident: S1474748019000069_r19 doi: 10.1002/mana.200310115 – volume: 603 start-page: 165 year: 2007 ident: S1474748019000069_r11 article-title: The 5-canonical system on 3-folds of general type publication-title: J. Reine Angew. Math. – ident: S1474748019000069_r16 doi: 10.1007/BF01388711 – ident: S1474748019000069_r3 doi: 10.1016/j.matpur.2015.11.012 – start-page: 141 volume-title: Grassmannians, Moduli Spaces and Vector Bundles year: 2011 ident: S1474748019000069_r31 – ident: S1474748019000069_r12 doi: 10.24033/bsmf.2508 – volume-title: Positivity in Algebraic Geometry. I year: 2004 ident: S1474748019000069_r22 doi: 10.1007/978-3-642-18808-4 |
| SSID | ssj0026251 |
| Score | 2.2814698 |
| Snippet | Let $X$ be a normal complex projective variety, $T\subseteq X$ a subvariety of dimension $m$ (possibly $T=X$) and $a:X\rightarrow A$ a morphism to an abelian... Let $X$ be a normal complex projective variety, $T\subseteq X$ a subvariety of dimension $m$ (possibly $T=X$ ) and $a:X\rightarrow A$ a morphism to an abelian... Let \(X\) be a normal complex projective variety, \(T\subseteq X\) a subvariety of dimension \(m\) (possibly \(T=X\)) and \(a:X\rightarrow A\) a morphism to an... Peer Reviewed |
| SourceID | csuc proquest crossref cambridge |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 2087 |
| SubjectTerms | 14 Algebraic geometry 14C Cycles and subschemes 14J Surfaces and higher-dimensional varieties Classificació AMS Continuity (mathematics) Linear systems Manifolds (Mathematics) Matemàtiques i estadística Multiplication Varietats (Matemàtica) Àrees temàtiques de la UPC |
| Title | LINEAR SYSTEMS ON IRREGULAR VARIETIES |
| URI | https://www.cambridge.org/core/product/identifier/S1474748019000069/type/journal_article https://www.proquest.com/docview/2453668729 https://recercat.cat/handle/2072/363417 |
| Volume | 19 |
| WOSCitedRecordID | wos000581706900010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1475-3030 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0026251 issn: 1474-7480 databaseCode: P5Z dateStart: 20020101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1475-3030 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0026251 issn: 1474-7480 databaseCode: K7- dateStart: 20020101 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1475-3030 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0026251 issn: 1474-7480 databaseCode: M7S dateStart: 20020101 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1475-3030 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0026251 issn: 1474-7480 databaseCode: BENPR dateStart: 20020101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database (ProQuest) customDbUrl: eissn: 1475-3030 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0026251 issn: 1474-7480 databaseCode: M2P dateStart: 20020101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NT9swFH8aZQd2GPsAUQYoB3aZFkH87RPqUNgq2qxKCwIuUeLYEtJUoCn7-_FL08CE1MsOeVJebMnys9-H_fJ7AIeScykdE6FieFolShNqblSYM1b4CISwss62uBzIJFFXV3rUHLhVTVrlUifWirq8M3hGfkQYp0Io7wue3D-EWDUKb1ebEhprsB4REuE6P5dhG3B5374OuBjmHDLV3moiZDQykRfpWmXrl9gK_9iojqkezStNXZufs83_HfgHeN84nkFvsVI-whs7_QTvhi1qa_UZvg76SdxLg_H1eBIPx8HvJOinafzzYuCZl720H0-887gFF2fx5PRX2JRRCA3leh7muaIlQ0ROIqS1pKCIMUdzKh1VzqlSRoV1uY4KxjBI9R6h38fcd3OelJpuQ2d6N7U7EIjSWldQogyhTGmeUyd8O6Etp0w60oXv7SRmzWaoskUimcxezXkXjpfznJkGkhwrY_xZ1eVb2-V-gcexurEXXuZth52ZfJ4hlnb7gg85liSjwpty2YW9pfyeh_4svN3Vn7_ABsFIvP5LcQ8689mj3Ye35u_8tpodwPqPOBmlB_Xy9HRIRkjl2NMRv3kCkInidg |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NT9swFH9C3STGYWxsiDLYcoDLtGjUdmzngFAFYVT92NQWBKeQOLaEhAo0ZYh_ir-R99ImMCH1xmGHRIpjS5bft_38ewBbKgiUckL6WtBulcyMHwZG-4kQKUYgTGRFtsVJR_V6-vQ0_LMAD-VdGEqrLHVioaizK0N75D-ZCLiUGn3Bvesbn6pG0elqWUJjyhZte3-HIVu-2zpA-m4zdhgN94_8WVUB3_AgnPhJonkmCKCSSWUtSzlBrvGEK8e1czpTjdS6JGykQlDMhg4SsnWAwxy-MgJfQpX_RnCtCKu_rfwqwMNYogjwBOU4Cl2dohJENTVSWyMsTET4HMvhH5tYM_mteWEZCnN3uPy_LdQHeD9zrL3mVBI-woIdrcBSt0KlzT_BdqfVi5p9b3A2GEbdgfe757X6_ejXcQcbT5r9VjRE5_gzHL_KPFehNroa2TXwZGatSznThnGhwyDhTmI_GdqAC-VYHX5URItnwp7H00Q5Fb-gcR12SrrGZga5TpU_LucN-V4NuZ7ijczvjMwSo220Y5NMYsIKrz7oYTuKxVyiq6LqsFHyy9PUn5hlff7vb7B4NOx2YiRU-wu8Y7TrUNzI3IDaZHxrN-Gt-Tu5yMdfC5Hw4Py1WesR2vM5ww |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=LINEAR+SYSTEMS+ON+IRREGULAR+VARIETIES&rft.jtitle=Journal+of+the+Institute+of+Mathematics+of+Jussieu&rft.au=Barja%2C+Miguel+%C3%81ngel&rft.au=Pardini%2C+Rita&rft.au=Stoppino%2C+Lidia&rft.date=2020-11-01&rft.issn=1474-7480&rft.eissn=1475-3030&rft.volume=19&rft.issue=6&rft.spage=2087&rft.epage=2125&rft_id=info:doi/10.1017%2FS1474748019000069&rft.externalDBID=n%2Fa&rft.externalDocID=10_1017_S1474748019000069 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1474-7480&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1474-7480&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1474-7480&client=summon |