Cooperative Multi-Agent Reinforcement-Learning-Based Distributed Dynamic Spectrum Access in Cognitive Radio Networks

With the development of wireless communication and Internet of Things (IoT), there are massive wireless devices that need to share the limited spectrum resources. Dynamic spectrum access (DSA) is a promising paradigm to remedy the problem of inefficient spectrum utilization brought upon by the histo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE internet of things journal Jg. 9; H. 19; S. 19477 - 19488
Hauptverfasser: Tan, Xiang, Zhou, Li, Wang, Haijun, Sun, Yuli, Zhao, Haitao, Seet, Boon-Chong, Wei, Jibo, Leung, Victor C. M.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Piscataway IEEE 01.10.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:2327-4662, 2327-4662
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract With the development of wireless communication and Internet of Things (IoT), there are massive wireless devices that need to share the limited spectrum resources. Dynamic spectrum access (DSA) is a promising paradigm to remedy the problem of inefficient spectrum utilization brought upon by the historical command-and-control approach to spectrum allocation. In this article, we investigate the distributed DSA problem for multiusers in a typical multichannel cognitive radio network. The problem is formulated as a decentralized partially observable Markov decision process (Dec-POMDP), and we propose a centralized off-line training and distributed online execution framework based on cooperative multi-agent reinforcement learning (MARL). We employ the deep recurrent <inline-formula> <tex-math notation="LaTeX">Q </tex-math></inline-formula>-network (DRQN) to address the partial observability of the state for each cognitive user. The ultimate goal is to learn a cooperative strategy which maximizes the sum throughput of a cognitive radio network in a distributed fashion without information exchange between cognitive users. Finally, we validate the proposed algorithm in various settings through extensive experiments. The experimental results show that the proposed CoMARL-DSA algorithm outperforms the state-of-the-art deep <inline-formula> <tex-math notation="LaTeX">Q </tex-math></inline-formula>-learning for spectrum access (DQSA) in terms of successful access rate and collision rate by at least 14% and 12%, respectively.
AbstractList With the development of wireless communication and Internet of Things (IoT), there are massive wireless devices that need to share the limited spectrum resources. Dynamic spectrum access (DSA) is a promising paradigm to remedy the problem of inefficient spectrum utilization brought upon by the historical command-and-control approach to spectrum allocation. In this article, we investigate the distributed DSA problem for multiusers in a typical multichannel cognitive radio network. The problem is formulated as a decentralized partially observable Markov decision process (Dec-POMDP), and we propose a centralized off-line training and distributed online execution framework based on cooperative multi-agent reinforcement learning (MARL). We employ the deep recurrent <inline-formula> <tex-math notation="LaTeX">Q </tex-math></inline-formula>-network (DRQN) to address the partial observability of the state for each cognitive user. The ultimate goal is to learn a cooperative strategy which maximizes the sum throughput of a cognitive radio network in a distributed fashion without information exchange between cognitive users. Finally, we validate the proposed algorithm in various settings through extensive experiments. The experimental results show that the proposed CoMARL-DSA algorithm outperforms the state-of-the-art deep <inline-formula> <tex-math notation="LaTeX">Q </tex-math></inline-formula>-learning for spectrum access (DQSA) in terms of successful access rate and collision rate by at least 14% and 12%, respectively.
With the development of wireless communication and Internet of Things (IoT), there are massive wireless devices that need to share the limited spectrum resources. Dynamic spectrum access (DSA) is a promising paradigm to remedy the problem of inefficient spectrum utilization brought upon by the historical command-and-control approach to spectrum allocation. In this article, we investigate the distributed DSA problem for multiusers in a typical multichannel cognitive radio network. The problem is formulated as a decentralized partially observable Markov decision process (Dec-POMDP), and we propose a centralized off-line training and distributed online execution framework based on cooperative multi-agent reinforcement learning (MARL). We employ the deep recurrent [Formula Omitted]-network (DRQN) to address the partial observability of the state for each cognitive user. The ultimate goal is to learn a cooperative strategy which maximizes the sum throughput of a cognitive radio network in a distributed fashion without information exchange between cognitive users. Finally, we validate the proposed algorithm in various settings through extensive experiments. The experimental results show that the proposed CoMARL-DSA algorithm outperforms the state-of-the-art deep [Formula Omitted]-learning for spectrum access (DQSA) in terms of successful access rate and collision rate by at least 14% and 12%, respectively.
Author Sun, Yuli
Leung, Victor C. M.
Zhou, Li
Wang, Haijun
Seet, Boon-Chong
Wei, Jibo
Tan, Xiang
Zhao, Haitao
Author_xml – sequence: 1
  givenname: Xiang
  orcidid: 0000-0002-1554-3206
  surname: Tan
  fullname: Tan, Xiang
  email: tanxiang@nudt.edu.cn
  organization: College of Electronic Science and Technology, National University of Defense Technology, Changsha, China
– sequence: 2
  givenname: Li
  orcidid: 0000-0003-4099-6917
  surname: Zhou
  fullname: Zhou, Li
  email: zhouli2035@nudt.edu.cn
  organization: College of Electronic Science and Technology, National University of Defense Technology, Changsha, China
– sequence: 3
  givenname: Haijun
  orcidid: 0000-0003-0739-0761
  surname: Wang
  fullname: Wang, Haijun
  email: haijunwang14@nudt.edu.cn
  organization: College of Electronic Science and Technology, National University of Defense Technology, Changsha, China
– sequence: 4
  givenname: Yuli
  surname: Sun
  fullname: Sun, Yuli
  email: sunyuli19@nudt.edu.cn
  organization: College of Electronic Science and Technology, National University of Defense Technology, Changsha, China
– sequence: 5
  givenname: Haitao
  orcidid: 0000-0002-4728-0180
  surname: Zhao
  fullname: Zhao, Haitao
  email: haitaozhao@nudt.edu.cn
  organization: College of Electronic Science and Technology, National University of Defense Technology, Changsha, China
– sequence: 6
  givenname: Boon-Chong
  orcidid: 0000-0002-9511-7521
  surname: Seet
  fullname: Seet, Boon-Chong
  email: boon-chong.seet@aut.ac.nz
  organization: Department of Electrical and Electronic Engineering, Auckland University of Technology, Auckland, New Zealand
– sequence: 7
  givenname: Jibo
  orcidid: 0000-0003-0165-6119
  surname: Wei
  fullname: Wei, Jibo
  email: wjbhw@nudt.edu.cn
  organization: College of Electronic Science and Technology, National University of Defense Technology, Changsha, China
– sequence: 8
  givenname: Victor C. M.
  orcidid: 0000-0003-3529-2640
  surname: Leung
  fullname: Leung, Victor C. M.
  email: vleung@ieee.org
  organization: College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, China
BookMark eNp9kE1PAjEQhhuDiYj8AONlE8-LbXe33R4RvzAoCeJ50-3OkiK02HY1_HsXIcZ48NRp5n1mMs8p6hhrAKFzggeEYHH1OJ7OBxRTOkgIy6lgR6hLE8rjlDHa-VWfoL73S4xxi2VEsC4KI2s34GTQHxA9Naug4-ECTIhmoE1tnYJ1-4snIJ3RZhFfSw9VdKN9cLpswq7eGrnWKnrZgAquWUdDpcD7SJtoZBdGf0-eyUrb6BnCp3Vv_gwd13LloX94e-j17nY-eogn0_vxaDiJVZKJEEtBa1JWlCuc12lZcp6mlEqmBM9pwpXMBc8kE0lZEZkxSSRNZakYEW2vStKkhy73czfOvjfgQ7G0jTPtyoJywkkmMpa3Kb5PKWe9d1AXSodWiDXBSb0qCC52loud5WJnuThYbknyh9w4vZZu-y9zsWc0APzk20NEmuPkC8xmi0M
CODEN IITJAU
CitedBy_id crossref_primary_10_1007_s11277_023_10307_5
crossref_primary_10_1109_TWC_2023_3275945
crossref_primary_10_1155_2022_9391939
crossref_primary_10_32604_cmes_2023_030898
crossref_primary_10_4218_etrij_2023_0132
crossref_primary_10_1109_JIOT_2023_3300770
crossref_primary_10_3390_math13182941
crossref_primary_10_1109_TCCN_2023_3306854
crossref_primary_10_1109_TMC_2025_3559676
crossref_primary_10_3390_s25154554
crossref_primary_10_1016_j_icte_2025_06_001
crossref_primary_10_1109_TIV_2024_3384184
crossref_primary_10_1007_s41870_024_01989_6
crossref_primary_10_1007_s11235_024_01188_5
crossref_primary_10_1109_JIOT_2023_3282908
crossref_primary_10_1109_COMST_2024_3395358
crossref_primary_10_1109_JIOT_2024_3513332
crossref_primary_10_1109_TNSM_2022_3186725
crossref_primary_10_1016_j_phycom_2025_102704
crossref_primary_10_1080_17538947_2024_2398051
crossref_primary_10_1109_JSEN_2023_3283413
crossref_primary_10_1109_TMC_2022_3200044
crossref_primary_10_3390_s25030615
crossref_primary_10_1109_JIOT_2024_3359277
crossref_primary_10_3390_drones8090439
crossref_primary_10_1109_JIOT_2024_3429200
crossref_primary_10_1016_j_comnet_2025_111708
crossref_primary_10_1631_FITEE_2400327
crossref_primary_10_1007_s11431_023_2576_0
crossref_primary_10_1109_JIOT_2025_3584849
crossref_primary_10_1016_j_icte_2024_01_001
crossref_primary_10_1109_ACCESS_2025_3534657
crossref_primary_10_1109_TITS_2025_3547775
crossref_primary_10_1109_TMC_2022_3212926
crossref_primary_10_54097_dcv3bz74
crossref_primary_10_1016_j_comnet_2025_111236
crossref_primary_10_1088_1742_6596_2560_1_012036
crossref_primary_10_1016_j_phycom_2023_102054
crossref_primary_10_3390_math12132102
crossref_primary_10_1007_s40031_024_01190_0
crossref_primary_10_3390_app15105573
crossref_primary_10_1109_JIOT_2023_3292894
crossref_primary_10_1109_JIOT_2025_3545027
crossref_primary_10_1109_LCOMM_2024_3354266
crossref_primary_10_3390_electronics14040820
crossref_primary_10_1109_TWC_2023_3330999
crossref_primary_10_3390_s25165086
crossref_primary_10_1109_TAES_2023_3302819
crossref_primary_10_1109_JIOT_2024_3416371
crossref_primary_10_1007_s11277_025_11758_8
crossref_primary_10_1016_j_comcom_2025_108318
crossref_primary_10_1016_j_neucom_2025_131236
crossref_primary_10_1109_TNSM_2022_3218819
crossref_primary_10_1109_TCE_2025_3558629
Cites_doi 10.1109/TNN.1998.712192
10.1287/moor.12.3.441
10.1109/TWC.2018.2879433
10.1109/JIOT.2018.2872441
10.1109/MSP.2007.361604
10.1007/BF00992698
10.1017/CBO9780511609909
10.3115/v1/D14-1179
10.1109/TWC.2020.3024860
10.1109/TIT.2010.2068950
10.1109/COMST.2019.2916583
10.1007/978-3-319-28929-8
10.2200/s00091ed1v01y200705aim002
10.1109/DySPAN.2019.8935734
10.1006/game.1996.0044
10.1109/COMST.2019.2926625
10.1109/TCCN.2019.2952909
10.1109/MNET.011.2000195
10.1049/cp:19991218
10.1109/T-WC.2008.071349
10.1109/TCCN.2018.2809722
10.12676/j.cc.2018.12.002
10.1109/TWC.2020.3037767
10.1109/TSMCC.2007.913919
10.1109/TWC.2020.2984227
10.1016/B978-1-55860-335-6.50027-1
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/JIOT.2022.3168296
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2327-4662
EndPage 19488
ExternalDocumentID 10_1109_JIOT_2022_3168296
9759480
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 62171449; 61931020
  funderid: 10.13039/501100001809
GroupedDBID 0R~
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
IFIPE
IPLJI
JAVBF
M43
OCL
PQQKQ
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c359t-a92f1bd27c08f4bb774422a6c978237ca8975a693bd1a56a1a24abc6197cad343
IEDL.DBID RIE
ISICitedReferencesCount 59
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000857705300101&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2327-4662
IngestDate Mon Jun 30 15:52:32 EDT 2025
Sat Nov 29 06:17:06 EST 2025
Tue Nov 18 22:15:17 EST 2025
Wed Aug 27 02:18:46 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 19
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c359t-a92f1bd27c08f4bb774422a6c978237ca8975a693bd1a56a1a24abc6197cad343
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1554-3206
0000-0003-0165-6119
0000-0002-9511-7521
0000-0003-0739-0761
0000-0003-4099-6917
0000-0003-3529-2640
0000-0002-4728-0180
PQID 2717159568
PQPubID 2040421
PageCount 12
ParticipantIDs ieee_primary_9759480
crossref_citationtrail_10_1109_JIOT_2022_3168296
crossref_primary_10_1109_JIOT_2022_3168296
proquest_journals_2717159568
PublicationCentury 2000
PublicationDate 2022-10-01
PublicationDateYYYYMMDD 2022-10-01
PublicationDate_xml – month: 10
  year: 2022
  text: 2022-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE internet of things journal
PublicationTitleAbbrev JIoT
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref30
ref11
ref2
ref17
ref16
ref19
ref18
Rashid (ref22)
Hausknecht (ref26)
Sunehag (ref31)
Luce (ref29) 1989
ref24
ref23
ref25
Ha (ref32)
ref20
ref21
ref28
Watkins (ref10) 1992; 8
ref27
(ref1) 2021
ref8
ref7
ref9
ref4
ref3
ref6
ref5
(ref33) 2021
References_xml – ident: ref9
  doi: 10.1109/TNN.1998.712192
– volume-title: Games and Decisions: Introduction and Critical Survey
  year: 1989
  ident: ref29
– ident: ref25
  doi: 10.1287/moor.12.3.441
– ident: ref18
  doi: 10.1109/TWC.2018.2879433
– volume-title: Cisco Annual Internet Report (2018–2023)
  year: 2021
  ident: ref1
– ident: ref19
  doi: 10.1109/JIOT.2018.2872441
– ident: ref2
  doi: 10.1109/MSP.2007.361604
– volume: 8
  start-page: 279
  issue: 3
  year: 1992
  ident: ref10
  article-title: Q-learning
  publication-title: Mach. learn.
  doi: 10.1007/BF00992698
– start-page: 4295
  volume-title: Proc. ICML
  ident: ref22
  article-title: QMIX: Monotonic value function factorisation for deep multi-agent reinforcement learning
– start-page: 2085
  volume-title: Proc. AAMAS
  ident: ref31
  article-title: Value-decomposition networks for cooperative multi-agent learning based on team reward
– start-page: 29
  volume-title: Proc. AAAI-SDMIA
  ident: ref26
  article-title: Deep recurrent Q-learning for partially observable MDPs
– ident: ref3
  doi: 10.1017/CBO9780511609909
– ident: ref28
  doi: 10.3115/v1/D14-1179
– ident: ref12
  doi: 10.1109/TWC.2020.3024860
– ident: ref5
  doi: 10.1109/TIT.2010.2068950
– ident: ref11
  doi: 10.1109/COMST.2019.2916583
– ident: ref24
  doi: 10.1007/978-3-319-28929-8
– ident: ref17
  doi: 10.2200/s00091ed1v01y200705aim002
– ident: ref21
  doi: 10.1109/DySPAN.2019.8935734
– ident: ref30
  doi: 10.1006/game.1996.0044
– ident: ref6
  doi: 10.1109/COMST.2019.2926625
– ident: ref15
  doi: 10.1109/TCCN.2019.2952909
– ident: ref7
  doi: 10.1109/MNET.011.2000195
– volume-title: Tutornet: A Low Power Wireless IoT Testbed
  year: 2021
  ident: ref33
– ident: ref27
  doi: 10.1049/cp:19991218
– start-page: 1
  volume-title: Proc. ICLR
  ident: ref32
  article-title: Hypernetworks
– ident: ref4
  doi: 10.1109/T-WC.2008.071349
– ident: ref14
  doi: 10.1109/TCCN.2018.2809722
– ident: ref8
  doi: 10.12676/j.cc.2018.12.002
– ident: ref13
  doi: 10.1109/TWC.2020.3037767
– ident: ref20
  doi: 10.1109/TSMCC.2007.913919
– ident: ref16
  doi: 10.1109/TWC.2020.2984227
– ident: ref23
  doi: 10.1016/B978-1-55860-335-6.50027-1
SSID ssj0001105196
Score 2.5530307
Snippet With the development of wireless communication and Internet of Things (IoT), there are massive wireless devices that need to share the limited spectrum...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 19477
SubjectTerms Algorithms
Cognitive radio
Cognitive radio networks
Collision rates
Command and control
cooperative game
decentralized partially observable Markov decision process (Dec-POMDP)
deep recurrent <italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">Q -network (DRQN)
dynamic spectrum access (DSA)
Games
Internet of Things
Machine learning
Markov game
Markov processes
multi-agent reinforcement learning (MARL)
Multiagent systems
Radio networks
Reinforcement learning
Spectrum allocation
Wireless communication
Wireless communications
Wireless sensor networks
Title Cooperative Multi-Agent Reinforcement-Learning-Based Distributed Dynamic Spectrum Access in Cognitive Radio Networks
URI https://ieeexplore.ieee.org/document/9759480
https://www.proquest.com/docview/2717159568
Volume 9
WOSCitedRecordID wos000857705300101&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2327-4662
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001105196
  issn: 2327-4662
  databaseCode: RIE
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA4qHrz4FldXycGTGLdNX8lxXRUVWUVU9lbymMqCtovb9febpOkqKIK3QJvS5msyM8nM9yF0BBFjMYQhgUQXJKaBJowHyrSKVBj7zKlLxny-zYZDNhrx-wV0Mq-FAQCXfAantunO8nWlZnarrMczSy5iAvTFLEubWq2v_ZTQOiOpP7gMA967ub57NAEgpadWnIlaWv5vpsdpqfxYgJ1VuVz73_uso1XvPeJ-A_cGWoByE621ygzYT9QtVA-qagINqTd2Nbakb2uo8AM4plTlNgWJJ1d9IWfGlml8bkl0rf6VbTdK9djq09fvszfcd8qKeFziQZtxhB-EHld42GSST7fR0-XF4-CKeH0FoqKE10RwWoRS00wFrIilNJ5gTKlIlYksaZQpwcwHipRHUociMdAJGgupTMhlrukojnbQUlmVsIuwBgiKKNECChnLmErBQEmzCCsKKgTWQUE79Lny5ONWA-M1d0FIwHOLVm7Ryj1aHXQ87zJpmDf-unnLwjO_0SPTQd0W39zPzWlOTQRrnLgkZXu_99pHK_bZTcpeFy2ZUYYDtKw-6vH0_dD9dp_TDdjS
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTxsxEB4higQXnkUNpcUHTqiGXa93Yx_TUJRACAiFitvKj9kqEmQRCf39tb1OqARC4mZp7X34W3s89sz3ARxiJgTHNKWY24pyllgqZGJcqSqUs8-ShWDM34P2cCju7uT1EvxY5MIgYgg-w2NfDGf5tjbPfqvsRLY9uYhz0D_l3N22ydZ62VFJ_XKkiEeXaSJPzvtXI-cCMnbs5ZmYJ-b_z_gENZVXU3CwK2cbH3ujTViP60fSaQDfgiWcbMPGXJuBxKG6A7NuXT9iQ-tNQpYt7fgsKnKDgSvVhG1BGulV_9CfzppZcuppdL0Cli83WvXEK9TPnp4fSCdoK5LxhHTnMUfkRtlxTYZNLPn0M9ye_Rp1ezQqLFCT5XJGlWRVqi1rm0RUXGu3FuSMqcI435JlbaOE-0BVyEzbVOUOPMW40sY5Xe6azXi2C8uTeoJfgFjEpMpyq7DSXHOmlUCj3TRsGJoURQuSedeXJtKPexWM-zK4IYksPVqlR6uMaLXgaNHkseHeeK_yjodnUTEi04L9Ob5lHJ3Tkjkf1i3j8kLsvd3qAFZ7o8tBOegPL77Cmn9OE8C3D8uux_EbrJi_s_H06Xv4Bf8BPEzcGQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cooperative+Multi-Agent+Reinforcement-Learning-Based+Distributed+Dynamic+Spectrum+Access+in+Cognitive+Radio+Networks&rft.jtitle=IEEE+internet+of+things+journal&rft.au=Tan%2C+Xiang&rft.au=Zhou%2C+Li&rft.au=Wang%2C+Haijun&rft.au=Sun%2C+Yuli&rft.date=2022-10-01&rft.pub=IEEE&rft.eissn=2327-4662&rft.volume=9&rft.issue=19&rft.spage=19477&rft.epage=19488&rft_id=info:doi/10.1109%2FJIOT.2022.3168296&rft.externalDocID=9759480
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2327-4662&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2327-4662&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2327-4662&client=summon