Cooperative Multi-Agent Reinforcement-Learning-Based Distributed Dynamic Spectrum Access in Cognitive Radio Networks
With the development of wireless communication and Internet of Things (IoT), there are massive wireless devices that need to share the limited spectrum resources. Dynamic spectrum access (DSA) is a promising paradigm to remedy the problem of inefficient spectrum utilization brought upon by the histo...
Gespeichert in:
| Veröffentlicht in: | IEEE internet of things journal Jg. 9; H. 19; S. 19477 - 19488 |
|---|---|
| Hauptverfasser: | , , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Piscataway
IEEE
01.10.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 2327-4662, 2327-4662 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | With the development of wireless communication and Internet of Things (IoT), there are massive wireless devices that need to share the limited spectrum resources. Dynamic spectrum access (DSA) is a promising paradigm to remedy the problem of inefficient spectrum utilization brought upon by the historical command-and-control approach to spectrum allocation. In this article, we investigate the distributed DSA problem for multiusers in a typical multichannel cognitive radio network. The problem is formulated as a decentralized partially observable Markov decision process (Dec-POMDP), and we propose a centralized off-line training and distributed online execution framework based on cooperative multi-agent reinforcement learning (MARL). We employ the deep recurrent <inline-formula> <tex-math notation="LaTeX">Q </tex-math></inline-formula>-network (DRQN) to address the partial observability of the state for each cognitive user. The ultimate goal is to learn a cooperative strategy which maximizes the sum throughput of a cognitive radio network in a distributed fashion without information exchange between cognitive users. Finally, we validate the proposed algorithm in various settings through extensive experiments. The experimental results show that the proposed CoMARL-DSA algorithm outperforms the state-of-the-art deep <inline-formula> <tex-math notation="LaTeX">Q </tex-math></inline-formula>-learning for spectrum access (DQSA) in terms of successful access rate and collision rate by at least 14% and 12%, respectively. |
|---|---|
| AbstractList | With the development of wireless communication and Internet of Things (IoT), there are massive wireless devices that need to share the limited spectrum resources. Dynamic spectrum access (DSA) is a promising paradigm to remedy the problem of inefficient spectrum utilization brought upon by the historical command-and-control approach to spectrum allocation. In this article, we investigate the distributed DSA problem for multiusers in a typical multichannel cognitive radio network. The problem is formulated as a decentralized partially observable Markov decision process (Dec-POMDP), and we propose a centralized off-line training and distributed online execution framework based on cooperative multi-agent reinforcement learning (MARL). We employ the deep recurrent <inline-formula> <tex-math notation="LaTeX">Q </tex-math></inline-formula>-network (DRQN) to address the partial observability of the state for each cognitive user. The ultimate goal is to learn a cooperative strategy which maximizes the sum throughput of a cognitive radio network in a distributed fashion without information exchange between cognitive users. Finally, we validate the proposed algorithm in various settings through extensive experiments. The experimental results show that the proposed CoMARL-DSA algorithm outperforms the state-of-the-art deep <inline-formula> <tex-math notation="LaTeX">Q </tex-math></inline-formula>-learning for spectrum access (DQSA) in terms of successful access rate and collision rate by at least 14% and 12%, respectively. With the development of wireless communication and Internet of Things (IoT), there are massive wireless devices that need to share the limited spectrum resources. Dynamic spectrum access (DSA) is a promising paradigm to remedy the problem of inefficient spectrum utilization brought upon by the historical command-and-control approach to spectrum allocation. In this article, we investigate the distributed DSA problem for multiusers in a typical multichannel cognitive radio network. The problem is formulated as a decentralized partially observable Markov decision process (Dec-POMDP), and we propose a centralized off-line training and distributed online execution framework based on cooperative multi-agent reinforcement learning (MARL). We employ the deep recurrent [Formula Omitted]-network (DRQN) to address the partial observability of the state for each cognitive user. The ultimate goal is to learn a cooperative strategy which maximizes the sum throughput of a cognitive radio network in a distributed fashion without information exchange between cognitive users. Finally, we validate the proposed algorithm in various settings through extensive experiments. The experimental results show that the proposed CoMARL-DSA algorithm outperforms the state-of-the-art deep [Formula Omitted]-learning for spectrum access (DQSA) in terms of successful access rate and collision rate by at least 14% and 12%, respectively. |
| Author | Sun, Yuli Leung, Victor C. M. Zhou, Li Wang, Haijun Seet, Boon-Chong Wei, Jibo Tan, Xiang Zhao, Haitao |
| Author_xml | – sequence: 1 givenname: Xiang orcidid: 0000-0002-1554-3206 surname: Tan fullname: Tan, Xiang email: tanxiang@nudt.edu.cn organization: College of Electronic Science and Technology, National University of Defense Technology, Changsha, China – sequence: 2 givenname: Li orcidid: 0000-0003-4099-6917 surname: Zhou fullname: Zhou, Li email: zhouli2035@nudt.edu.cn organization: College of Electronic Science and Technology, National University of Defense Technology, Changsha, China – sequence: 3 givenname: Haijun orcidid: 0000-0003-0739-0761 surname: Wang fullname: Wang, Haijun email: haijunwang14@nudt.edu.cn organization: College of Electronic Science and Technology, National University of Defense Technology, Changsha, China – sequence: 4 givenname: Yuli surname: Sun fullname: Sun, Yuli email: sunyuli19@nudt.edu.cn organization: College of Electronic Science and Technology, National University of Defense Technology, Changsha, China – sequence: 5 givenname: Haitao orcidid: 0000-0002-4728-0180 surname: Zhao fullname: Zhao, Haitao email: haitaozhao@nudt.edu.cn organization: College of Electronic Science and Technology, National University of Defense Technology, Changsha, China – sequence: 6 givenname: Boon-Chong orcidid: 0000-0002-9511-7521 surname: Seet fullname: Seet, Boon-Chong email: boon-chong.seet@aut.ac.nz organization: Department of Electrical and Electronic Engineering, Auckland University of Technology, Auckland, New Zealand – sequence: 7 givenname: Jibo orcidid: 0000-0003-0165-6119 surname: Wei fullname: Wei, Jibo email: wjbhw@nudt.edu.cn organization: College of Electronic Science and Technology, National University of Defense Technology, Changsha, China – sequence: 8 givenname: Victor C. M. orcidid: 0000-0003-3529-2640 surname: Leung fullname: Leung, Victor C. M. email: vleung@ieee.org organization: College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, China |
| BookMark | eNp9kE1PAjEQhhuDiYj8AONlE8-LbXe33R4RvzAoCeJ50-3OkiK02HY1_HsXIcZ48NRp5n1mMs8p6hhrAKFzggeEYHH1OJ7OBxRTOkgIy6lgR6hLE8rjlDHa-VWfoL73S4xxi2VEsC4KI2s34GTQHxA9Naug4-ECTIhmoE1tnYJ1-4snIJ3RZhFfSw9VdKN9cLpswq7eGrnWKnrZgAquWUdDpcD7SJtoZBdGf0-eyUrb6BnCp3Vv_gwd13LloX94e-j17nY-eogn0_vxaDiJVZKJEEtBa1JWlCuc12lZcp6mlEqmBM9pwpXMBc8kE0lZEZkxSSRNZakYEW2vStKkhy73czfOvjfgQ7G0jTPtyoJywkkmMpa3Kb5PKWe9d1AXSodWiDXBSb0qCC52loud5WJnuThYbknyh9w4vZZu-y9zsWc0APzk20NEmuPkC8xmi0M |
| CODEN | IITJAU |
| CitedBy_id | crossref_primary_10_1007_s11277_023_10307_5 crossref_primary_10_1109_TWC_2023_3275945 crossref_primary_10_1155_2022_9391939 crossref_primary_10_32604_cmes_2023_030898 crossref_primary_10_4218_etrij_2023_0132 crossref_primary_10_1109_JIOT_2023_3300770 crossref_primary_10_3390_math13182941 crossref_primary_10_1109_TCCN_2023_3306854 crossref_primary_10_1109_TMC_2025_3559676 crossref_primary_10_3390_s25154554 crossref_primary_10_1016_j_icte_2025_06_001 crossref_primary_10_1109_TIV_2024_3384184 crossref_primary_10_1007_s41870_024_01989_6 crossref_primary_10_1007_s11235_024_01188_5 crossref_primary_10_1109_JIOT_2023_3282908 crossref_primary_10_1109_COMST_2024_3395358 crossref_primary_10_1109_JIOT_2024_3513332 crossref_primary_10_1109_TNSM_2022_3186725 crossref_primary_10_1016_j_phycom_2025_102704 crossref_primary_10_1080_17538947_2024_2398051 crossref_primary_10_1109_JSEN_2023_3283413 crossref_primary_10_1109_TMC_2022_3200044 crossref_primary_10_3390_s25030615 crossref_primary_10_1109_JIOT_2024_3359277 crossref_primary_10_3390_drones8090439 crossref_primary_10_1109_JIOT_2024_3429200 crossref_primary_10_1016_j_comnet_2025_111708 crossref_primary_10_1631_FITEE_2400327 crossref_primary_10_1007_s11431_023_2576_0 crossref_primary_10_1109_JIOT_2025_3584849 crossref_primary_10_1016_j_icte_2024_01_001 crossref_primary_10_1109_ACCESS_2025_3534657 crossref_primary_10_1109_TITS_2025_3547775 crossref_primary_10_1109_TMC_2022_3212926 crossref_primary_10_54097_dcv3bz74 crossref_primary_10_1016_j_comnet_2025_111236 crossref_primary_10_1088_1742_6596_2560_1_012036 crossref_primary_10_1016_j_phycom_2023_102054 crossref_primary_10_3390_math12132102 crossref_primary_10_1007_s40031_024_01190_0 crossref_primary_10_3390_app15105573 crossref_primary_10_1109_JIOT_2023_3292894 crossref_primary_10_1109_JIOT_2025_3545027 crossref_primary_10_1109_LCOMM_2024_3354266 crossref_primary_10_3390_electronics14040820 crossref_primary_10_1109_TWC_2023_3330999 crossref_primary_10_3390_s25165086 crossref_primary_10_1109_TAES_2023_3302819 crossref_primary_10_1109_JIOT_2024_3416371 crossref_primary_10_1007_s11277_025_11758_8 crossref_primary_10_1016_j_comcom_2025_108318 crossref_primary_10_1016_j_neucom_2025_131236 crossref_primary_10_1109_TNSM_2022_3218819 crossref_primary_10_1109_TCE_2025_3558629 |
| Cites_doi | 10.1109/TNN.1998.712192 10.1287/moor.12.3.441 10.1109/TWC.2018.2879433 10.1109/JIOT.2018.2872441 10.1109/MSP.2007.361604 10.1007/BF00992698 10.1017/CBO9780511609909 10.3115/v1/D14-1179 10.1109/TWC.2020.3024860 10.1109/TIT.2010.2068950 10.1109/COMST.2019.2916583 10.1007/978-3-319-28929-8 10.2200/s00091ed1v01y200705aim002 10.1109/DySPAN.2019.8935734 10.1006/game.1996.0044 10.1109/COMST.2019.2926625 10.1109/TCCN.2019.2952909 10.1109/MNET.011.2000195 10.1049/cp:19991218 10.1109/T-WC.2008.071349 10.1109/TCCN.2018.2809722 10.12676/j.cc.2018.12.002 10.1109/TWC.2020.3037767 10.1109/TSMCC.2007.913919 10.1109/TWC.2020.2984227 10.1016/B978-1-55860-335-6.50027-1 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/JIOT.2022.3168296 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 2327-4662 |
| EndPage | 19488 |
| ExternalDocumentID | 10_1109_JIOT_2022_3168296 9759480 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 62171449; 61931020 funderid: 10.13039/501100001809 |
| GroupedDBID | 0R~ 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS IFIPE IPLJI JAVBF M43 OCL PQQKQ RIA RIE AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c359t-a92f1bd27c08f4bb774422a6c978237ca8975a693bd1a56a1a24abc6197cad343 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 59 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000857705300101&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2327-4662 |
| IngestDate | Mon Jun 30 15:52:32 EDT 2025 Sat Nov 29 06:17:06 EST 2025 Tue Nov 18 22:15:17 EST 2025 Wed Aug 27 02:18:46 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 19 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c359t-a92f1bd27c08f4bb774422a6c978237ca8975a693bd1a56a1a24abc6197cad343 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-1554-3206 0000-0003-0165-6119 0000-0002-9511-7521 0000-0003-0739-0761 0000-0003-4099-6917 0000-0003-3529-2640 0000-0002-4728-0180 |
| PQID | 2717159568 |
| PQPubID | 2040421 |
| PageCount | 12 |
| ParticipantIDs | ieee_primary_9759480 crossref_citationtrail_10_1109_JIOT_2022_3168296 crossref_primary_10_1109_JIOT_2022_3168296 proquest_journals_2717159568 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-10-01 |
| PublicationDateYYYYMMDD | 2022-10-01 |
| PublicationDate_xml | – month: 10 year: 2022 text: 2022-10-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE internet of things journal |
| PublicationTitleAbbrev | JIoT |
| PublicationYear | 2022 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref15 ref14 ref30 ref11 ref2 ref17 ref16 ref19 ref18 Rashid (ref22) Hausknecht (ref26) Sunehag (ref31) Luce (ref29) 1989 ref24 ref23 ref25 Ha (ref32) ref20 ref21 ref28 Watkins (ref10) 1992; 8 ref27 (ref1) 2021 ref8 ref7 ref9 ref4 ref3 ref6 ref5 (ref33) 2021 |
| References_xml | – ident: ref9 doi: 10.1109/TNN.1998.712192 – volume-title: Games and Decisions: Introduction and Critical Survey year: 1989 ident: ref29 – ident: ref25 doi: 10.1287/moor.12.3.441 – ident: ref18 doi: 10.1109/TWC.2018.2879433 – volume-title: Cisco Annual Internet Report (2018–2023) year: 2021 ident: ref1 – ident: ref19 doi: 10.1109/JIOT.2018.2872441 – ident: ref2 doi: 10.1109/MSP.2007.361604 – volume: 8 start-page: 279 issue: 3 year: 1992 ident: ref10 article-title: Q-learning publication-title: Mach. learn. doi: 10.1007/BF00992698 – start-page: 4295 volume-title: Proc. ICML ident: ref22 article-title: QMIX: Monotonic value function factorisation for deep multi-agent reinforcement learning – start-page: 2085 volume-title: Proc. AAMAS ident: ref31 article-title: Value-decomposition networks for cooperative multi-agent learning based on team reward – start-page: 29 volume-title: Proc. AAAI-SDMIA ident: ref26 article-title: Deep recurrent Q-learning for partially observable MDPs – ident: ref3 doi: 10.1017/CBO9780511609909 – ident: ref28 doi: 10.3115/v1/D14-1179 – ident: ref12 doi: 10.1109/TWC.2020.3024860 – ident: ref5 doi: 10.1109/TIT.2010.2068950 – ident: ref11 doi: 10.1109/COMST.2019.2916583 – ident: ref24 doi: 10.1007/978-3-319-28929-8 – ident: ref17 doi: 10.2200/s00091ed1v01y200705aim002 – ident: ref21 doi: 10.1109/DySPAN.2019.8935734 – ident: ref30 doi: 10.1006/game.1996.0044 – ident: ref6 doi: 10.1109/COMST.2019.2926625 – ident: ref15 doi: 10.1109/TCCN.2019.2952909 – ident: ref7 doi: 10.1109/MNET.011.2000195 – volume-title: Tutornet: A Low Power Wireless IoT Testbed year: 2021 ident: ref33 – ident: ref27 doi: 10.1049/cp:19991218 – start-page: 1 volume-title: Proc. ICLR ident: ref32 article-title: Hypernetworks – ident: ref4 doi: 10.1109/T-WC.2008.071349 – ident: ref14 doi: 10.1109/TCCN.2018.2809722 – ident: ref8 doi: 10.12676/j.cc.2018.12.002 – ident: ref13 doi: 10.1109/TWC.2020.3037767 – ident: ref20 doi: 10.1109/TSMCC.2007.913919 – ident: ref16 doi: 10.1109/TWC.2020.2984227 – ident: ref23 doi: 10.1016/B978-1-55860-335-6.50027-1 |
| SSID | ssj0001105196 |
| Score | 2.5530307 |
| Snippet | With the development of wireless communication and Internet of Things (IoT), there are massive wireless devices that need to share the limited spectrum... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 19477 |
| SubjectTerms | Algorithms Cognitive radio Cognitive radio networks Collision rates Command and control cooperative game decentralized partially observable Markov decision process (Dec-POMDP) deep recurrent <italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">Q -network (DRQN) dynamic spectrum access (DSA) Games Internet of Things Machine learning Markov game Markov processes multi-agent reinforcement learning (MARL) Multiagent systems Radio networks Reinforcement learning Spectrum allocation Wireless communication Wireless communications Wireless sensor networks |
| Title | Cooperative Multi-Agent Reinforcement-Learning-Based Distributed Dynamic Spectrum Access in Cognitive Radio Networks |
| URI | https://ieeexplore.ieee.org/document/9759480 https://www.proquest.com/docview/2717159568 |
| Volume | 9 |
| WOSCitedRecordID | wos000857705300101&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2327-4662 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001105196 issn: 2327-4662 databaseCode: RIE dateStart: 20140101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA4qHrz4FldXycGTGLdNX8lxXRUVWUVU9lbymMqCtovb9febpOkqKIK3QJvS5msyM8nM9yF0BBFjMYQhgUQXJKaBJowHyrSKVBj7zKlLxny-zYZDNhrx-wV0Mq-FAQCXfAantunO8nWlZnarrMczSy5iAvTFLEubWq2v_ZTQOiOpP7gMA967ub57NAEgpadWnIlaWv5vpsdpqfxYgJ1VuVz73_uso1XvPeJ-A_cGWoByE621ygzYT9QtVA-qagINqTd2Nbakb2uo8AM4plTlNgWJJ1d9IWfGlml8bkl0rf6VbTdK9djq09fvszfcd8qKeFziQZtxhB-EHld42GSST7fR0-XF4-CKeH0FoqKE10RwWoRS00wFrIilNJ5gTKlIlYksaZQpwcwHipRHUociMdAJGgupTMhlrukojnbQUlmVsIuwBgiKKNECChnLmErBQEmzCCsKKgTWQUE79Lny5ONWA-M1d0FIwHOLVm7Ryj1aHXQ87zJpmDf-unnLwjO_0SPTQd0W39zPzWlOTQRrnLgkZXu_99pHK_bZTcpeFy2ZUYYDtKw-6vH0_dD9dp_TDdjS |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTxsxEB4higQXnkUNpcUHTqiGXa93Yx_TUJRACAiFitvKj9kqEmQRCf39tb1OqARC4mZp7X34W3s89sz3ARxiJgTHNKWY24pyllgqZGJcqSqUs8-ShWDM34P2cCju7uT1EvxY5MIgYgg-w2NfDGf5tjbPfqvsRLY9uYhz0D_l3N22ydZ62VFJ_XKkiEeXaSJPzvtXI-cCMnbs5ZmYJ-b_z_gENZVXU3CwK2cbH3ujTViP60fSaQDfgiWcbMPGXJuBxKG6A7NuXT9iQ-tNQpYt7fgsKnKDgSvVhG1BGulV_9CfzppZcuppdL0Cli83WvXEK9TPnp4fSCdoK5LxhHTnMUfkRtlxTYZNLPn0M9ye_Rp1ezQqLFCT5XJGlWRVqi1rm0RUXGu3FuSMqcI435JlbaOE-0BVyEzbVOUOPMW40sY5Xe6azXi2C8uTeoJfgFjEpMpyq7DSXHOmlUCj3TRsGJoURQuSedeXJtKPexWM-zK4IYksPVqlR6uMaLXgaNHkseHeeK_yjodnUTEi04L9Ob5lHJ3Tkjkf1i3j8kLsvd3qAFZ7o8tBOegPL77Cmn9OE8C3D8uux_EbrJi_s_H06Xv4Bf8BPEzcGQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cooperative+Multi-Agent+Reinforcement-Learning-Based+Distributed+Dynamic+Spectrum+Access+in+Cognitive+Radio+Networks&rft.jtitle=IEEE+internet+of+things+journal&rft.au=Tan%2C+Xiang&rft.au=Zhou%2C+Li&rft.au=Wang%2C+Haijun&rft.au=Sun%2C+Yuli&rft.date=2022-10-01&rft.pub=IEEE&rft.eissn=2327-4662&rft.volume=9&rft.issue=19&rft.spage=19477&rft.epage=19488&rft_id=info:doi/10.1109%2FJIOT.2022.3168296&rft.externalDocID=9759480 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2327-4662&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2327-4662&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2327-4662&client=summon |