Automatic identification of epileptic EEG signals through binary magnetic optimization algorithms

Epilepsy is a class of chronic neurological disorders characterized by transient and unexpected electrical disturbances of the brain. The automated analysis of the electroencephalogram (EEG) signal can be instrumental for the proper diagnosis of this mental condition. This work presents a systematic...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Neural computing & applications Ročník 31; číslo Suppl 2; s. 1317 - 1329
Hlavní autoři: Pereira, Luís A. M., Papa, João P., Coelho, André L. V., Lima, Clodoaldo A. M., Pereira, Danillo R., de Albuquerque, Victor Hugo C.
Médium: Journal Article
Jazyk:angličtina
Vydáno: London Springer London 13.02.2019
Springer Nature B.V
Témata:
ISSN:0941-0643, 1433-3058
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Epilepsy is a class of chronic neurological disorders characterized by transient and unexpected electrical disturbances of the brain. The automated analysis of the electroencephalogram (EEG) signal can be instrumental for the proper diagnosis of this mental condition. This work presents a systematic assessment of the performance of different variants of the binary magnetic optimization algorithm (BMOA), two of which are introduced here, while serving as feature selectors for epileptic EEG signal identification. In this context, the optimum-path forest classifier was adopted as a classification model, whereas different wavelet families were considered for EEG feature extraction. In order to compare the performance of the improved BMOA variants against the traditional one, as well as other metaheuristic techniques, namely particle swarm optimization, binary bat algorithm, and genetic algorithm, we employed a well-known EEG benchmark dataset composed of five classes of EEG signals (two of which comprising normal patients with eyes open or closed, and the remaining comprising ill patients with different levels of epilepsy). Overall, the results evidenced the robustness of the proposed BMOA and its variants.
AbstractList Epilepsy is a class of chronic neurological disorders characterized by transient and unexpected electrical disturbances of the brain. The automated analysis of the electroencephalogram (EEG) signal can be instrumental for the proper diagnosis of this mental condition. This work presents a systematic assessment of the performance of different variants of the binary magnetic optimization algorithm (BMOA), two of which are introduced here, while serving as feature selectors for epileptic EEG signal identification. In this context, the optimum-path forest classifier was adopted as a classification model, whereas different wavelet families were considered for EEG feature extraction. In order to compare the performance of the improved BMOA variants against the traditional one, as well as other metaheuristic techniques, namely particle swarm optimization, binary bat algorithm, and genetic algorithm, we employed a well-known EEG benchmark dataset composed of five classes of EEG signals (two of which comprising normal patients with eyes open or closed, and the remaining comprising ill patients with different levels of epilepsy). Overall, the results evidenced the robustness of the proposed BMOA and its variants.
Author Lima, Clodoaldo A. M.
de Albuquerque, Victor Hugo C.
Papa, João P.
Coelho, André L. V.
Pereira, Danillo R.
Pereira, Luís A. M.
Author_xml – sequence: 1
  givenname: Luís A. M.
  surname: Pereira
  fullname: Pereira, Luís A. M.
  organization: Instituto de Computação, Universidade Estadual de Campinas
– sequence: 2
  givenname: João P.
  orcidid: 0000-0002-6494-7514
  surname: Papa
  fullname: Papa, João P.
  email: papa@fc.unesp.br
  organization: Departamento de Computação, UNESP - Univ Estadual Paulista
– sequence: 3
  givenname: André L. V.
  surname: Coelho
  fullname: Coelho, André L. V.
  organization: Programa de Pós-Graduação em Informática Aplicada, Universidade de Fortaleza
– sequence: 4
  givenname: Clodoaldo A. M.
  surname: Lima
  fullname: Lima, Clodoaldo A. M.
  organization: Escola de Artes, Ciências e Humanidades, Universidade de São Paulo
– sequence: 5
  givenname: Danillo R.
  surname: Pereira
  fullname: Pereira, Danillo R.
  organization: Departamento de Computação, UNESP - Univ Estadual Paulista
– sequence: 6
  givenname: Victor Hugo C.
  surname: de Albuquerque
  fullname: de Albuquerque, Victor Hugo C.
  organization: Programa de Pós-Graduação em Informática Aplicada, Universidade de Fortaleza
BookMark eNp9kEFLxDAQhYOs4O7qD_BW8FydNG3THpdlXQXBi55D2iTdLG1Sk-xBf72pFQRBT8Mw75t581ZoYayRCF1juMUA9M4DFBlOAdOU4CxPyRla4pyQlEBRLdAS6jxOy5xcoJX3RwDIy6pYIr45BTvwoNtEC2mCVrqNnTWJVYkcdS_Habbb7ROvO8N7n4SDs6fukDTacPeeDLwzctLYqBz0x0zzvrNOh8PgL9G5ipi8-q5r9Hq_e9k-pE_P-8ft5iltSVGHlNdQCCFB5UoJkEIRLiWhqqHAC0mbXNQtr6umFI1UZdnIihaCctzkpcBZhska3cx7R2ffTtIHdrQnNzlmWQY0IxXURVThWdU6672Tio1OD_EPhoFNSbI5SRaTZFOSjESG_mJaHb7eDI7r_l8ym0kfr5hOuh9Pf0OfHzWMjA
CitedBy_id crossref_primary_10_1016_j_eswa_2024_123991
crossref_primary_10_1109_ACCESS_2021_3135805
crossref_primary_10_1109_TAES_2022_3157660
crossref_primary_10_1007_s00521_018_3928_9
crossref_primary_10_1007_s12065_020_00459_9
crossref_primary_10_1007_s11356_018_04106_w
crossref_primary_10_3390_math11010129
crossref_primary_10_1007_s00521_019_04389_1
crossref_primary_10_1016_j_plrev_2024_01_003
crossref_primary_10_1007_s10462_022_10328_9
crossref_primary_10_1016_j_asoc_2020_107068
crossref_primary_10_1016_j_asoc_2019_105874
Cites_doi 10.1002/ima.20188
10.1016/j.neucom.2011.04.029
10.1109/TITB.2009.2017939
10.1016/j.patcog.2011.07.013
10.1016/j.dsp.2008.07.004
10.1016/j.eswa.2007.02.006
10.1016/j.eswa.2006.02.005
10.1016/j.cmpb.2004.10.009
10.1007/978-3-540-35488-8
10.1016/j.sigpro.2008.01.026
10.1016/j.eswa.2007.08.088
10.1142/7324
10.1016/j.artmed.2011.07.003
10.1016/j.compbiomed.2010.06.005
10.1016/j.eswa.2013.09.023
10.1016/0013-4694(82)90038-4
10.1016/S0165-1684(97)00038-8
10.1016/j.eswa.2009.01.022
10.1016/j.compbiomed.2009.06.001
10.1007/978-1-4612-0001-7
10.1016/j.neucom.2014.01.020
10.1155/2007/80510
10.1016/j.patrec.2008.11.012
10.1007/s00707-009-0270-4
10.1016/j.eswa.2004.12.027
10.1056/NEJMra022308
10.1103/PhysRevE.64.061907
10.1016/S0920-1211(01)00195-4
10.1109/AIPR.2004.41
10.1109/CEC.2008.4631155
10.1109/IGARSS.2011.6049683
10.1109/SIBGRAPI.2012.47
ContentType Journal Article
Copyright The Natural Computing Applications Forum 2017
Copyright Springer Nature B.V. 2019
Copyright_xml – notice: The Natural Computing Applications Forum 2017
– notice: Copyright Springer Nature B.V. 2019
DBID AAYXX
CITATION
DOI 10.1007/s00521-017-3124-3
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1433-3058
EndPage 1329
ExternalDocumentID 10_1007_s00521_017_3124_3
GrantInformation_xml – fundername: Fundação de Amparo à Pesquisa do Estado de São Paulo
  grantid: 2009/16206-1; 2014/16250-9; 2011/14094-1
  funderid: http://dx.doi.org/10.13039/501100001807
– fundername: Conselho Nacional de Desenvolvimento Científico e Tecnológico
  grantid: 303182/2011-3; 470571/2013-6; 475406/2010-9; 304603/2012-0; 308816/2012-9; 303182/2011-3; 470501/2013-8; 301928/2014-2; 306166/2014-3
  funderid: http://dx.doi.org/10.13039/501100003593
GroupedDBID -4Z
-59
-5G
-BR
-EM
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
203
29N
2J2
2JN
2JY
2KG
2LR
2~H
30V
4.4
406
408
409
40D
40E
53G
5VS
67Z
6NX
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CCPQU
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EBLON
EBS
ECS
EDO
EIOEI
EJD
EMI
EMK
EPL
ESBYG
EST
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAS
LLZTM
M4Y
MA-
N9A
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9O
PF0
PT4
PT5
QOK
QOS
R89
R9I
RHV
RNS
ROL
RPX
RSV
S16
S27
S3B
SAP
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~8M
~EX
-Y2
1SB
2.D
28-
2P1
2VQ
5QI
AAOBN
AAPKM
AARHV
AAYTO
AAYXX
ABBRH
ABDBE
ABFSG
ABQSL
ABRTQ
ABULA
ACBXY
ACSTC
ADHKG
ADKFA
AEBTG
AEFIE
AEKMD
AEZWR
AFDZB
AFEXP
AFFHD
AFGCZ
AFHIU
AFOHR
AGGDS
AGJBK
AGQPQ
AHPBZ
AHWEU
AIXLP
AJBLW
ATHPR
AYFIA
BBWZM
CAG
CITATION
COF
H13
KOW
N2Q
NDZJH
PHGZM
PHGZT
PQGLB
R4E
RNI
RZK
S1Z
S26
S28
SCJ
SCLPG
T16
ID FETCH-LOGICAL-c359t-a905dde0f4ffd0edf3aee37fb70a5e7b4d9ca98b6dbef66be875d7a1b46d12213
IEDL.DBID RSV
ISICitedReferencesCount 12
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000464766200050&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0941-0643
IngestDate Tue Nov 04 16:29:02 EST 2025
Tue Nov 18 22:36:35 EST 2025
Sat Nov 29 02:59:06 EST 2025
Fri Feb 21 02:35:48 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue Suppl 2
Keywords Feature selection
Optimum-path forest
Metaheuristics
Epilepsy
EEG signal classification
Magnetic optimization algorithm
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c359t-a905dde0f4ffd0edf3aee37fb70a5e7b4d9ca98b6dbef66be875d7a1b46d12213
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6494-7514
OpenAccessLink https://link.springer.com/content/pdf/10.1007/s00521-017-3124-3.pdf
PQID 2207238095
PQPubID 2043988
PageCount 13
ParticipantIDs proquest_journals_2207238095
crossref_primary_10_1007_s00521_017_3124_3
crossref_citationtrail_10_1007_s00521_017_3124_3
springer_journals_10_1007_s00521_017_3124_3
PublicationCentury 2000
PublicationDate 20190213
PublicationDateYYYYMMDD 2019-02-13
PublicationDate_xml – month: 2
  year: 2019
  text: 20190213
  day: 13
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: Heidelberg
PublicationTitle Neural computing & applications
PublicationTitleAbbrev Neural Comput & Applic
PublicationYear 2019
Publisher Springer London
Springer Nature B.V
Publisher_xml – name: Springer London
– name: Springer Nature B.V
References Tzallas, Tsipouras, Fotiadis (CR32) 2009; 13
Lin, Ying, Chen, Lee (CR17) 2008; 35
Guyon, Gunn, Nikravesh, Zadeh (CR10) 2006
Papa, Falcão, Suzuki (CR24) 2009; 19
Guyon, Elisseeff (CR9) 2003; 3
Chang, Lowenstein (CR4) 2003; 349
CR19
Übeyli (CR34) 2009; 19
CR18
Subasi (CR27) 2007; 32
Gotman (CR8) 1982; 54
Tang (CR29) 2009
CR38
Rodrigues, Pereira, Nakamura, C, Yang, Souza, Papa (CR25) 2014; 41
Browne, Holmes (CR3) 2003
Lima, Coelho, Chagas (CR15) 2009; 36
Übeyli (CR33) 2008; 34
Koza (CR13) 1992
Andrzejak, Widman, Lehnertz, Rieke, David, Elger (CR2) 2001; 44
CR30
Willi-Hans (CR37) 2011
Subasi, Ercelebi (CR28) 2005; 78
Yusta (CR39) 2009; 30
Nemenyi (CR20) 1963
Lima, Coelho, Eisencraft (CR16) 2010; 40
Kaveh, Talatahari (CR12) 2010; 213
Lima, Coelho (CR14) 2011; 53
Andrzejak, Lehnertz, Mormann, Rieke, David, Elger (CR1) 2001; 64
CR6
Ocak (CR22) 2008; 88
Subasi (CR26) 2005; 28
Walnut (CR36) 2004
Übeyli (CR35) 2009; 39
Demšar (CR5) 2006; 7
Nunes, Coelho, Lima, Papa, de Albuquerque (CR21) 2014; 136
Gandhi, Panigrahi, Anan (CR7) 2011; 74
Tzallas, Tsipouras, Fotiadis (CR31) 2007; 2007
Papa, Falcão, Albuquerque, Tavares (CR23) 2012; 45
Hazarika, Chen, Tsoi, Sergejew (CR11) 1997; 59
3124_CR6
AT Tzallas (3124_CR31) 2007; 2007
3124_CR30
A Subasi (3124_CR27) 2007; 32
S-W Lin (3124_CR17) 2008; 35
CAM Lima (3124_CR15) 2009; 36
TM Nunes (3124_CR21) 2014; 136
TR Browne (3124_CR3) 2003
J Demšar (3124_CR5) 2006; 7
H Ocak (3124_CR22) 2008; 88
A Subasi (3124_CR28) 2005; 78
ED Übeyli (3124_CR35) 2009; 39
T Gandhi (3124_CR7) 2011; 74
S Willi-Hans (3124_CR37) 2011
I Guyon (3124_CR9) 2003; 3
SC Yusta (3124_CR39) 2009; 30
JP Papa (3124_CR24) 2009; 19
A Kaveh (3124_CR12) 2010; 213
DF Walnut (3124_CR36) 2004
JR Koza (3124_CR13) 1992
N Hazarika (3124_CR11) 1997; 59
3124_CR38
3124_CR18
YY Tang (3124_CR29) 2009
RG Andrzejak (3124_CR1) 2001; 64
CAM Lima (3124_CR16) 2010; 40
3124_CR19
AT Tzallas (3124_CR32) 2009; 13
D Rodrigues (3124_CR25) 2014; 41
P Nemenyi (3124_CR20) 1963
ED Übeyli (3124_CR33) 2008; 34
J Gotman (3124_CR8) 1982; 54
I Guyon (3124_CR10) 2006
A Subasi (3124_CR26) 2005; 28
BS Chang (3124_CR4) 2003; 349
RG Andrzejak (3124_CR2) 2001; 44
ED Übeyli (3124_CR34) 2009; 19
CAM Lima (3124_CR14) 2011; 53
JP Papa (3124_CR23) 2012; 45
References_xml – volume: 3
  start-page: 1157
  year: 2003
  end-page: 1182
  ident: CR9
  article-title: An introduction to variable and feature selection
  publication-title: J Mach Learn Res
– year: 2011
  ident: CR37
  publication-title: The nonlinear workbook
– volume: 19
  start-page: 120
  issue: 2
  year: 2009
  end-page: 131
  ident: CR24
  article-title: Supervised pattern classification based on optimum-path forest
  publication-title: Int J Imaging Syst Technol
  doi: 10.1002/ima.20188
– volume: 74
  start-page: 3051
  issue: 17
  year: 2011
  end-page: 3057
  ident: CR7
  article-title: A comparative study of wavelet families for EEG signal classification
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2011.04.029
– ident: CR18
– volume: 13
  start-page: 703
  year: 2009
  end-page: 710
  ident: CR32
  article-title: Epileptic seizure detection in EEGs using time-frequency analysis
  publication-title: IEEE Trans Inf Technol Biomed
  doi: 10.1109/TITB.2009.2017939
– volume: 45
  start-page: 512
  issue: 1
  year: 2012
  end-page: 520
  ident: CR23
  article-title: Efficient supervised optimum-path forest classification for large datasets
  publication-title: Pattern Recognit
  doi: 10.1016/j.patcog.2011.07.013
– volume: 19
  start-page: 297
  year: 2009
  end-page: 308
  ident: CR34
  article-title: Combined neural network model employing wavelet coefficients for EEG signals classification
  publication-title: Digit Signal Process
  doi: 10.1016/j.dsp.2008.07.004
– volume: 34
  start-page: 1954
  year: 2008
  end-page: 1962
  ident: CR33
  article-title: Wavelet/mixture of experts network structure for EEG signals classification
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2007.02.006
– ident: CR30
– volume: 32
  start-page: 1084
  year: 2007
  end-page: 1093
  ident: CR27
  article-title: EEG signal classification using wavelet feature extraction and a mixture of expert model
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2006.02.005
– volume: 78
  start-page: 87
  year: 2005
  end-page: 99
  ident: CR28
  article-title: Classification of EEG signals using neural network and logistic regression
  publication-title: Comput Methods Programs Biomed
  doi: 10.1016/j.cmpb.2004.10.009
– year: 2006
  ident: CR10
  publication-title: Feature extraction: foundations and applications
  doi: 10.1007/978-3-540-35488-8
– volume: 88
  start-page: 1858
  year: 2008
  end-page: 1867
  ident: CR22
  article-title: Optimal classification of epileptic seizures in EEG using wavelet analysis and genetic algorithm
  publication-title: Signal Process
  doi: 10.1016/j.sigpro.2008.01.026
– volume: 35
  start-page: 1817
  issue: 4
  year: 2008
  end-page: 1824
  ident: CR17
  article-title: Particle swarm optimization for parameter determination and feature selection of support vector machines
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2007.08.088
– year: 1963
  ident: CR20
  publication-title: Distribution-free multiple comparisons
– year: 2003
  ident: CR3
  publication-title: Handbook of Epilepsy
– ident: CR6
– year: 2009
  ident: CR29
  publication-title: Wavelet Theory Approach to Pattern Recognition
  doi: 10.1142/7324
– volume: 53
  start-page: 83
  year: 2011
  end-page: 95
  ident: CR14
  article-title: Kernel machines for epilepsy diagnosis via EEG signal classification: a comparative study
  publication-title: Artif Intell Med
  doi: 10.1016/j.artmed.2011.07.003
– volume: 40
  start-page: 705
  year: 2010
  end-page: 714
  ident: CR16
  article-title: Tackling EEG signal classification with least squares support vector machines: a sensitivity analysis study
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2010.06.005
– ident: CR19
– volume: 41
  start-page: 2250
  issue: 5
  year: 2014
  end-page: 2258
  ident: CR25
  article-title: A wrapper approach for feature selection based on bat algorithm and optimum-path forest
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2013.09.023
– volume: 7
  start-page: 1
  year: 2006
  end-page: 30
  ident: CR5
  article-title: Statistical comparisons of classifiers over multiple data sets
  publication-title: J Mach Learn Res
– volume: 54
  start-page: 530
  year: 1982
  end-page: 540
  ident: CR8
  article-title: Automatic recognition of epileptic seizures in the EEG
  publication-title: Electroencephalogr Clin Neurophysiol
  doi: 10.1016/0013-4694(82)90038-4
– volume: 59
  start-page: 61
  year: 1997
  end-page: 72
  ident: CR11
  article-title: Classification of EEG signals using the wavelet transform
  publication-title: Signal Process
  doi: 10.1016/S0165-1684(97)00038-8
– volume: 36
  start-page: 10054
  year: 2009
  end-page: 10059
  ident: CR15
  article-title: Automatic EEG signal classification for epilepsy diagnosis with relevance vector machines
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2009.01.022
– ident: CR38
– year: 1992
  ident: CR13
  publication-title: Genetic programming: on the programming of computers by means of natural selection
– volume: 39
  start-page: 733
  year: 2009
  end-page: 741
  ident: CR35
  article-title: Statistics over features: EEG signals analysis
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2009.06.001
– year: 2004
  ident: CR36
  publication-title: An introduction to wavelet analysis
  doi: 10.1007/978-1-4612-0001-7
– volume: 136
  start-page: 103
  year: 2014
  end-page: 123
  ident: CR21
  article-title: EEG signal classification for epilepsy diagnosis via optimum path forest—a systematic assessment
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2014.01.020
– volume: 2007
  start-page: 80510-1
  year: 2007
  end-page: 80510-13
  ident: CR31
  article-title: Automatic seizure detection based on time-frequency analysis and artificial neural networks
  publication-title: Comput Intell Neurosci
  doi: 10.1155/2007/80510
– volume: 30
  start-page: 525
  year: 2009
  end-page: 534
  ident: CR39
  article-title: Different metaheuristic strategies to solve the feature selection problem
  publication-title: Pattern Recognit Lett
  doi: 10.1016/j.patrec.2008.11.012
– volume: 213
  start-page: 267
  issue: 3
  year: 2010
  end-page: 289
  ident: CR12
  article-title: A novel heuristic optimization method: charged system search
  publication-title: Acta Mech
  doi: 10.1007/s00707-009-0270-4
– volume: 28
  start-page: 701
  year: 2005
  end-page: 711
  ident: CR26
  article-title: Epileptic seizure detection using dynamic wavelet network
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2004.12.027
– volume: 349
  start-page: 1257
  year: 2003
  end-page: 1266
  ident: CR4
  article-title: Epilepsy
  publication-title: N Engl J Med
  doi: 10.1056/NEJMra022308
– volume: 64
  start-page: 061907-1
  year: 2001
  end-page: 061907-6
  ident: CR1
  article-title: Indications of nonlinear deterministic and finite dimensional structures in time series of brain electrical activity: dependence on recording region and brain state
  publication-title: Phys Rev E Stat Nonlinear Soft Matter Phys
  doi: 10.1103/PhysRevE.64.061907
– volume: 44
  start-page: 129
  year: 2001
  end-page: 140
  ident: CR2
  article-title: The epileptic process as nonlinear deterministic dynamics in a stochastic environment: an evaluation on mesial temporal lobe epilepsy
  publication-title: Epilepsy Res
  doi: 10.1016/S0920-1211(01)00195-4
– volume: 64
  start-page: 061907-1
  year: 2001
  ident: 3124_CR1
  publication-title: Phys Rev E Stat Nonlinear Soft Matter Phys
  doi: 10.1103/PhysRevE.64.061907
– volume: 88
  start-page: 1858
  year: 2008
  ident: 3124_CR22
  publication-title: Signal Process
  doi: 10.1016/j.sigpro.2008.01.026
– volume: 19
  start-page: 120
  issue: 2
  year: 2009
  ident: 3124_CR24
  publication-title: Int J Imaging Syst Technol
  doi: 10.1002/ima.20188
– volume-title: An introduction to wavelet analysis
  year: 2004
  ident: 3124_CR36
  doi: 10.1007/978-1-4612-0001-7
– volume: 34
  start-page: 1954
  year: 2008
  ident: 3124_CR33
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2007.02.006
– volume: 7
  start-page: 1
  year: 2006
  ident: 3124_CR5
  publication-title: J Mach Learn Res
– ident: 3124_CR6
  doi: 10.1109/AIPR.2004.41
– volume: 35
  start-page: 1817
  issue: 4
  year: 2008
  ident: 3124_CR17
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2007.08.088
– volume: 136
  start-page: 103
  year: 2014
  ident: 3124_CR21
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2014.01.020
– volume: 13
  start-page: 703
  year: 2009
  ident: 3124_CR32
  publication-title: IEEE Trans Inf Technol Biomed
  doi: 10.1109/TITB.2009.2017939
– ident: 3124_CR30
  doi: 10.1109/CEC.2008.4631155
– volume: 36
  start-page: 10054
  year: 2009
  ident: 3124_CR15
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2009.01.022
– volume: 19
  start-page: 297
  year: 2009
  ident: 3124_CR34
  publication-title: Digit Signal Process
  doi: 10.1016/j.dsp.2008.07.004
– volume: 28
  start-page: 701
  year: 2005
  ident: 3124_CR26
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2004.12.027
– volume: 2007
  start-page: 80510-1
  year: 2007
  ident: 3124_CR31
  publication-title: Comput Intell Neurosci
  doi: 10.1155/2007/80510
– volume: 41
  start-page: 2250
  issue: 5
  year: 2014
  ident: 3124_CR25
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2013.09.023
– volume: 30
  start-page: 525
  year: 2009
  ident: 3124_CR39
  publication-title: Pattern Recognit Lett
  doi: 10.1016/j.patrec.2008.11.012
– volume-title: The nonlinear workbook
  year: 2011
  ident: 3124_CR37
– volume: 40
  start-page: 705
  year: 2010
  ident: 3124_CR16
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2010.06.005
– volume-title: Distribution-free multiple comparisons
  year: 1963
  ident: 3124_CR20
– ident: 3124_CR38
  doi: 10.1109/IGARSS.2011.6049683
– volume-title: Handbook of Epilepsy
  year: 2003
  ident: 3124_CR3
– volume: 44
  start-page: 129
  year: 2001
  ident: 3124_CR2
  publication-title: Epilepsy Res
  doi: 10.1016/S0920-1211(01)00195-4
– volume: 53
  start-page: 83
  year: 2011
  ident: 3124_CR14
  publication-title: Artif Intell Med
  doi: 10.1016/j.artmed.2011.07.003
– volume: 213
  start-page: 267
  issue: 3
  year: 2010
  ident: 3124_CR12
  publication-title: Acta Mech
  doi: 10.1007/s00707-009-0270-4
– volume-title: Genetic programming: on the programming of computers by means of natural selection
  year: 1992
  ident: 3124_CR13
– ident: 3124_CR19
  doi: 10.1109/SIBGRAPI.2012.47
– volume: 45
  start-page: 512
  issue: 1
  year: 2012
  ident: 3124_CR23
  publication-title: Pattern Recognit
  doi: 10.1016/j.patcog.2011.07.013
– volume: 59
  start-page: 61
  year: 1997
  ident: 3124_CR11
  publication-title: Signal Process
  doi: 10.1016/S0165-1684(97)00038-8
– volume: 54
  start-page: 530
  year: 1982
  ident: 3124_CR8
  publication-title: Electroencephalogr Clin Neurophysiol
  doi: 10.1016/0013-4694(82)90038-4
– volume: 39
  start-page: 733
  year: 2009
  ident: 3124_CR35
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2009.06.001
– volume: 32
  start-page: 1084
  year: 2007
  ident: 3124_CR27
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2006.02.005
– volume: 3
  start-page: 1157
  year: 2003
  ident: 3124_CR9
  publication-title: J Mach Learn Res
– ident: 3124_CR18
– volume-title: Wavelet Theory Approach to Pattern Recognition
  year: 2009
  ident: 3124_CR29
  doi: 10.1142/7324
– volume-title: Feature extraction: foundations and applications
  year: 2006
  ident: 3124_CR10
  doi: 10.1007/978-3-540-35488-8
– volume: 349
  start-page: 1257
  year: 2003
  ident: 3124_CR4
  publication-title: N Engl J Med
  doi: 10.1056/NEJMra022308
– volume: 78
  start-page: 87
  year: 2005
  ident: 3124_CR28
  publication-title: Comput Methods Programs Biomed
  doi: 10.1016/j.cmpb.2004.10.009
– volume: 74
  start-page: 3051
  issue: 17
  year: 2011
  ident: 3124_CR7
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2011.04.029
SSID ssj0004685
Score 2.2560403
Snippet Epilepsy is a class of chronic neurological disorders characterized by transient and unexpected electrical disturbances of the brain. The automated analysis of...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1317
SubjectTerms Algorithms
Artificial Intelligence
Automation
Brain
Computational Biology/Bioinformatics
Computational Science and Engineering
Computer Science
Data Mining and Knowledge Discovery
Electroencephalography
Epilepsy
Feature extraction
Genetic algorithms
Heuristic methods
Image Processing and Computer Vision
Neurological diseases
Original Article
Particle swarm optimization
Patients
Probability and Statistics in Computer Science
Selectors
Wavelet analysis
Title Automatic identification of epileptic EEG signals through binary magnetic optimization algorithms
URI https://link.springer.com/article/10.1007/s00521-017-3124-3
https://www.proquest.com/docview/2207238095
Volume 31
WOSCitedRecordID wos000464766200050&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 20241212
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: P5Z
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central Database Suite (ProQuest)
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 20241212
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: BENPR
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: Springer LINK
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3djxIxEJ8I-HAvot5dRJH0wSfNJt22u6WPaEAfDCH4EXIvm35yJAdLYPHvt126oObORJ8722xmpvPRzswP4I1gThnussQ4YhNGnEkk1mli8jAfy9ihOk7X_8yn0-FiIWaxj3vfVLs3T5K1pT41u4UbzJD6hns1whLago73dsOA1zD_8v2XZsgah9OnLaGkh9HmKfO-LX53RucI849H0drXTLr_9ZdP4UkMLdHoqAvP4JHdPIduA9uA4im-BDk6VGU9qRWtTCwWquWDSofs1puJbVgbjz-iUN3h9RNFNB-k6u5dtJbLTWh-RKWnXMdOTiTvluVuVd2u91fwbTL--uFTEpEWEk0zUSVS4MzbOeyYcwZb46i0lnKnOJaZ5YoZoaUYqtwo6_JcWZ_lGC5TxXKTEpLSa2hvyo19ASgn2nCLNRdYMZZxSQzFQhvGmSNa8h7ghuWFjmPIAxrGXXEaoFyzsPAsLAILC9qDt6dPtscZHH8j7jdyLOJx3BeE4ACu5sPJHrxr5HZefnCzl_9E_QoufDglQk13SvvQrnYH-xoe6x_Var8bQOf9eDqbD6A1y24Gtc7-BNmU5mo
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxEB6VFgkupOUh0obiQ0-glby2dx0fK5S0qGmE2oByW_nZRkqyUbLh99feeJOCKBKcPWutZsbzsGe-ATgTzCnDXZYYR2zCiDOJxDpNTB7wsYztqg26_oAPh93xWHyLfdyrptq9eZKsLfW22S3cYIbUN9yrEZbQZ3DAvMMKgPk3tz8eNUPWczh92hJKehhtnjL_tMWvzmgXYf72KFr7mn7rv_7yEF7F0BKdb3ThCPbs_DW0mrENKJ7iNyDP11VZI7WiiYnFQrV8UOmQXXgzsQhrvd4FCtUdXj9RnOaDVN29i2bybh6aH1HpKWexkxPJ6V25nFT3s9Vb-N7vjb5cJnHSQqJpJqpECpx5O4cdc85gaxyV1lLuFMcys1wxI7QUXZUbZV2eK-uzHMNlqlhuUkJS-g725-XcvgeUE224xZoLrBjLuCSGYqEN48wRLXkbcMPyQkcY8jANY1psAZRrFhaehUVgYUHb8Gn7yWKDwfE34k4jxyIex1VBCA7D1Xw42YbPjdx2y09udvxP1B_hxeXoelAMvg6vTuClD61EqO9OaQf2q-XafoDn-mc1WS1Pa419AAgy5rQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7xEuLCq0VsefnAqVWEYzvx-ojKLiDQCom24hb5CSuxyWo38PtrZ52lRaUS4uyJFc2M7Rl75vsAjgVzynCXJcYRmzDiTCKxThOTB3wsY7tqhq5_zQeD7t2duIk8p9O22r19kpz1NASUprI-GRt3Mm98C7eZIQ0Od2yEJXQRllmoow_p-u2vPxojG05On8KE8h5G22fNf03x98H0Em2-eiBtzp3-xof_eBPWY8iJTmc-sgULttyGjZbOAcXV_Qnk6VNdNQiuaGhiEVFjN1Q5ZMd--xiHsV7vHIWqD--3KLL8INV09aKRvC9DUySqvOQodngi-XhfTYb1w2j6GX72ez--XySRgSHRNBN1IgXO_P6HHXPOYGscldZS7hTHMrNcMSO0FF2VG2Vdnivrsx_DZapYblJCUroDS2VV2l1AOdGGW6y5wIqxjEtiKBbaMM4c0ZJ3ALfqL3SEJw8sGY_FHFi5UWHhVVgEFRa0A1_nn4xn2Bz_E95vbVrEZTotCMGBdM2HmR341trwZfjNyb68S_oIVm_O-sX15eBqD9Z8xCVC2XdK92GpnjzZA1jRz_VwOjlsnPc32bvvmA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+identification+of+epileptic+EEG+signals+through+binary+magnetic+optimization+algorithms&rft.jtitle=Neural+computing+%26+applications&rft.au=Pereira%2C+Lu%C3%ADs+A.+M.&rft.au=Papa%2C+Jo%C3%A3o+P.&rft.au=Coelho%2C+Andr%C3%A9+L.+V.&rft.au=Lima%2C+Clodoaldo+A.+M.&rft.date=2019-02-13&rft.pub=Springer+London&rft.issn=0941-0643&rft.eissn=1433-3058&rft.volume=31&rft.issue=Suppl+2&rft.spage=1317&rft.epage=1329&rft_id=info:doi/10.1007%2Fs00521-017-3124-3&rft.externalDocID=10_1007_s00521_017_3124_3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0941-0643&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0941-0643&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0941-0643&client=summon