Automatic identification of epileptic EEG signals through binary magnetic optimization algorithms
Epilepsy is a class of chronic neurological disorders characterized by transient and unexpected electrical disturbances of the brain. The automated analysis of the electroencephalogram (EEG) signal can be instrumental for the proper diagnosis of this mental condition. This work presents a systematic...
Uloženo v:
| Vydáno v: | Neural computing & applications Ročník 31; číslo Suppl 2; s. 1317 - 1329 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
London
Springer London
13.02.2019
Springer Nature B.V |
| Témata: | |
| ISSN: | 0941-0643, 1433-3058 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Epilepsy is a class of chronic neurological disorders characterized by transient and unexpected electrical disturbances of the brain. The automated analysis of the electroencephalogram (EEG) signal can be instrumental for the proper diagnosis of this mental condition. This work presents a systematic assessment of the performance of different variants of the binary magnetic optimization algorithm (BMOA), two of which are introduced here, while serving as feature selectors for epileptic EEG signal identification. In this context, the optimum-path forest classifier was adopted as a classification model, whereas different wavelet families were considered for EEG feature extraction. In order to compare the performance of the improved BMOA variants against the traditional one, as well as other metaheuristic techniques, namely particle swarm optimization, binary bat algorithm, and genetic algorithm, we employed a well-known EEG benchmark dataset composed of five classes of EEG signals (two of which comprising normal patients with eyes open or closed, and the remaining comprising ill patients with different levels of epilepsy). Overall, the results evidenced the robustness of the proposed BMOA and its variants. |
|---|---|
| AbstractList | Epilepsy is a class of chronic neurological disorders characterized by transient and unexpected electrical disturbances of the brain. The automated analysis of the electroencephalogram (EEG) signal can be instrumental for the proper diagnosis of this mental condition. This work presents a systematic assessment of the performance of different variants of the binary magnetic optimization algorithm (BMOA), two of which are introduced here, while serving as feature selectors for epileptic EEG signal identification. In this context, the optimum-path forest classifier was adopted as a classification model, whereas different wavelet families were considered for EEG feature extraction. In order to compare the performance of the improved BMOA variants against the traditional one, as well as other metaheuristic techniques, namely particle swarm optimization, binary bat algorithm, and genetic algorithm, we employed a well-known EEG benchmark dataset composed of five classes of EEG signals (two of which comprising normal patients with eyes open or closed, and the remaining comprising ill patients with different levels of epilepsy). Overall, the results evidenced the robustness of the proposed BMOA and its variants. |
| Author | Lima, Clodoaldo A. M. de Albuquerque, Victor Hugo C. Papa, João P. Coelho, André L. V. Pereira, Danillo R. Pereira, Luís A. M. |
| Author_xml | – sequence: 1 givenname: Luís A. M. surname: Pereira fullname: Pereira, Luís A. M. organization: Instituto de Computação, Universidade Estadual de Campinas – sequence: 2 givenname: João P. orcidid: 0000-0002-6494-7514 surname: Papa fullname: Papa, João P. email: papa@fc.unesp.br organization: Departamento de Computação, UNESP - Univ Estadual Paulista – sequence: 3 givenname: André L. V. surname: Coelho fullname: Coelho, André L. V. organization: Programa de Pós-Graduação em Informática Aplicada, Universidade de Fortaleza – sequence: 4 givenname: Clodoaldo A. M. surname: Lima fullname: Lima, Clodoaldo A. M. organization: Escola de Artes, Ciências e Humanidades, Universidade de São Paulo – sequence: 5 givenname: Danillo R. surname: Pereira fullname: Pereira, Danillo R. organization: Departamento de Computação, UNESP - Univ Estadual Paulista – sequence: 6 givenname: Victor Hugo C. surname: de Albuquerque fullname: de Albuquerque, Victor Hugo C. organization: Programa de Pós-Graduação em Informática Aplicada, Universidade de Fortaleza |
| BookMark | eNp9kEFLxDAQhYOs4O7qD_BW8FydNG3THpdlXQXBi55D2iTdLG1Sk-xBf72pFQRBT8Mw75t581ZoYayRCF1juMUA9M4DFBlOAdOU4CxPyRla4pyQlEBRLdAS6jxOy5xcoJX3RwDIy6pYIr45BTvwoNtEC2mCVrqNnTWJVYkcdS_Habbb7ROvO8N7n4SDs6fukDTacPeeDLwzctLYqBz0x0zzvrNOh8PgL9G5ipi8-q5r9Hq_e9k-pE_P-8ft5iltSVGHlNdQCCFB5UoJkEIRLiWhqqHAC0mbXNQtr6umFI1UZdnIihaCctzkpcBZhska3cx7R2ffTtIHdrQnNzlmWQY0IxXURVThWdU6672Tio1OD_EPhoFNSbI5SRaTZFOSjESG_mJaHb7eDI7r_l8ym0kfr5hOuh9Pf0OfHzWMjA |
| CitedBy_id | crossref_primary_10_1016_j_eswa_2024_123991 crossref_primary_10_1109_ACCESS_2021_3135805 crossref_primary_10_1109_TAES_2022_3157660 crossref_primary_10_1007_s00521_018_3928_9 crossref_primary_10_1007_s12065_020_00459_9 crossref_primary_10_1007_s11356_018_04106_w crossref_primary_10_3390_math11010129 crossref_primary_10_1007_s00521_019_04389_1 crossref_primary_10_1016_j_plrev_2024_01_003 crossref_primary_10_1007_s10462_022_10328_9 crossref_primary_10_1016_j_asoc_2020_107068 crossref_primary_10_1016_j_asoc_2019_105874 |
| Cites_doi | 10.1002/ima.20188 10.1016/j.neucom.2011.04.029 10.1109/TITB.2009.2017939 10.1016/j.patcog.2011.07.013 10.1016/j.dsp.2008.07.004 10.1016/j.eswa.2007.02.006 10.1016/j.eswa.2006.02.005 10.1016/j.cmpb.2004.10.009 10.1007/978-3-540-35488-8 10.1016/j.sigpro.2008.01.026 10.1016/j.eswa.2007.08.088 10.1142/7324 10.1016/j.artmed.2011.07.003 10.1016/j.compbiomed.2010.06.005 10.1016/j.eswa.2013.09.023 10.1016/0013-4694(82)90038-4 10.1016/S0165-1684(97)00038-8 10.1016/j.eswa.2009.01.022 10.1016/j.compbiomed.2009.06.001 10.1007/978-1-4612-0001-7 10.1016/j.neucom.2014.01.020 10.1155/2007/80510 10.1016/j.patrec.2008.11.012 10.1007/s00707-009-0270-4 10.1016/j.eswa.2004.12.027 10.1056/NEJMra022308 10.1103/PhysRevE.64.061907 10.1016/S0920-1211(01)00195-4 10.1109/AIPR.2004.41 10.1109/CEC.2008.4631155 10.1109/IGARSS.2011.6049683 10.1109/SIBGRAPI.2012.47 |
| ContentType | Journal Article |
| Copyright | The Natural Computing Applications Forum 2017 Copyright Springer Nature B.V. 2019 |
| Copyright_xml | – notice: The Natural Computing Applications Forum 2017 – notice: Copyright Springer Nature B.V. 2019 |
| DBID | AAYXX CITATION |
| DOI | 10.1007/s00521-017-3124-3 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1433-3058 |
| EndPage | 1329 |
| ExternalDocumentID | 10_1007_s00521_017_3124_3 |
| GrantInformation_xml | – fundername: Fundação de Amparo à Pesquisa do Estado de São Paulo grantid: 2009/16206-1; 2014/16250-9; 2011/14094-1 funderid: http://dx.doi.org/10.13039/501100001807 – fundername: Conselho Nacional de Desenvolvimento Científico e Tecnológico grantid: 303182/2011-3; 470571/2013-6; 475406/2010-9; 304603/2012-0; 308816/2012-9; 303182/2011-3; 470501/2013-8; 301928/2014-2; 306166/2014-3 funderid: http://dx.doi.org/10.13039/501100003593 |
| GroupedDBID | -4Z -59 -5G -BR -EM -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 203 29N 2J2 2JN 2JY 2KG 2LR 2~H 30V 4.4 406 408 409 40D 40E 53G 5VS 67Z 6NX 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACAOD ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. B0M BA0 BDATZ BENPR BGLVJ BGNMA BSONS CCPQU CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EBLON EBS ECS EDO EIOEI EJD EMI EMK EPL ESBYG EST ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV LAS LLZTM M4Y MA- N9A NB0 NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P62 P9O PF0 PT4 PT5 QOK QOS R89 R9I RHV RNS ROL RPX RSV S16 S27 S3B SAP SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z5O Z7R Z7S Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8P Z8Q Z8R Z8S Z8T Z8U Z8W Z92 ZMTXR ~8M ~EX -Y2 1SB 2.D 28- 2P1 2VQ 5QI AAOBN AAPKM AARHV AAYTO AAYXX ABBRH ABDBE ABFSG ABQSL ABRTQ ABULA ACBXY ACSTC ADHKG ADKFA AEBTG AEFIE AEKMD AEZWR AFDZB AFEXP AFFHD AFGCZ AFHIU AFOHR AGGDS AGJBK AGQPQ AHPBZ AHWEU AIXLP AJBLW ATHPR AYFIA BBWZM CAG CITATION COF H13 KOW N2Q NDZJH PHGZM PHGZT PQGLB R4E RNI RZK S1Z S26 S28 SCJ SCLPG T16 |
| ID | FETCH-LOGICAL-c359t-a905dde0f4ffd0edf3aee37fb70a5e7b4d9ca98b6dbef66be875d7a1b46d12213 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 12 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000464766200050&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0941-0643 |
| IngestDate | Tue Nov 04 16:29:02 EST 2025 Tue Nov 18 22:36:35 EST 2025 Sat Nov 29 02:59:06 EST 2025 Fri Feb 21 02:35:48 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | Suppl 2 |
| Keywords | Feature selection Optimum-path forest Metaheuristics Epilepsy EEG signal classification Magnetic optimization algorithm |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c359t-a905dde0f4ffd0edf3aee37fb70a5e7b4d9ca98b6dbef66be875d7a1b46d12213 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-6494-7514 |
| OpenAccessLink | https://link.springer.com/content/pdf/10.1007/s00521-017-3124-3.pdf |
| PQID | 2207238095 |
| PQPubID | 2043988 |
| PageCount | 13 |
| ParticipantIDs | proquest_journals_2207238095 crossref_primary_10_1007_s00521_017_3124_3 crossref_citationtrail_10_1007_s00521_017_3124_3 springer_journals_10_1007_s00521_017_3124_3 |
| PublicationCentury | 2000 |
| PublicationDate | 20190213 |
| PublicationDateYYYYMMDD | 2019-02-13 |
| PublicationDate_xml | – month: 2 year: 2019 text: 20190213 day: 13 |
| PublicationDecade | 2010 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: Heidelberg |
| PublicationTitle | Neural computing & applications |
| PublicationTitleAbbrev | Neural Comput & Applic |
| PublicationYear | 2019 |
| Publisher | Springer London Springer Nature B.V |
| Publisher_xml | – name: Springer London – name: Springer Nature B.V |
| References | Tzallas, Tsipouras, Fotiadis (CR32) 2009; 13 Lin, Ying, Chen, Lee (CR17) 2008; 35 Guyon, Gunn, Nikravesh, Zadeh (CR10) 2006 Papa, Falcão, Suzuki (CR24) 2009; 19 Guyon, Elisseeff (CR9) 2003; 3 Chang, Lowenstein (CR4) 2003; 349 CR19 Übeyli (CR34) 2009; 19 CR18 Subasi (CR27) 2007; 32 Gotman (CR8) 1982; 54 Tang (CR29) 2009 CR38 Rodrigues, Pereira, Nakamura, C, Yang, Souza, Papa (CR25) 2014; 41 Browne, Holmes (CR3) 2003 Lima, Coelho, Chagas (CR15) 2009; 36 Übeyli (CR33) 2008; 34 Koza (CR13) 1992 Andrzejak, Widman, Lehnertz, Rieke, David, Elger (CR2) 2001; 44 CR30 Willi-Hans (CR37) 2011 Subasi, Ercelebi (CR28) 2005; 78 Yusta (CR39) 2009; 30 Nemenyi (CR20) 1963 Lima, Coelho, Eisencraft (CR16) 2010; 40 Kaveh, Talatahari (CR12) 2010; 213 Lima, Coelho (CR14) 2011; 53 Andrzejak, Lehnertz, Mormann, Rieke, David, Elger (CR1) 2001; 64 CR6 Ocak (CR22) 2008; 88 Subasi (CR26) 2005; 28 Walnut (CR36) 2004 Übeyli (CR35) 2009; 39 Demšar (CR5) 2006; 7 Nunes, Coelho, Lima, Papa, de Albuquerque (CR21) 2014; 136 Gandhi, Panigrahi, Anan (CR7) 2011; 74 Tzallas, Tsipouras, Fotiadis (CR31) 2007; 2007 Papa, Falcão, Albuquerque, Tavares (CR23) 2012; 45 Hazarika, Chen, Tsoi, Sergejew (CR11) 1997; 59 3124_CR6 AT Tzallas (3124_CR31) 2007; 2007 3124_CR30 A Subasi (3124_CR27) 2007; 32 S-W Lin (3124_CR17) 2008; 35 CAM Lima (3124_CR15) 2009; 36 TM Nunes (3124_CR21) 2014; 136 TR Browne (3124_CR3) 2003 J Demšar (3124_CR5) 2006; 7 H Ocak (3124_CR22) 2008; 88 A Subasi (3124_CR28) 2005; 78 ED Übeyli (3124_CR35) 2009; 39 T Gandhi (3124_CR7) 2011; 74 S Willi-Hans (3124_CR37) 2011 I Guyon (3124_CR9) 2003; 3 SC Yusta (3124_CR39) 2009; 30 JP Papa (3124_CR24) 2009; 19 A Kaveh (3124_CR12) 2010; 213 DF Walnut (3124_CR36) 2004 JR Koza (3124_CR13) 1992 N Hazarika (3124_CR11) 1997; 59 3124_CR38 3124_CR18 YY Tang (3124_CR29) 2009 RG Andrzejak (3124_CR1) 2001; 64 CAM Lima (3124_CR16) 2010; 40 3124_CR19 AT Tzallas (3124_CR32) 2009; 13 D Rodrigues (3124_CR25) 2014; 41 P Nemenyi (3124_CR20) 1963 ED Übeyli (3124_CR33) 2008; 34 J Gotman (3124_CR8) 1982; 54 I Guyon (3124_CR10) 2006 A Subasi (3124_CR26) 2005; 28 BS Chang (3124_CR4) 2003; 349 RG Andrzejak (3124_CR2) 2001; 44 ED Übeyli (3124_CR34) 2009; 19 CAM Lima (3124_CR14) 2011; 53 JP Papa (3124_CR23) 2012; 45 |
| References_xml | – volume: 3 start-page: 1157 year: 2003 end-page: 1182 ident: CR9 article-title: An introduction to variable and feature selection publication-title: J Mach Learn Res – year: 2011 ident: CR37 publication-title: The nonlinear workbook – volume: 19 start-page: 120 issue: 2 year: 2009 end-page: 131 ident: CR24 article-title: Supervised pattern classification based on optimum-path forest publication-title: Int J Imaging Syst Technol doi: 10.1002/ima.20188 – volume: 74 start-page: 3051 issue: 17 year: 2011 end-page: 3057 ident: CR7 article-title: A comparative study of wavelet families for EEG signal classification publication-title: Neurocomputing doi: 10.1016/j.neucom.2011.04.029 – ident: CR18 – volume: 13 start-page: 703 year: 2009 end-page: 710 ident: CR32 article-title: Epileptic seizure detection in EEGs using time-frequency analysis publication-title: IEEE Trans Inf Technol Biomed doi: 10.1109/TITB.2009.2017939 – volume: 45 start-page: 512 issue: 1 year: 2012 end-page: 520 ident: CR23 article-title: Efficient supervised optimum-path forest classification for large datasets publication-title: Pattern Recognit doi: 10.1016/j.patcog.2011.07.013 – volume: 19 start-page: 297 year: 2009 end-page: 308 ident: CR34 article-title: Combined neural network model employing wavelet coefficients for EEG signals classification publication-title: Digit Signal Process doi: 10.1016/j.dsp.2008.07.004 – volume: 34 start-page: 1954 year: 2008 end-page: 1962 ident: CR33 article-title: Wavelet/mixture of experts network structure for EEG signals classification publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2007.02.006 – ident: CR30 – volume: 32 start-page: 1084 year: 2007 end-page: 1093 ident: CR27 article-title: EEG signal classification using wavelet feature extraction and a mixture of expert model publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2006.02.005 – volume: 78 start-page: 87 year: 2005 end-page: 99 ident: CR28 article-title: Classification of EEG signals using neural network and logistic regression publication-title: Comput Methods Programs Biomed doi: 10.1016/j.cmpb.2004.10.009 – year: 2006 ident: CR10 publication-title: Feature extraction: foundations and applications doi: 10.1007/978-3-540-35488-8 – volume: 88 start-page: 1858 year: 2008 end-page: 1867 ident: CR22 article-title: Optimal classification of epileptic seizures in EEG using wavelet analysis and genetic algorithm publication-title: Signal Process doi: 10.1016/j.sigpro.2008.01.026 – volume: 35 start-page: 1817 issue: 4 year: 2008 end-page: 1824 ident: CR17 article-title: Particle swarm optimization for parameter determination and feature selection of support vector machines publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2007.08.088 – year: 1963 ident: CR20 publication-title: Distribution-free multiple comparisons – year: 2003 ident: CR3 publication-title: Handbook of Epilepsy – ident: CR6 – year: 2009 ident: CR29 publication-title: Wavelet Theory Approach to Pattern Recognition doi: 10.1142/7324 – volume: 53 start-page: 83 year: 2011 end-page: 95 ident: CR14 article-title: Kernel machines for epilepsy diagnosis via EEG signal classification: a comparative study publication-title: Artif Intell Med doi: 10.1016/j.artmed.2011.07.003 – volume: 40 start-page: 705 year: 2010 end-page: 714 ident: CR16 article-title: Tackling EEG signal classification with least squares support vector machines: a sensitivity analysis study publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2010.06.005 – ident: CR19 – volume: 41 start-page: 2250 issue: 5 year: 2014 end-page: 2258 ident: CR25 article-title: A wrapper approach for feature selection based on bat algorithm and optimum-path forest publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2013.09.023 – volume: 7 start-page: 1 year: 2006 end-page: 30 ident: CR5 article-title: Statistical comparisons of classifiers over multiple data sets publication-title: J Mach Learn Res – volume: 54 start-page: 530 year: 1982 end-page: 540 ident: CR8 article-title: Automatic recognition of epileptic seizures in the EEG publication-title: Electroencephalogr Clin Neurophysiol doi: 10.1016/0013-4694(82)90038-4 – volume: 59 start-page: 61 year: 1997 end-page: 72 ident: CR11 article-title: Classification of EEG signals using the wavelet transform publication-title: Signal Process doi: 10.1016/S0165-1684(97)00038-8 – volume: 36 start-page: 10054 year: 2009 end-page: 10059 ident: CR15 article-title: Automatic EEG signal classification for epilepsy diagnosis with relevance vector machines publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2009.01.022 – ident: CR38 – year: 1992 ident: CR13 publication-title: Genetic programming: on the programming of computers by means of natural selection – volume: 39 start-page: 733 year: 2009 end-page: 741 ident: CR35 article-title: Statistics over features: EEG signals analysis publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2009.06.001 – year: 2004 ident: CR36 publication-title: An introduction to wavelet analysis doi: 10.1007/978-1-4612-0001-7 – volume: 136 start-page: 103 year: 2014 end-page: 123 ident: CR21 article-title: EEG signal classification for epilepsy diagnosis via optimum path forest—a systematic assessment publication-title: Neurocomputing doi: 10.1016/j.neucom.2014.01.020 – volume: 2007 start-page: 80510-1 year: 2007 end-page: 80510-13 ident: CR31 article-title: Automatic seizure detection based on time-frequency analysis and artificial neural networks publication-title: Comput Intell Neurosci doi: 10.1155/2007/80510 – volume: 30 start-page: 525 year: 2009 end-page: 534 ident: CR39 article-title: Different metaheuristic strategies to solve the feature selection problem publication-title: Pattern Recognit Lett doi: 10.1016/j.patrec.2008.11.012 – volume: 213 start-page: 267 issue: 3 year: 2010 end-page: 289 ident: CR12 article-title: A novel heuristic optimization method: charged system search publication-title: Acta Mech doi: 10.1007/s00707-009-0270-4 – volume: 28 start-page: 701 year: 2005 end-page: 711 ident: CR26 article-title: Epileptic seizure detection using dynamic wavelet network publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2004.12.027 – volume: 349 start-page: 1257 year: 2003 end-page: 1266 ident: CR4 article-title: Epilepsy publication-title: N Engl J Med doi: 10.1056/NEJMra022308 – volume: 64 start-page: 061907-1 year: 2001 end-page: 061907-6 ident: CR1 article-title: Indications of nonlinear deterministic and finite dimensional structures in time series of brain electrical activity: dependence on recording region and brain state publication-title: Phys Rev E Stat Nonlinear Soft Matter Phys doi: 10.1103/PhysRevE.64.061907 – volume: 44 start-page: 129 year: 2001 end-page: 140 ident: CR2 article-title: The epileptic process as nonlinear deterministic dynamics in a stochastic environment: an evaluation on mesial temporal lobe epilepsy publication-title: Epilepsy Res doi: 10.1016/S0920-1211(01)00195-4 – volume: 64 start-page: 061907-1 year: 2001 ident: 3124_CR1 publication-title: Phys Rev E Stat Nonlinear Soft Matter Phys doi: 10.1103/PhysRevE.64.061907 – volume: 88 start-page: 1858 year: 2008 ident: 3124_CR22 publication-title: Signal Process doi: 10.1016/j.sigpro.2008.01.026 – volume: 19 start-page: 120 issue: 2 year: 2009 ident: 3124_CR24 publication-title: Int J Imaging Syst Technol doi: 10.1002/ima.20188 – volume-title: An introduction to wavelet analysis year: 2004 ident: 3124_CR36 doi: 10.1007/978-1-4612-0001-7 – volume: 34 start-page: 1954 year: 2008 ident: 3124_CR33 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2007.02.006 – volume: 7 start-page: 1 year: 2006 ident: 3124_CR5 publication-title: J Mach Learn Res – ident: 3124_CR6 doi: 10.1109/AIPR.2004.41 – volume: 35 start-page: 1817 issue: 4 year: 2008 ident: 3124_CR17 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2007.08.088 – volume: 136 start-page: 103 year: 2014 ident: 3124_CR21 publication-title: Neurocomputing doi: 10.1016/j.neucom.2014.01.020 – volume: 13 start-page: 703 year: 2009 ident: 3124_CR32 publication-title: IEEE Trans Inf Technol Biomed doi: 10.1109/TITB.2009.2017939 – ident: 3124_CR30 doi: 10.1109/CEC.2008.4631155 – volume: 36 start-page: 10054 year: 2009 ident: 3124_CR15 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2009.01.022 – volume: 19 start-page: 297 year: 2009 ident: 3124_CR34 publication-title: Digit Signal Process doi: 10.1016/j.dsp.2008.07.004 – volume: 28 start-page: 701 year: 2005 ident: 3124_CR26 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2004.12.027 – volume: 2007 start-page: 80510-1 year: 2007 ident: 3124_CR31 publication-title: Comput Intell Neurosci doi: 10.1155/2007/80510 – volume: 41 start-page: 2250 issue: 5 year: 2014 ident: 3124_CR25 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2013.09.023 – volume: 30 start-page: 525 year: 2009 ident: 3124_CR39 publication-title: Pattern Recognit Lett doi: 10.1016/j.patrec.2008.11.012 – volume-title: The nonlinear workbook year: 2011 ident: 3124_CR37 – volume: 40 start-page: 705 year: 2010 ident: 3124_CR16 publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2010.06.005 – volume-title: Distribution-free multiple comparisons year: 1963 ident: 3124_CR20 – ident: 3124_CR38 doi: 10.1109/IGARSS.2011.6049683 – volume-title: Handbook of Epilepsy year: 2003 ident: 3124_CR3 – volume: 44 start-page: 129 year: 2001 ident: 3124_CR2 publication-title: Epilepsy Res doi: 10.1016/S0920-1211(01)00195-4 – volume: 53 start-page: 83 year: 2011 ident: 3124_CR14 publication-title: Artif Intell Med doi: 10.1016/j.artmed.2011.07.003 – volume: 213 start-page: 267 issue: 3 year: 2010 ident: 3124_CR12 publication-title: Acta Mech doi: 10.1007/s00707-009-0270-4 – volume-title: Genetic programming: on the programming of computers by means of natural selection year: 1992 ident: 3124_CR13 – ident: 3124_CR19 doi: 10.1109/SIBGRAPI.2012.47 – volume: 45 start-page: 512 issue: 1 year: 2012 ident: 3124_CR23 publication-title: Pattern Recognit doi: 10.1016/j.patcog.2011.07.013 – volume: 59 start-page: 61 year: 1997 ident: 3124_CR11 publication-title: Signal Process doi: 10.1016/S0165-1684(97)00038-8 – volume: 54 start-page: 530 year: 1982 ident: 3124_CR8 publication-title: Electroencephalogr Clin Neurophysiol doi: 10.1016/0013-4694(82)90038-4 – volume: 39 start-page: 733 year: 2009 ident: 3124_CR35 publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2009.06.001 – volume: 32 start-page: 1084 year: 2007 ident: 3124_CR27 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2006.02.005 – volume: 3 start-page: 1157 year: 2003 ident: 3124_CR9 publication-title: J Mach Learn Res – ident: 3124_CR18 – volume-title: Wavelet Theory Approach to Pattern Recognition year: 2009 ident: 3124_CR29 doi: 10.1142/7324 – volume-title: Feature extraction: foundations and applications year: 2006 ident: 3124_CR10 doi: 10.1007/978-3-540-35488-8 – volume: 349 start-page: 1257 year: 2003 ident: 3124_CR4 publication-title: N Engl J Med doi: 10.1056/NEJMra022308 – volume: 78 start-page: 87 year: 2005 ident: 3124_CR28 publication-title: Comput Methods Programs Biomed doi: 10.1016/j.cmpb.2004.10.009 – volume: 74 start-page: 3051 issue: 17 year: 2011 ident: 3124_CR7 publication-title: Neurocomputing doi: 10.1016/j.neucom.2011.04.029 |
| SSID | ssj0004685 |
| Score | 2.2560403 |
| Snippet | Epilepsy is a class of chronic neurological disorders characterized by transient and unexpected electrical disturbances of the brain. The automated analysis of... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1317 |
| SubjectTerms | Algorithms Artificial Intelligence Automation Brain Computational Biology/Bioinformatics Computational Science and Engineering Computer Science Data Mining and Knowledge Discovery Electroencephalography Epilepsy Feature extraction Genetic algorithms Heuristic methods Image Processing and Computer Vision Neurological diseases Original Article Particle swarm optimization Patients Probability and Statistics in Computer Science Selectors Wavelet analysis |
| Title | Automatic identification of epileptic EEG signals through binary magnetic optimization algorithms |
| URI | https://link.springer.com/article/10.1007/s00521-017-3124-3 https://www.proquest.com/docview/2207238095 |
| Volume | 31 |
| WOSCitedRecordID | wos000464766200050&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1433-3058 dateEnd: 20241212 omitProxy: false ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: P5Z dateStart: 20120101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central Database Suite (ProQuest) customDbUrl: eissn: 1433-3058 dateEnd: 20241212 omitProxy: false ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: BENPR dateStart: 20120101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: Springer LINK customDbUrl: eissn: 1433-3058 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3djxIxEJ8I-HAvot5dRJH0wSfNJt22u6WPaEAfDCH4EXIvm35yJAdLYPHvt126oObORJ8722xmpvPRzswP4I1gThnussQ4YhNGnEkk1mli8jAfy9ihOk7X_8yn0-FiIWaxj3vfVLs3T5K1pT41u4UbzJD6hns1whLago73dsOA1zD_8v2XZsgah9OnLaGkh9HmKfO-LX53RucI849H0drXTLr_9ZdP4UkMLdHoqAvP4JHdPIduA9uA4im-BDk6VGU9qRWtTCwWquWDSofs1puJbVgbjz-iUN3h9RNFNB-k6u5dtJbLTWh-RKWnXMdOTiTvluVuVd2u91fwbTL--uFTEpEWEk0zUSVS4MzbOeyYcwZb46i0lnKnOJaZ5YoZoaUYqtwo6_JcWZ_lGC5TxXKTEpLSa2hvyo19ASgn2nCLNRdYMZZxSQzFQhvGmSNa8h7ghuWFjmPIAxrGXXEaoFyzsPAsLAILC9qDt6dPtscZHH8j7jdyLOJx3BeE4ACu5sPJHrxr5HZefnCzl_9E_QoufDglQk13SvvQrnYH-xoe6x_Var8bQOf9eDqbD6A1y24Gtc7-BNmU5mo |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxEB6VFgkupOUh0obiQ0-glby2dx0fK5S0qGmE2oByW_nZRkqyUbLh99feeJOCKBKcPWutZsbzsGe-ATgTzCnDXZYYR2zCiDOJxDpNTB7wsYztqg26_oAPh93xWHyLfdyrptq9eZKsLfW22S3cYIbUN9yrEZbQZ3DAvMMKgPk3tz8eNUPWczh92hJKehhtnjL_tMWvzmgXYf72KFr7mn7rv_7yEF7F0BKdb3ThCPbs_DW0mrENKJ7iNyDP11VZI7WiiYnFQrV8UOmQXXgzsQhrvd4FCtUdXj9RnOaDVN29i2bybh6aH1HpKWexkxPJ6V25nFT3s9Vb-N7vjb5cJnHSQqJpJqpECpx5O4cdc85gaxyV1lLuFMcys1wxI7QUXZUbZV2eK-uzHMNlqlhuUkJS-g725-XcvgeUE224xZoLrBjLuCSGYqEN48wRLXkbcMPyQkcY8jANY1psAZRrFhaehUVgYUHb8Gn7yWKDwfE34k4jxyIex1VBCA7D1Xw42YbPjdx2y09udvxP1B_hxeXoelAMvg6vTuClD61EqO9OaQf2q-XafoDn-mc1WS1Pa419AAgy5rQ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7xEuLCq0VsefnAqVWEYzvx-ojKLiDQCom24hb5CSuxyWo38PtrZ52lRaUS4uyJFc2M7Rl75vsAjgVzynCXJcYRmzDiTCKxThOTB3wsY7tqhq5_zQeD7t2duIk8p9O22r19kpz1NASUprI-GRt3Mm98C7eZIQ0Od2yEJXQRllmoow_p-u2vPxojG05On8KE8h5G22fNf03x98H0Em2-eiBtzp3-xof_eBPWY8iJTmc-sgULttyGjZbOAcXV_Qnk6VNdNQiuaGhiEVFjN1Q5ZMd--xiHsV7vHIWqD--3KLL8INV09aKRvC9DUySqvOQodngi-XhfTYb1w2j6GX72ez--XySRgSHRNBN1IgXO_P6HHXPOYGscldZS7hTHMrNcMSO0FF2VG2Vdnivrsx_DZapYblJCUroDS2VV2l1AOdGGW6y5wIqxjEtiKBbaMM4c0ZJ3ALfqL3SEJw8sGY_FHFi5UWHhVVgEFRa0A1_nn4xn2Bz_E95vbVrEZTotCMGBdM2HmR341trwZfjNyb68S_oIVm_O-sX15eBqD9Z8xCVC2XdK92GpnjzZA1jRz_VwOjlsnPc32bvvmA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+identification+of+epileptic+EEG+signals+through+binary+magnetic+optimization+algorithms&rft.jtitle=Neural+computing+%26+applications&rft.au=Pereira%2C+Lu%C3%ADs+A.+M.&rft.au=Papa%2C+Jo%C3%A3o+P.&rft.au=Coelho%2C+Andr%C3%A9+L.+V.&rft.au=Lima%2C+Clodoaldo+A.+M.&rft.date=2019-02-13&rft.pub=Springer+London&rft.issn=0941-0643&rft.eissn=1433-3058&rft.volume=31&rft.issue=Suppl+2&rft.spage=1317&rft.epage=1329&rft_id=info:doi/10.1007%2Fs00521-017-3124-3&rft.externalDocID=10_1007_s00521_017_3124_3 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0941-0643&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0941-0643&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0941-0643&client=summon |