Dynamic Terminal Sliding-Mode Control for Single-Phase Active Power Filter Using New Feedback Recurrent Neural Network
In this article, an adaptive dynamic terminal sliding-mode controller using a double hidden layer recurrent neural network (DHL-RNN) structure for a single-phase active power filter (APF) is proposed to improve harmonic compensation performance. First, a method combining dynamic sliding mode and ter...
Uloženo v:
| Vydáno v: | IEEE transactions on power electronics Ročník 35; číslo 9; s. 9904 - 9922 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
IEEE
01.09.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 0885-8993, 1941-0107 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | In this article, an adaptive dynamic terminal sliding-mode controller using a double hidden layer recurrent neural network (DHL-RNN) structure for a single-phase active power filter (APF) is proposed to improve harmonic compensation performance. First, a method combining dynamic sliding mode and terminal sliding mode is proposed to solve the chattering phenomenon in traditional sliding-mode control. Then, since the nonlinear dynamics of APF is difficult to obtain accurately, the DHL-RNN is used to approximate the proposed dynamic terminal sliding-mode controller. Meanwhile, an integral robust switching term is added to eliminate the approximation error of the neural network. Simulation and experimental results proved that the proposed controller has better compensation performance and tracking effect compared with a simple terminal sliding-mode controller. |
|---|---|
| AbstractList | In this article, an adaptive dynamic terminal sliding-mode controller using a double hidden layer recurrent neural network (DHL-RNN) structure for a single-phase active power filter (APF) is proposed to improve harmonic compensation performance. First, a method combining dynamic sliding mode and terminal sliding mode is proposed to solve the chattering phenomenon in traditional sliding-mode control. Then, since the nonlinear dynamics of APF is difficult to obtain accurately, the DHL-RNN is used to approximate the proposed dynamic terminal sliding-mode controller. Meanwhile, an integral robust switching term is added to eliminate the approximation error of the neural network. Simulation and experimental results proved that the proposed controller has better compensation performance and tracking effect compared with a simple terminal sliding-mode controller. |
| Author | Chen, Yun Fei, Juntao |
| Author_xml | – sequence: 1 givenname: Juntao orcidid: 0000-0001-7954-2125 surname: Fei fullname: Fei, Juntao email: jtfei@ hhu.edu.cn organization: College of IoT Engineering, Hohai University, Changzhou, China – sequence: 2 givenname: Yun orcidid: 0000-0002-2991-5197 surname: Chen fullname: Chen, Yun email: 965706254@qq.com organization: College of IoT Engineering, Hohai University, Changzhou, China |
| BookMark | eNp9kE9rGzEUxEVwobabD1ByEfS87tOu9s87BtdOC05iEue8aLVvWyXrlSvJMf72lXHIoYecBoaZgflN2GiwAzH2VcBMCMDvm_ViNUshhVmKpZQlXLCxQCkSEFCO2BiqKk8qxOwzm3j_DCBkDmLMXn8cB7U1mm_Ibc2gev7Ym9YMv5Nb2xKf2yE42_POOv4Y3Z6S9R_liV_rYF6Jr-2BHF-aPkR58jHB7-jAl0Rto_QLfyC9d46GEO29i-t3FA7WvXxhnzrVe7p80yl7Wi4285_J6v7m1_x6legsx5CoUuY6l2lbYNMgtGWeEeoWNKZYUNmKDqlCagroEIsmEyBJFS0WCqWmBrMp-3be3Tn7d08-1M927-JNX6cyQoCsElVMleeUdtZ7R12tTVDBnM4r09cC6hPk-gS5PkGu3yDHpvivuXNmq9zxw87VuWOI6D2PAIAiz_4BmWGKcA |
| CODEN | ITPEE8 |
| CitedBy_id | crossref_primary_10_3390_math11040919 crossref_primary_10_1016_j_matcom_2023_08_024 crossref_primary_10_1080_00207179_2023_2201649 crossref_primary_10_1109_ACCESS_2020_3007233 crossref_primary_10_3390_math11051094 crossref_primary_10_1109_TCYB_2021_3052234 crossref_primary_10_3390_s22103618 crossref_primary_10_1016_j_conengprac_2021_104735 crossref_primary_10_1109_TPEL_2021_3131293 crossref_primary_10_1049_cth2_12299 crossref_primary_10_1038_s41598_024_76842_8 crossref_primary_10_1109_ACCESS_2021_3077646 crossref_primary_10_1109_TII_2022_3162855 crossref_primary_10_1002_tee_23801 crossref_primary_10_1109_JIOT_2025_3571877 crossref_primary_10_1007_s12667_023_00647_3 crossref_primary_10_1109_JIOT_2024_3400890 crossref_primary_10_1109_TIE_2022_3204959 crossref_primary_10_1007_s11431_022_2371_3 crossref_primary_10_1007_s00202_024_02560_z crossref_primary_10_1007_s12555_022_0369_0 crossref_primary_10_1016_j_seta_2022_102823 crossref_primary_10_1007_s11071_024_10363_x crossref_primary_10_1109_TIE_2021_3088358 crossref_primary_10_1007_s00202_024_02446_0 crossref_primary_10_1109_TFUZZ_2020_3012760 crossref_primary_10_1007_s12206_020_1203_3 crossref_primary_10_1080_00207721_2020_1815893 crossref_primary_10_1109_TNNLS_2022_3169518 crossref_primary_10_1109_JSYST_2020_2985164 crossref_primary_10_1016_j_ijepes_2020_106478 crossref_primary_10_3934_math_2025309 crossref_primary_10_3390_math10071197 crossref_primary_10_1016_j_isatra_2021_06_002 crossref_primary_10_1016_j_ymssp_2024_111715 crossref_primary_10_1109_TIE_2021_3065621 crossref_primary_10_1109_TFUZZ_2021_3064704 crossref_primary_10_1109_TII_2022_3168654 crossref_primary_10_1049_iet_pel_2020_0454 crossref_primary_10_1109_TPEL_2021_3127896 crossref_primary_10_1049_cth2_12113 crossref_primary_10_1049_pel2_12619 crossref_primary_10_1109_TPEL_2023_3247835 crossref_primary_10_1007_s11071_024_09305_4 crossref_primary_10_1016_j_ast_2023_108773 crossref_primary_10_1016_j_apor_2020_102488 crossref_primary_10_1049_pel2_12162 crossref_primary_10_1049_iet_cta_2020_0770 crossref_primary_10_1016_j_jai_2023_07_001 crossref_primary_10_1016_j_ymssp_2021_108165 crossref_primary_10_1002_mma_10526 crossref_primary_10_1016_j_apor_2020_102364 crossref_primary_10_1007_s13042_020_01191_7 crossref_primary_10_1016_j_ins_2023_119110 crossref_primary_10_1016_j_ymssp_2023_110395 crossref_primary_10_1002_rnc_5399 crossref_primary_10_1109_TPEL_2025_3569230 crossref_primary_10_1109_ACCESS_2021_3071435 crossref_primary_10_1016_j_conengprac_2025_106565 crossref_primary_10_1109_JIOT_2024_3373650 crossref_primary_10_3390_s22072785 crossref_primary_10_1109_TPEL_2023_3304379 crossref_primary_10_1109_TII_2021_3049643 crossref_primary_10_3390_vibration7020026 crossref_primary_10_1109_TASE_2024_3432937 crossref_primary_10_1049_pel2_12159 crossref_primary_10_1109_TPEL_2023_3266738 crossref_primary_10_1016_j_apenergy_2023_121019 crossref_primary_10_1631_FITEE_2000317 crossref_primary_10_1016_j_oceaneng_2022_112942 crossref_primary_10_1109_ACCESS_2021_3056224 crossref_primary_10_1109_TASE_2024_3478775 crossref_primary_10_1016_j_ast_2023_108633 crossref_primary_10_1109_TMECH_2023_3317018 crossref_primary_10_1007_s00500_020_05202_1 crossref_primary_10_1109_ACCESS_2020_3022956 crossref_primary_10_1109_ACCESS_2020_3022675 crossref_primary_10_1016_j_ymssp_2022_108950 crossref_primary_10_1109_JIOT_2024_3418492 crossref_primary_10_1109_TASE_2023_3243405 crossref_primary_10_1109_TNNLS_2020_3041350 crossref_primary_10_1109_TSMC_2021_3071360 crossref_primary_10_1049_cth2_12125 crossref_primary_10_1016_j_ijepes_2021_107254 crossref_primary_10_1049_cth2_12128 crossref_primary_10_1109_JIOT_2023_3242972 crossref_primary_10_1002_rnc_6728 crossref_primary_10_1109_ACCESS_2020_3041526 crossref_primary_10_1016_j_oceaneng_2022_112497 crossref_primary_10_1177_0959651820966529 crossref_primary_10_1007_s11071_021_06330_5 crossref_primary_10_1016_j_ymssp_2020_107539 crossref_primary_10_1002_rnc_7932 crossref_primary_10_1007_s12555_021_1010_3 crossref_primary_10_1109_TPEL_2021_3049553 crossref_primary_10_1016_j_jsv_2023_117716 crossref_primary_10_1016_j_segan_2023_101210 crossref_primary_10_1109_TFUZZ_2021_3094717 crossref_primary_10_1016_j_ijleo_2020_166055 crossref_primary_10_1109_TNNLS_2023_3347767 crossref_primary_10_1080_00207217_2023_2224069 crossref_primary_10_1002_rnc_7664 crossref_primary_10_1109_ACCESS_2020_2995755 crossref_primary_10_1177_1077546320980181 crossref_primary_10_1016_j_egyr_2020_11_032 crossref_primary_10_1109_TCSI_2021_3117072 crossref_primary_10_1007_s40815_023_01639_2 crossref_primary_10_1109_JESTPE_2022_3222002 crossref_primary_10_1007_s11071_024_10857_8 crossref_primary_10_1007_s40031_021_00685_4 crossref_primary_10_1016_j_knosys_2022_109274 crossref_primary_10_1109_ACCESS_2020_3029806 crossref_primary_10_1007_s00202_024_02517_2 crossref_primary_10_3390_sym13122367 crossref_primary_10_1109_ACCESS_2022_3164509 crossref_primary_10_1109_TII_2023_3234305 crossref_primary_10_1007_s00202_023_02062_4 crossref_primary_10_1177_10775463211026031 crossref_primary_10_1002_rnc_70108 crossref_primary_10_1002_2050_7038_13212 crossref_primary_10_1016_j_ejcon_2020_07_005 crossref_primary_10_1002_rnc_6320 crossref_primary_10_1109_JIOT_2024_3394263 crossref_primary_10_3390_math11143231 crossref_primary_10_1109_JIOT_2023_3262665 crossref_primary_10_1177_1077546320956529 crossref_primary_10_3390_machines10100859 crossref_primary_10_1109_ACCESS_2021_3104030 |
| Cites_doi | 10.1007/s12555-018-0117-7 10.1007/s11768-005-5275-5 10.1109/TII.2013.2238546 10.3390/mi9070338 10.1109/ACCESS.2018.2825678 10.1007/s40815-019-00648-4 10.1109/TPEL.2019.2893618 10.1016/j.jfranklin.2020.01.050 10.1049/iet-pel.2012.0391 10.1109/TPEL.2019.2925154 10.1109/ICHQP.2016.7783319 10.1109/TII.2013.2279232 10.1109/TIE.2018.2795528 10.1016/0893-6080(89)90020-8 10.1109/TCSII.2019.2953223 10.1109/TSMCB.2012.2196039 10.1109/TPEL. 2019.2958051 10.1109/TIE.2008.2011350 10.1109/TAC.2005.858636 10.1109/TIE.2004.834961 10.1049/iet-pel.2013.0789 10.1109/TIA.1984.4504460 10.1109/ACCESS.2019.2895821 10.1016/j.automatica.2011.08.055 10.1080/02533839.2012.751334 10.1016/j.ijepes.2019.03.070 10.1109/TNNLS.2019.2919676 10.1002/rnc.3040 10.1155/2019/6942642 10.1109/41.184817 10.1109/87.761053 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 7TB 8FD FR3 JQ2 KR7 L7M |
| DOI | 10.1109/TPEL.2020.2974470 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Engineering Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitleList | Civil Engineering Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1941-0107 |
| EndPage | 9922 |
| ExternalDocumentID | 10_1109_TPEL_2020_2974470 9000915 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Natural Science Foundation of Jiangsu Province grantid: BK20171198 funderid: 10.13039/501100004608 – fundername: National Science Foundation of China grantid: 61873085 |
| GroupedDBID | -~X 0R~ 29I 3EH 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACGFS ACIWK ACKIV AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BKOMP BPEOZ CS3 DU5 E.L EBS EJD HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS RXW TAE TAF TN5 VH1 VJK AAYXX CITATION 7SP 7TB 8FD FR3 JQ2 KR7 L7M |
| ID | FETCH-LOGICAL-c359t-a745c542d69bb90d753e9cd0c9296e7d1f9e89eb60f996b3104ea6d96a94ceb93 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 155 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000565874900015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0885-8993 |
| IngestDate | Sun Nov 09 07:35:39 EST 2025 Sat Nov 29 03:54:40 EST 2025 Tue Nov 18 22:36:08 EST 2025 Wed Aug 27 02:39:31 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c359t-a745c542d69bb90d753e9cd0c9296e7d1f9e89eb60f996b3104ea6d96a94ceb93 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-7954-2125 0000-0002-2991-5197 |
| PQID | 2400103818 |
| PQPubID | 37080 |
| PageCount | 19 |
| ParticipantIDs | proquest_journals_2400103818 crossref_citationtrail_10_1109_TPEL_2020_2974470 crossref_primary_10_1109_TPEL_2020_2974470 ieee_primary_9000915 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-09-01 |
| PublicationDateYYYYMMDD | 2020-09-01 |
| PublicationDate_xml | – month: 09 year: 2020 text: 2020-09-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on power electronics |
| PublicationTitleAbbrev | TPEL |
| PublicationYear | 2020 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref15 ref14 ref31 ref11 ref32 ref10 ref2 ref1 ref17 ref16 ref19 ref18 wen (ref24) 2014 ref23 ref26 ref25 ref20 ref22 fei (ref30) 2012; 42 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
| References_xml | – ident: ref21 doi: 10.1007/s12555-018-0117-7 – ident: ref20 doi: 10.1007/s11768-005-5275-5 – ident: ref32 doi: 10.1109/TII.2013.2238546 – ident: ref26 doi: 10.3390/mi9070338 – ident: ref12 doi: 10.1109/ACCESS.2018.2825678 – ident: ref14 doi: 10.1007/s40815-019-00648-4 – ident: ref15 doi: 10.1109/TPEL.2019.2893618 – ident: ref28 doi: 10.1016/j.jfranklin.2020.01.050 – ident: ref5 doi: 10.1049/iet-pel.2012.0391 – ident: ref13 doi: 10.1109/TPEL.2019.2925154 – ident: ref1 doi: 10.1109/ICHQP.2016.7783319 – ident: ref19 doi: 10.1109/TII.2013.2279232 – ident: ref11 doi: 10.1109/TIE.2018.2795528 – ident: ref23 doi: 10.1016/0893-6080(89)90020-8 – ident: ref16 doi: 10.1109/TCSII.2019.2953223 – volume: 42 start-page: 1599 year: 2012 ident: ref30 article-title: Robust adaptive control of MEMS triaxial gyroscope using fuzzy compensator publication-title: IEEE Trans Syst Man Cybern B Cybern doi: 10.1109/TSMCB.2012.2196039 – ident: ref29 doi: 10.1109/TPEL. 2019.2958051 – ident: ref25 doi: 10.1109/TIE.2008.2011350 – ident: ref8 doi: 10.1109/TAC.2005.858636 – ident: ref4 doi: 10.1109/TIE.2004.834961 – ident: ref3 doi: 10.1049/iet-pel.2013.0789 – ident: ref2 doi: 10.1109/TIA.1984.4504460 – ident: ref22 doi: 10.1109/ACCESS.2019.2895821 – ident: ref9 doi: 10.1016/j.automatica.2011.08.055 – ident: ref17 doi: 10.1080/02533839.2012.751334 – ident: ref10 doi: 10.1016/j.ijepes.2019.03.070 – start-page: 87 year: 2014 ident: ref24 article-title: Adaptive fuzzy neural network control for a class of uncertain MIMO nonlinear systems via sliding mode design publication-title: Proc Int Conf Intell Hum -Mach Syst Cybern – ident: ref31 doi: 10.1109/TNNLS.2019.2919676 – ident: ref18 doi: 10.1002/rnc.3040 – ident: ref27 doi: 10.1155/2019/6942642 – ident: ref7 doi: 10.1109/41.184817 – ident: ref6 doi: 10.1109/87.761053 |
| SSID | ssj0014501 |
| Score | 2.645862 |
| Snippet | In this article, an adaptive dynamic terminal sliding-mode controller using a double hidden layer recurrent neural network (DHL-RNN) structure for a... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 9904 |
| SubjectTerms | Active control Active filters Active power filter (APF) Adaptive filters Biological neural networks Compensation Computer simulation Controllers double hidden layer recurrent neural network (DHL-RNN) dynamic terminal sliding-mode control (DTSMC) hardware-in-the-loop Harmonic analysis Neural networks Nonlinear control Nonlinear dynamical systems Nonlinear dynamics Power harmonic filters Recurrent neural networks Sliding mode control |
| Title | Dynamic Terminal Sliding-Mode Control for Single-Phase Active Power Filter Using New Feedback Recurrent Neural Network |
| URI | https://ieeexplore.ieee.org/document/9000915 https://www.proquest.com/docview/2400103818 |
| Volume | 35 |
| WOSCitedRecordID | wos000565874900015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1941-0107 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014501 issn: 0885-8993 databaseCode: RIE dateStart: 19860101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF5UPOjBVxXriz14EqNJukk6R1GLBynBVugtZDezWCyt9PX7ndmkoaAI3kLYXUK-3Z35dmbnE-IakwCtjhIPQqKryhLdARugpzBMNHCcqKWd2ETS7bYHA0g3xG19FwYRXfIZ3vGji-UXE7Pgo7J7FrgEvlG-mSRxeVerjhioyEkd06KJPOIQrSqCGfhw30-fX4kJhv5dSN6zYl3iNRvkRFV-7MTOvHT2__dhB2KvciPlQ4n7odjA8ZHYXSsu2BDLp1JsXvbLfJeR7I2GbKk81j-Tj2WOuiSnVfbo7Qi99INMmnxwO6BMWT5NdoYcTZcusUDShig7ZO10bj7lGx_Uc2knyfU9aPRumVB-LN47z_3HF69SWfBMK4K5lycqMpEKixi0Br8g_oJgCt-Q4xRjUgQWsA2oY98SN9LkDirM4wLiHJRBwvNEbI0nYzwVEnKrc2JoJtC50la1Y0Bb5GA1tkLrq6bwV_89M1UJclbCGGWOiviQMVQZQ5VVUDXFTd3lq6y_8VfjBmNTN6xgaYqLFbhZtUJnGefOBi5MevZ7r3Oxw2OX-WQXYms-XeCl2DbL-XA2vXKT7xvbF9fR |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fS-QwEB5EhTsf1DtPXH9dHu5JrKbdtN15FHVR3FsWXcG30qQTXFxW0dW_35m0LoIi-FZK0pZ8TWa-zGQ-gH-Ux-RtmkeYMF01nukO-pgiQ0luUeJEbRvEJvJ-v3Nzg4M52J-dhSGikHxGB3IZYvnVvXuWrbJDEbhEOVG-kBqT6Pq01ixmYNIgdszTJo2YRbSbGGas8XA4OO0xF0z0QcL-sxFl4ndWKMiqfFiLg4Hprnzv01ZhuXEk1VGN_C-Yo8lvWHpXXnANXk5quXk1rDNexupqPBJbFYkCmjqus9QVu63qiu-OKRrcslFTR2ENVAMRUFPdkcTTVUgtULwkqi7bO1u6O3UpW_VS3ElJhQ9-er9OKf8D193T4fFZ1OgsRK6d4jQqc5O61CRVhtairpjBELpKO3adMsqr2CN1kGymPbMjyw6hoTKrMCvROGJE12F-cj-hDVBYelsyR3OxLY31ppMh-apEb6mdeG1aoN_GvXBNEXLRwhgXgYxoLASqQqAqGqhasDfr8lBX4Piq8ZpgM2vYwNKC7Tdwi2aOPhWSPRuHQOnm573-wo-z4f9e0TvvX2zBT3lPnV22DfPTx2fagUX3Mh09Pe6GH_EVOoTbGA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+Terminal+Sliding-Mode+Control+for+Single-Phase+Active+Power+Filter+Using+New+Feedback+Recurrent+Neural+Network&rft.jtitle=IEEE+transactions+on+power+electronics&rft.au=Fei%2C+Juntao&rft.au=Chen%2C+Yun&rft.date=2020-09-01&rft.pub=IEEE&rft.issn=0885-8993&rft.volume=35&rft.issue=9&rft.spage=9904&rft.epage=9922&rft_id=info:doi/10.1109%2FTPEL.2020.2974470&rft.externalDocID=9000915 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-8993&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-8993&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-8993&client=summon |