Dynamic Terminal Sliding-Mode Control for Single-Phase Active Power Filter Using New Feedback Recurrent Neural Network

In this article, an adaptive dynamic terminal sliding-mode controller using a double hidden layer recurrent neural network (DHL-RNN) structure for a single-phase active power filter (APF) is proposed to improve harmonic compensation performance. First, a method combining dynamic sliding mode and ter...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on power electronics Ročník 35; číslo 9; s. 9904 - 9922
Hlavní autoři: Fei, Juntao, Chen, Yun
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.09.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:0885-8993, 1941-0107
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In this article, an adaptive dynamic terminal sliding-mode controller using a double hidden layer recurrent neural network (DHL-RNN) structure for a single-phase active power filter (APF) is proposed to improve harmonic compensation performance. First, a method combining dynamic sliding mode and terminal sliding mode is proposed to solve the chattering phenomenon in traditional sliding-mode control. Then, since the nonlinear dynamics of APF is difficult to obtain accurately, the DHL-RNN is used to approximate the proposed dynamic terminal sliding-mode controller. Meanwhile, an integral robust switching term is added to eliminate the approximation error of the neural network. Simulation and experimental results proved that the proposed controller has better compensation performance and tracking effect compared with a simple terminal sliding-mode controller.
AbstractList In this article, an adaptive dynamic terminal sliding-mode controller using a double hidden layer recurrent neural network (DHL-RNN) structure for a single-phase active power filter (APF) is proposed to improve harmonic compensation performance. First, a method combining dynamic sliding mode and terminal sliding mode is proposed to solve the chattering phenomenon in traditional sliding-mode control. Then, since the nonlinear dynamics of APF is difficult to obtain accurately, the DHL-RNN is used to approximate the proposed dynamic terminal sliding-mode controller. Meanwhile, an integral robust switching term is added to eliminate the approximation error of the neural network. Simulation and experimental results proved that the proposed controller has better compensation performance and tracking effect compared with a simple terminal sliding-mode controller.
Author Chen, Yun
Fei, Juntao
Author_xml – sequence: 1
  givenname: Juntao
  orcidid: 0000-0001-7954-2125
  surname: Fei
  fullname: Fei, Juntao
  email: jtfei@ hhu.edu.cn
  organization: College of IoT Engineering, Hohai University, Changzhou, China
– sequence: 2
  givenname: Yun
  orcidid: 0000-0002-2991-5197
  surname: Chen
  fullname: Chen, Yun
  email: 965706254@qq.com
  organization: College of IoT Engineering, Hohai University, Changzhou, China
BookMark eNp9kE9rGzEUxEVwobabD1ByEfS87tOu9s87BtdOC05iEue8aLVvWyXrlSvJMf72lXHIoYecBoaZgflN2GiwAzH2VcBMCMDvm_ViNUshhVmKpZQlXLCxQCkSEFCO2BiqKk8qxOwzm3j_DCBkDmLMXn8cB7U1mm_Ibc2gev7Ym9YMv5Nb2xKf2yE42_POOv4Y3Z6S9R_liV_rYF6Jr-2BHF-aPkR58jHB7-jAl0Rto_QLfyC9d46GEO29i-t3FA7WvXxhnzrVe7p80yl7Wi4285_J6v7m1_x6legsx5CoUuY6l2lbYNMgtGWeEeoWNKZYUNmKDqlCagroEIsmEyBJFS0WCqWmBrMp-3be3Tn7d08-1M927-JNX6cyQoCsElVMleeUdtZ7R12tTVDBnM4r09cC6hPk-gS5PkGu3yDHpvivuXNmq9zxw87VuWOI6D2PAIAiz_4BmWGKcA
CODEN ITPEE8
CitedBy_id crossref_primary_10_3390_math11040919
crossref_primary_10_1016_j_matcom_2023_08_024
crossref_primary_10_1080_00207179_2023_2201649
crossref_primary_10_1109_ACCESS_2020_3007233
crossref_primary_10_3390_math11051094
crossref_primary_10_1109_TCYB_2021_3052234
crossref_primary_10_3390_s22103618
crossref_primary_10_1016_j_conengprac_2021_104735
crossref_primary_10_1109_TPEL_2021_3131293
crossref_primary_10_1049_cth2_12299
crossref_primary_10_1038_s41598_024_76842_8
crossref_primary_10_1109_ACCESS_2021_3077646
crossref_primary_10_1109_TII_2022_3162855
crossref_primary_10_1002_tee_23801
crossref_primary_10_1109_JIOT_2025_3571877
crossref_primary_10_1007_s12667_023_00647_3
crossref_primary_10_1109_JIOT_2024_3400890
crossref_primary_10_1109_TIE_2022_3204959
crossref_primary_10_1007_s11431_022_2371_3
crossref_primary_10_1007_s00202_024_02560_z
crossref_primary_10_1007_s12555_022_0369_0
crossref_primary_10_1016_j_seta_2022_102823
crossref_primary_10_1007_s11071_024_10363_x
crossref_primary_10_1109_TIE_2021_3088358
crossref_primary_10_1007_s00202_024_02446_0
crossref_primary_10_1109_TFUZZ_2020_3012760
crossref_primary_10_1007_s12206_020_1203_3
crossref_primary_10_1080_00207721_2020_1815893
crossref_primary_10_1109_TNNLS_2022_3169518
crossref_primary_10_1109_JSYST_2020_2985164
crossref_primary_10_1016_j_ijepes_2020_106478
crossref_primary_10_3934_math_2025309
crossref_primary_10_3390_math10071197
crossref_primary_10_1016_j_isatra_2021_06_002
crossref_primary_10_1016_j_ymssp_2024_111715
crossref_primary_10_1109_TIE_2021_3065621
crossref_primary_10_1109_TFUZZ_2021_3064704
crossref_primary_10_1109_TII_2022_3168654
crossref_primary_10_1049_iet_pel_2020_0454
crossref_primary_10_1109_TPEL_2021_3127896
crossref_primary_10_1049_cth2_12113
crossref_primary_10_1049_pel2_12619
crossref_primary_10_1109_TPEL_2023_3247835
crossref_primary_10_1007_s11071_024_09305_4
crossref_primary_10_1016_j_ast_2023_108773
crossref_primary_10_1016_j_apor_2020_102488
crossref_primary_10_1049_pel2_12162
crossref_primary_10_1049_iet_cta_2020_0770
crossref_primary_10_1016_j_jai_2023_07_001
crossref_primary_10_1016_j_ymssp_2021_108165
crossref_primary_10_1002_mma_10526
crossref_primary_10_1016_j_apor_2020_102364
crossref_primary_10_1007_s13042_020_01191_7
crossref_primary_10_1016_j_ins_2023_119110
crossref_primary_10_1016_j_ymssp_2023_110395
crossref_primary_10_1002_rnc_5399
crossref_primary_10_1109_TPEL_2025_3569230
crossref_primary_10_1109_ACCESS_2021_3071435
crossref_primary_10_1016_j_conengprac_2025_106565
crossref_primary_10_1109_JIOT_2024_3373650
crossref_primary_10_3390_s22072785
crossref_primary_10_1109_TPEL_2023_3304379
crossref_primary_10_1109_TII_2021_3049643
crossref_primary_10_3390_vibration7020026
crossref_primary_10_1109_TASE_2024_3432937
crossref_primary_10_1049_pel2_12159
crossref_primary_10_1109_TPEL_2023_3266738
crossref_primary_10_1016_j_apenergy_2023_121019
crossref_primary_10_1631_FITEE_2000317
crossref_primary_10_1016_j_oceaneng_2022_112942
crossref_primary_10_1109_ACCESS_2021_3056224
crossref_primary_10_1109_TASE_2024_3478775
crossref_primary_10_1016_j_ast_2023_108633
crossref_primary_10_1109_TMECH_2023_3317018
crossref_primary_10_1007_s00500_020_05202_1
crossref_primary_10_1109_ACCESS_2020_3022956
crossref_primary_10_1109_ACCESS_2020_3022675
crossref_primary_10_1016_j_ymssp_2022_108950
crossref_primary_10_1109_JIOT_2024_3418492
crossref_primary_10_1109_TASE_2023_3243405
crossref_primary_10_1109_TNNLS_2020_3041350
crossref_primary_10_1109_TSMC_2021_3071360
crossref_primary_10_1049_cth2_12125
crossref_primary_10_1016_j_ijepes_2021_107254
crossref_primary_10_1049_cth2_12128
crossref_primary_10_1109_JIOT_2023_3242972
crossref_primary_10_1002_rnc_6728
crossref_primary_10_1109_ACCESS_2020_3041526
crossref_primary_10_1016_j_oceaneng_2022_112497
crossref_primary_10_1177_0959651820966529
crossref_primary_10_1007_s11071_021_06330_5
crossref_primary_10_1016_j_ymssp_2020_107539
crossref_primary_10_1002_rnc_7932
crossref_primary_10_1007_s12555_021_1010_3
crossref_primary_10_1109_TPEL_2021_3049553
crossref_primary_10_1016_j_jsv_2023_117716
crossref_primary_10_1016_j_segan_2023_101210
crossref_primary_10_1109_TFUZZ_2021_3094717
crossref_primary_10_1016_j_ijleo_2020_166055
crossref_primary_10_1109_TNNLS_2023_3347767
crossref_primary_10_1080_00207217_2023_2224069
crossref_primary_10_1002_rnc_7664
crossref_primary_10_1109_ACCESS_2020_2995755
crossref_primary_10_1177_1077546320980181
crossref_primary_10_1016_j_egyr_2020_11_032
crossref_primary_10_1109_TCSI_2021_3117072
crossref_primary_10_1007_s40815_023_01639_2
crossref_primary_10_1109_JESTPE_2022_3222002
crossref_primary_10_1007_s11071_024_10857_8
crossref_primary_10_1007_s40031_021_00685_4
crossref_primary_10_1016_j_knosys_2022_109274
crossref_primary_10_1109_ACCESS_2020_3029806
crossref_primary_10_1007_s00202_024_02517_2
crossref_primary_10_3390_sym13122367
crossref_primary_10_1109_ACCESS_2022_3164509
crossref_primary_10_1109_TII_2023_3234305
crossref_primary_10_1007_s00202_023_02062_4
crossref_primary_10_1177_10775463211026031
crossref_primary_10_1002_rnc_70108
crossref_primary_10_1002_2050_7038_13212
crossref_primary_10_1016_j_ejcon_2020_07_005
crossref_primary_10_1002_rnc_6320
crossref_primary_10_1109_JIOT_2024_3394263
crossref_primary_10_3390_math11143231
crossref_primary_10_1109_JIOT_2023_3262665
crossref_primary_10_1177_1077546320956529
crossref_primary_10_3390_machines10100859
crossref_primary_10_1109_ACCESS_2021_3104030
Cites_doi 10.1007/s12555-018-0117-7
10.1007/s11768-005-5275-5
10.1109/TII.2013.2238546
10.3390/mi9070338
10.1109/ACCESS.2018.2825678
10.1007/s40815-019-00648-4
10.1109/TPEL.2019.2893618
10.1016/j.jfranklin.2020.01.050
10.1049/iet-pel.2012.0391
10.1109/TPEL.2019.2925154
10.1109/ICHQP.2016.7783319
10.1109/TII.2013.2279232
10.1109/TIE.2018.2795528
10.1016/0893-6080(89)90020-8
10.1109/TCSII.2019.2953223
10.1109/TSMCB.2012.2196039
10.1109/TPEL. 2019.2958051
10.1109/TIE.2008.2011350
10.1109/TAC.2005.858636
10.1109/TIE.2004.834961
10.1049/iet-pel.2013.0789
10.1109/TIA.1984.4504460
10.1109/ACCESS.2019.2895821
10.1016/j.automatica.2011.08.055
10.1080/02533839.2012.751334
10.1016/j.ijepes.2019.03.070
10.1109/TNNLS.2019.2919676
10.1002/rnc.3040
10.1155/2019/6942642
10.1109/41.184817
10.1109/87.761053
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7TB
8FD
FR3
JQ2
KR7
L7M
DOI 10.1109/TPEL.2020.2974470
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Engineering Research Database
Advanced Technologies Database with Aerospace
DatabaseTitleList
Civil Engineering Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1941-0107
EndPage 9922
ExternalDocumentID 10_1109_TPEL_2020_2974470
9000915
Genre orig-research
GrantInformation_xml – fundername: Natural Science Foundation of Jiangsu Province
  grantid: BK20171198
  funderid: 10.13039/501100004608
– fundername: National Science Foundation of China
  grantid: 61873085
GroupedDBID -~X
0R~
29I
3EH
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACKIV
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BKOMP
BPEOZ
CS3
DU5
E.L
EBS
EJD
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TAF
TN5
VH1
VJK
AAYXX
CITATION
7SP
7TB
8FD
FR3
JQ2
KR7
L7M
ID FETCH-LOGICAL-c359t-a745c542d69bb90d753e9cd0c9296e7d1f9e89eb60f996b3104ea6d96a94ceb93
IEDL.DBID RIE
ISICitedReferencesCount 155
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000565874900015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0885-8993
IngestDate Sun Nov 09 07:35:39 EST 2025
Sat Nov 29 03:54:40 EST 2025
Tue Nov 18 22:36:08 EST 2025
Wed Aug 27 02:39:31 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c359t-a745c542d69bb90d753e9cd0c9296e7d1f9e89eb60f996b3104ea6d96a94ceb93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7954-2125
0000-0002-2991-5197
PQID 2400103818
PQPubID 37080
PageCount 19
ParticipantIDs proquest_journals_2400103818
crossref_citationtrail_10_1109_TPEL_2020_2974470
crossref_primary_10_1109_TPEL_2020_2974470
ieee_primary_9000915
PublicationCentury 2000
PublicationDate 2020-09-01
PublicationDateYYYYMMDD 2020-09-01
PublicationDate_xml – month: 09
  year: 2020
  text: 2020-09-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on power electronics
PublicationTitleAbbrev TPEL
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref31
ref11
ref32
ref10
ref2
ref1
ref17
ref16
ref19
ref18
wen (ref24) 2014
ref23
ref26
ref25
ref20
ref22
fei (ref30) 2012; 42
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref21
  doi: 10.1007/s12555-018-0117-7
– ident: ref20
  doi: 10.1007/s11768-005-5275-5
– ident: ref32
  doi: 10.1109/TII.2013.2238546
– ident: ref26
  doi: 10.3390/mi9070338
– ident: ref12
  doi: 10.1109/ACCESS.2018.2825678
– ident: ref14
  doi: 10.1007/s40815-019-00648-4
– ident: ref15
  doi: 10.1109/TPEL.2019.2893618
– ident: ref28
  doi: 10.1016/j.jfranklin.2020.01.050
– ident: ref5
  doi: 10.1049/iet-pel.2012.0391
– ident: ref13
  doi: 10.1109/TPEL.2019.2925154
– ident: ref1
  doi: 10.1109/ICHQP.2016.7783319
– ident: ref19
  doi: 10.1109/TII.2013.2279232
– ident: ref11
  doi: 10.1109/TIE.2018.2795528
– ident: ref23
  doi: 10.1016/0893-6080(89)90020-8
– ident: ref16
  doi: 10.1109/TCSII.2019.2953223
– volume: 42
  start-page: 1599
  year: 2012
  ident: ref30
  article-title: Robust adaptive control of MEMS triaxial gyroscope using fuzzy compensator
  publication-title: IEEE Trans Syst Man Cybern B Cybern
  doi: 10.1109/TSMCB.2012.2196039
– ident: ref29
  doi: 10.1109/TPEL. 2019.2958051
– ident: ref25
  doi: 10.1109/TIE.2008.2011350
– ident: ref8
  doi: 10.1109/TAC.2005.858636
– ident: ref4
  doi: 10.1109/TIE.2004.834961
– ident: ref3
  doi: 10.1049/iet-pel.2013.0789
– ident: ref2
  doi: 10.1109/TIA.1984.4504460
– ident: ref22
  doi: 10.1109/ACCESS.2019.2895821
– ident: ref9
  doi: 10.1016/j.automatica.2011.08.055
– ident: ref17
  doi: 10.1080/02533839.2012.751334
– ident: ref10
  doi: 10.1016/j.ijepes.2019.03.070
– start-page: 87
  year: 2014
  ident: ref24
  article-title: Adaptive fuzzy neural network control for a class of uncertain MIMO nonlinear systems via sliding mode design
  publication-title: Proc Int Conf Intell Hum -Mach Syst Cybern
– ident: ref31
  doi: 10.1109/TNNLS.2019.2919676
– ident: ref18
  doi: 10.1002/rnc.3040
– ident: ref27
  doi: 10.1155/2019/6942642
– ident: ref7
  doi: 10.1109/41.184817
– ident: ref6
  doi: 10.1109/87.761053
SSID ssj0014501
Score 2.645862
Snippet In this article, an adaptive dynamic terminal sliding-mode controller using a double hidden layer recurrent neural network (DHL-RNN) structure for a...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 9904
SubjectTerms Active control
Active filters
Active power filter (APF)
Adaptive filters
Biological neural networks
Compensation
Computer simulation
Controllers
double hidden layer recurrent neural network (DHL-RNN)
dynamic terminal sliding-mode control (DTSMC)
hardware-in-the-loop
Harmonic analysis
Neural networks
Nonlinear control
Nonlinear dynamical systems
Nonlinear dynamics
Power harmonic filters
Recurrent neural networks
Sliding mode control
Title Dynamic Terminal Sliding-Mode Control for Single-Phase Active Power Filter Using New Feedback Recurrent Neural Network
URI https://ieeexplore.ieee.org/document/9000915
https://www.proquest.com/docview/2400103818
Volume 35
WOSCitedRecordID wos000565874900015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0107
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014501
  issn: 0885-8993
  databaseCode: RIE
  dateStart: 19860101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF5UPOjBVxXriz14EqNJukk6R1GLBynBVugtZDezWCyt9PX7ndmkoaAI3kLYXUK-3Z35dmbnE-IakwCtjhIPQqKryhLdARugpzBMNHCcqKWd2ETS7bYHA0g3xG19FwYRXfIZ3vGji-UXE7Pgo7J7FrgEvlG-mSRxeVerjhioyEkd06KJPOIQrSqCGfhw30-fX4kJhv5dSN6zYl3iNRvkRFV-7MTOvHT2__dhB2KvciPlQ4n7odjA8ZHYXSsu2BDLp1JsXvbLfJeR7I2GbKk81j-Tj2WOuiSnVfbo7Qi99INMmnxwO6BMWT5NdoYcTZcusUDShig7ZO10bj7lGx_Uc2knyfU9aPRumVB-LN47z_3HF69SWfBMK4K5lycqMpEKixi0Br8g_oJgCt-Q4xRjUgQWsA2oY98SN9LkDirM4wLiHJRBwvNEbI0nYzwVEnKrc2JoJtC50la1Y0Bb5GA1tkLrq6bwV_89M1UJclbCGGWOiviQMVQZQ5VVUDXFTd3lq6y_8VfjBmNTN6xgaYqLFbhZtUJnGefOBi5MevZ7r3Oxw2OX-WQXYms-XeCl2DbL-XA2vXKT7xvbF9fR
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fS-QwEB5EhTsf1DtPXH9dHu5JrKbdtN15FHVR3FsWXcG30qQTXFxW0dW_35m0LoIi-FZK0pZ8TWa-zGQ-gH-Ux-RtmkeYMF01nukO-pgiQ0luUeJEbRvEJvJ-v3Nzg4M52J-dhSGikHxGB3IZYvnVvXuWrbJDEbhEOVG-kBqT6Pq01ixmYNIgdszTJo2YRbSbGGas8XA4OO0xF0z0QcL-sxFl4ndWKMiqfFiLg4Hprnzv01ZhuXEk1VGN_C-Yo8lvWHpXXnANXk5quXk1rDNexupqPBJbFYkCmjqus9QVu63qiu-OKRrcslFTR2ENVAMRUFPdkcTTVUgtULwkqi7bO1u6O3UpW_VS3ElJhQ9-er9OKf8D193T4fFZ1OgsRK6d4jQqc5O61CRVhtairpjBELpKO3adMsqr2CN1kGymPbMjyw6hoTKrMCvROGJE12F-cj-hDVBYelsyR3OxLY31ppMh-apEb6mdeG1aoN_GvXBNEXLRwhgXgYxoLASqQqAqGqhasDfr8lBX4Piq8ZpgM2vYwNKC7Tdwi2aOPhWSPRuHQOnm573-wo-z4f9e0TvvX2zBT3lPnV22DfPTx2fagUX3Mh09Pe6GH_EVOoTbGA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+Terminal+Sliding-Mode+Control+for+Single-Phase+Active+Power+Filter+Using+New+Feedback+Recurrent+Neural+Network&rft.jtitle=IEEE+transactions+on+power+electronics&rft.au=Fei%2C+Juntao&rft.au=Chen%2C+Yun&rft.date=2020-09-01&rft.pub=IEEE&rft.issn=0885-8993&rft.volume=35&rft.issue=9&rft.spage=9904&rft.epage=9922&rft_id=info:doi/10.1109%2FTPEL.2020.2974470&rft.externalDocID=9000915
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-8993&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-8993&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-8993&client=summon