System-on-a-Chip (SoC)-Based Hardware Acceleration for an Online Sequential Extreme Learning Machine (OS-ELM)

Machine learning algorithms such as those for object classification in images, video content analysis, and human action recognition are used to extract meaningful information from data recorded by image sensors and cameras. Among the existing machine learning algorithms for such purposes, extreme le...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on computer-aided design of integrated circuits and systems Jg. 38; H. 11; S. 2127 - 2138
Hauptverfasser: Safaei, Amin, Wu, Q. M. Jonathan, Akilan, Thangarajah, Yang, Yimin
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York IEEE 01.11.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:0278-0070, 1937-4151
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Machine learning algorithms such as those for object classification in images, video content analysis, and human action recognition are used to extract meaningful information from data recorded by image sensors and cameras. Among the existing machine learning algorithms for such purposes, extreme learning machines (ELMs) and online sequential ELMs (OS-ELMs) are well known for their computational efficiency and performance when processing large datasets. The latter approach was derived from the ELM approach and optimized for real-time application. However, OS-ELM classifiers are computationally demanding, and the existing state-of-the-art computing platforms are not efficient enough for embedded systems, especially for applications with strict requirements in terms of low power consumption, high throughput, and low latency. This paper presents the implementation of an ELM/OS-ELM in a customized system-on-a-chip field-programmable gate array-based architecture to ensure efficient hardware acceleration. The acceleration process comprises parallel extraction, deep pipelining, and efficient shared memory communication.
AbstractList Machine learning algorithms such as those for object classification in images, video content analysis, and human action recognition are used to extract meaningful information from data recorded by image sensors and cameras. Among the existing machine learning algorithms for such purposes, extreme learning machines (ELMs) and online sequential ELMs (OS-ELMs) are well known for their computational efficiency and performance when processing large datasets. The latter approach was derived from the ELM approach and optimized for real-time application. However, OS-ELM classifiers are computationally demanding, and the existing state-of-the-art computing platforms are not efficient enough for embedded systems, especially for applications with strict requirements in terms of low power consumption, high throughput, and low latency. This paper presents the implementation of an ELM/OS-ELM in a customized system-on-a-chip field-programmable gate array-based architecture to ensure efficient hardware acceleration. The acceleration process comprises parallel extraction, deep pipelining, and efficient shared memory communication.
Author Yang, Yimin
Wu, Q. M. Jonathan
Akilan, Thangarajah
Safaei, Amin
Author_xml – sequence: 1
  givenname: Amin
  orcidid: 0000-0002-4217-8902
  surname: Safaei
  fullname: Safaei, Amin
  email: safaeia@uwindsor.ca
  organization: Department of Electrical and Computer Engineering, University of Windsor, Windsor, Canada
– sequence: 2
  givenname: Q. M. Jonathan
  orcidid: 0000-0002-5208-7975
  surname: Wu
  fullname: Wu, Q. M. Jonathan
  organization: Department of Electrical and Computer Engineering, University of Windsor, Windsor, Canada
– sequence: 3
  givenname: Thangarajah
  orcidid: 0000-0002-2972-3291
  surname: Akilan
  fullname: Akilan, Thangarajah
  organization: Department of Electrical and Computer Engineering, University of Windsor, Windsor, Canada
– sequence: 4
  givenname: Yimin
  surname: Yang
  fullname: Yang, Yimin
  organization: Computer Science Department, Lakehead University, Thunder Bay, Canada
BookMark eNp9kEtPwzAQhC0EEuXxAxAXS1zg4LJ24jg-llAeUqseWs6R66zBKHWKkwr496QUceDAaaXRzM7oOyL7oQlIyBmHIeegrxfF6HYogOdDkaucZ2KPDLhOFEu55PtkAELlDEDBITlq21cAnkqhB2Q1_2w7XLEmMMOKF7-ml_OmuGI3psWKPphYvZuIdGQt1hhN55tAXROpCXQWah-QzvFtg6Hzpqbjjy7iCukETQw-PNOpsS9bz-VszsaT6dUJOXCmbvH05x6Tp7vxonhgk9n9YzGaMJtI3TGTJVW_F1yWGSsspMqoZS8k6Li2WkkjsiSVDkSepr1ULeXSgqy4ACeFc8kxudj9XcemX9d25WuziaGvLEUCSuicQ9a7-M5lY9O2EV25jn5l4mfJodxSLbdUyy3V8odqn1F_MtZ331i6aHz9b_J8l_SI-NuUS9Bc6eQLwduEcA
CODEN ITCSDI
CitedBy_id crossref_primary_10_1109_TC_2020_2973631
crossref_primary_10_1109_TCSI_2023_3253705
crossref_primary_10_1007_s10825_023_02067_z
crossref_primary_10_1109_ACCESS_2021_3072673
crossref_primary_10_1109_ACCESS_2022_3175574
crossref_primary_10_3390_mca29030040
crossref_primary_10_3390_s22166287
crossref_primary_10_1016_j_asoc_2025_113789
crossref_primary_10_1007_s00500_020_05289_6
crossref_primary_10_1007_s00521_022_08034_2
crossref_primary_10_1016_j_ijepes_2023_109543
crossref_primary_10_1007_s11063_019_10165_y
crossref_primary_10_1007_s00521_020_05414_4
crossref_primary_10_1038_s41598_024_66676_9
crossref_primary_10_3390_s20154191
crossref_primary_10_1088_1361_6501_ac7779
crossref_primary_10_3390_healthcare10050873
crossref_primary_10_1016_j_procs_2025_03_273
crossref_primary_10_1155_2021_8592216
crossref_primary_10_1109_ACCESS_2020_3012819
crossref_primary_10_1109_MITS_2022_3182358
crossref_primary_10_1016_j_energy_2020_119530
crossref_primary_10_1016_j_neucom_2021_04_049
crossref_primary_10_1007_s13042_024_02422_x
crossref_primary_10_1016_j_engappai_2025_111369
Cites_doi 10.1109/ICNN.1994.374465
10.1007/3-540-55895-0_474
10.1109/TNN.2006.880583
10.1109/TCYB.2017.2653223
10.1109/CVPR.2013.98
10.1109/TII.2016.2554521
10.1007/978-3-319-28397-5_3
10.1109/SMC.2017.8122748
10.1109/TCYB.2016.2533424
10.1016/j.ins.2011.09.015
10.1109/HPCSim.2016.7568380
10.1109/71.313123
10.1109/3477.552191
10.1142/S0218213093000266
10.1109/ISCAS.2016.7539118
10.1109/TRO.2011.2130030
10.1109/TNNLS.2015.2424995
10.1145/2145694.2145704
10.1109/TVLSI.2016.2558842
10.1016/j.jfranklin.2017.07.037
10.1016/j.neucom.2012.01.042
10.1016/j.neucom.2011.12.050
10.1016/j.patrec.2011.07.016
10.1016/0743-7315(92)90068-X
10.1109/72.217180
10.1016/0167-8191(90)90084-M
10.1109/72.363476
10.1007/BF01934122
10.1016/0925-2312(94)90053-1
10.1016/j.neunet.2014.10.001
10.1109/CVPR.2013.436
10.1109/TCSII.2012.2204112
10.1109/INCoS.2015.30
10.1109/72.363436
10.1109/MIS.2013.140
10.1016/j.neucom.2010.11.034
10.1016/0893-6080(95)00039-9
10.1109/MNNFS.1996.493794
10.1109/SMC.2017.8122663
10.1016/j.compeleceng.2016.02.007
10.1016/j.neucom.2016.05.112
10.1109/CCGrid.2012.43
10.1109/TSMCB.2011.2168604
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TCAD.2018.2878162
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1937-4151
EndPage 2138
ExternalDocumentID 10_1109_TCAD_2018_2878162
8509179
Genre orig-research
GrantInformation_xml – fundername: Xilinx University Program
– fundername: Natural Sciences and Engineering Research Council of Canada
  funderid: 10.13039/501100000038
GroupedDBID --Z
-~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PZZ
RIA
RIE
RNS
TN5
VH1
VJK
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c359t-a63d2780f66ac2c047a7b2783ef19c975a26345f02844f19db5bc05d120f52ff3
IEDL.DBID RIE
ISICitedReferencesCount 34
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000505522900007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0278-0070
IngestDate Mon Jun 30 04:37:57 EDT 2025
Sat Nov 29 01:40:41 EST 2025
Tue Nov 18 22:31:17 EST 2025
Wed Aug 27 02:43:04 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c359t-a63d2780f66ac2c047a7b2783ef19c975a26345f02844f19db5bc05d120f52ff3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4217-8902
0000-0002-2972-3291
0000-0002-5208-7975
PQID 2307298106
PQPubID 85470
PageCount 12
ParticipantIDs crossref_primary_10_1109_TCAD_2018_2878162
proquest_journals_2307298106
crossref_citationtrail_10_1109_TCAD_2018_2878162
ieee_primary_8509179
PublicationCentury 2000
PublicationDate 2019-11-01
PublicationDateYYYYMMDD 2019-11-01
PublicationDate_xml – month: 11
  year: 2019
  text: 2019-11-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on computer-aided design of integrated circuits and systems
PublicationTitleAbbrev TCAD
PublicationYear 2019
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
(ref49) 2018
ref11
ref16
ref19
ref18
(ref9) 2017
gentle (ref45) 2007
ref50
ref46
(ref53) 2018
ref48
ref47
ref42
ref41
foo (ref24) 1997; 27
ref44
ref43
ref8
ref7
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
eppler (ref31) 1997
ref36
ref30
ref33
ref32
ref2
ref1
ref39
(ref10) 0
ref38
(ref51) 2016
hadfield (ref17) 2016; 121
ref23
ref25
ref20
ref22
ref21
ref28
ref27
ref29
kennedy (ref26) 1997
(ref52) 2018
References_xml – ident: ref23
  doi: 10.1109/ICNN.1994.374465
– ident: ref25
  doi: 10.1007/3-540-55895-0_474
– ident: ref48
  doi: 10.1109/TNN.2006.880583
– ident: ref43
  doi: 10.1109/TCYB.2017.2653223
– ident: ref18
  doi: 10.1109/CVPR.2013.98
– ident: ref4
  doi: 10.1109/TII.2016.2554521
– ident: ref3
  doi: 10.1007/978-3-319-28397-5_3
– ident: ref13
  doi: 10.1109/SMC.2017.8122748
– ident: ref44
  doi: 10.1109/TCYB.2016.2533424
– year: 2007
  ident: ref45
  publication-title: Matrix Algebra Theory Computations and Applications in Statistics
– ident: ref41
  doi: 10.1016/j.ins.2011.09.015
– year: 2018
  ident: ref53
  publication-title: 7 Series FPGAs Memory Resources
– ident: ref14
  doi: 10.1109/HPCSim.2016.7568380
– ident: ref21
  doi: 10.1109/71.313123
– volume: 27
  start-page: 118
  year: 1997
  ident: ref24
  article-title: Parallel implementation of backpropagation neural networks on a heterogeneous array of transputers
  publication-title: IEEE Trans Syst Man Cybern B Cybern
  doi: 10.1109/3477.552191
– ident: ref30
  doi: 10.1142/S0218213093000266
– ident: ref11
  doi: 10.1109/ISCAS.2016.7539118
– ident: ref37
  doi: 10.1109/TRO.2011.2130030
– ident: ref42
  doi: 10.1109/TNNLS.2015.2424995
– ident: ref8
  doi: 10.1145/2145694.2145704
– ident: ref33
  doi: 10.1109/TVLSI.2016.2558842
– ident: ref12
  doi: 10.1016/j.jfranklin.2017.07.037
– ident: ref36
  doi: 10.1016/j.neucom.2012.01.042
– ident: ref39
  doi: 10.1016/j.neucom.2011.12.050
– ident: ref47
  doi: 10.1016/j.patrec.2011.07.016
– ident: ref28
  doi: 10.1016/0743-7315(92)90068-X
– start-page: 225
  year: 1997
  ident: ref26
  article-title: A parallel architecture for binary neural networks
  publication-title: Proc 6th Int Conf Microelectron Neural Netw Evol Fuzzy Syst (MICRONEURO)
– ident: ref32
  doi: 10.1109/72.217180
– ident: ref19
  doi: 10.1016/0167-8191(90)90084-M
– year: 2017
  ident: ref9
  publication-title: Expanding the All Programmable SoC Portfolio
– ident: ref20
  doi: 10.1109/72.363476
– ident: ref46
  doi: 10.1007/BF01934122
– ident: ref1
  doi: 10.1016/0925-2312(94)90053-1
– ident: ref40
  doi: 10.1016/j.neunet.2014.10.001
– ident: ref16
  doi: 10.1109/CVPR.2013.436
– ident: ref38
  doi: 10.1109/TCSII.2012.2204112
– ident: ref35
  doi: 10.1109/INCoS.2015.30
– ident: ref27
  doi: 10.1109/72.363436
– year: 0
  ident: ref10
  publication-title: Intel SoCs When Architecture Matters
– ident: ref2
  doi: 10.1109/MIS.2013.140
– ident: ref6
  doi: 10.1016/j.neucom.2010.11.034
– ident: ref22
  doi: 10.1016/0893-6080(95)00039-9
– ident: ref29
  doi: 10.1109/MNNFS.1996.493794
– ident: ref15
  doi: 10.1109/SMC.2017.8122663
– ident: ref5
  doi: 10.1016/j.compeleceng.2016.02.007
– year: 2018
  ident: ref52
  publication-title: 7 Series DSP48E1 Slice
– ident: ref7
  doi: 10.1016/j.neucom.2016.05.112
– ident: ref34
  doi: 10.1109/CCGrid.2012.43
– start-page: 9
  year: 1997
  ident: ref31
  article-title: High speed neural network chip on PCI-board
  publication-title: Proc MicroNeuro
– year: 2018
  ident: ref49
  publication-title: Extreme learning machine
– ident: ref50
  doi: 10.1109/TSMCB.2011.2168604
– year: 2016
  ident: ref51
  publication-title: A Zynq Accelerator for Floating Point Matrix Multiplication Designed with Vivado HLS
– volume: 121
  start-page: 1
  year: 2016
  ident: ref17
  article-title: Hollywood 3D: What are the best 3D features for action recognition?
  publication-title: Int J Comput Vis
SSID ssj0014529
Score 2.4334767
Snippet Machine learning algorithms such as those for object classification in images, video content analysis, and human action recognition are used to extract...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2127
SubjectTerms Acceleration
Algorithms
Artificial intelligence
Artificial neural networks
Computer architecture
Content analysis
Embedded systems
Extreme learning machine (ELM)
Field programmable gate arrays
Hardware
hardware (HW)
Human activity recognition
Human motion
Image classification
Machine learning
Machine learning algorithms
Matrix decomposition
neural networks (NNs)
online sequential ELM (OS-ELM)
Pipelining (computers)
Power consumption
System on chip
system-on-a-chip field-programmable gate array (SoC FPGA)
Training
Video data
Title System-on-a-Chip (SoC)-Based Hardware Acceleration for an Online Sequential Extreme Learning Machine (OS-ELM)
URI https://ieeexplore.ieee.org/document/8509179
https://www.proquest.com/docview/2307298106
Volume 38
WOSCitedRecordID wos000505522900007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1937-4151
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014529
  issn: 0278-0070
  databaseCode: RIE
  dateStart: 19820101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB2VigMc2BFlkw8cAGHI4sTxEaoiDi0gFSRukeMFkCBFpQU-n7GTViAQErcksqPEz8kbe2beAOxxZpBli5iisZ5RhqhTKUOLp5kwHPnJaJ8o3OWXl9ndnbhuwNE0F8YY44PPzLE79L58PVBjt1V2kjl242IGZjhPq1ytqcfAORD9fopTjMV5XHsww0Cc3OBLuSCu7BiXB1mYRt84yBdV-fEn9vRyvvi_B1uChdqMJKcV7svQMOUKzH8RF1yF50qMnA5KKmn74fGF7PcH7QN6hrylifPYv8uhIadKIfNU84CgBUtkSSr9UdL3Ydb4C3ginY-R20gktRzrPen5IExD9q_6tNPtHazB7Xnnpn1B6-IKVMWJGFGZxhrHKrBpKlWkAsYlL1zZDWNDoQRPZJTGLLFofzCGl3SRFCpIdBgFNomsjdehWQ5KswHEFqHTIWOSpRGTUSCVKJSyodUFWpdatyCYDHeuauVxVwDjKfcrkEDkDqHcIZTXCLXgcNrlpZLd-KvxqoNk2rBGowXbE0zz-sN8zV3ceyQyXAhv_t5rC-bw3qJKN9yG5mg4Njswq95Gj6_DXT_nPgGUhNFK
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ZT-MwEB5xSbAPy60ty-EHHgDhksM5_AhVEYi2ILVIvEWOD0BiU1TK7v58xo6pQCAk3pLIVhJ_Tr6xZ-YbgN2MaWTZMqZorOeUIepUiNDgac51hvyklUsU7mS9Xn5zw6-m4HCSC6O1dsFnumkPnS9fDeWz3So7yi27ZXwaZm3lLJ-tNfEZWBei21GxmrE4k70PMwz40QBfy4Zx5U1cIORhGr1jIVdW5cO_2BHM6eL3Hm0JfnpDkhzXyC_DlK5W4McbecFV-FPLkdNhRQVt3d0_kr3-sLVPT5C5FLE--39ipMmxlMg99UwgaMMSUZFagZT0XaA1_gQeSPv_2G4lEi_Ieku6LgxTk73LPm13uvtrcH3aHrTOqC-vQGWc8DEVaaxwrAKTpkJGMmCZyEpbeEObkEueJSJKY5YYtEAYw0uqTEoZJCqMApNExsTrMFMNK_0LiClDq0TGBEsjJqJASF5KaUKjSrQvlWpA8DrchfTa47YExkPh1iABLyxChUWo8Ag14GDS5bEW3viq8aqFZNLQo9GAzVdMC_9pPhU28j3iOS6FNz7vtQPzZ4Nup-ic9y5-wwLeh9fJh5swMx496y2Yk3_H90-jbTf_XgCm6NST
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=System-on-a-Chip+%28SoC%29-Based+Hardware+Acceleration+for+an+Online+Sequential+Extreme+Learning+Machine+%28OS-ELM%29&rft.jtitle=IEEE+transactions+on+computer-aided+design+of+integrated+circuits+and+systems&rft.au=Safaei%2C+Amin&rft.au=Wu%2C+Q+M+Jonathan&rft.au=Akilan%2C+Thangarajah&rft.au=Yang%2C+Yimin&rft.date=2019-11-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0278-0070&rft.eissn=1937-4151&rft.volume=38&rft.issue=11&rft.spage=2127&rft_id=info:doi/10.1109%2FTCAD.2018.2878162&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0070&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0070&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0070&client=summon