System-on-a-Chip (SoC)-Based Hardware Acceleration for an Online Sequential Extreme Learning Machine (OS-ELM)
Machine learning algorithms such as those for object classification in images, video content analysis, and human action recognition are used to extract meaningful information from data recorded by image sensors and cameras. Among the existing machine learning algorithms for such purposes, extreme le...
Gespeichert in:
| Veröffentlicht in: | IEEE transactions on computer-aided design of integrated circuits and systems Jg. 38; H. 11; S. 2127 - 2138 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
IEEE
01.11.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 0278-0070, 1937-4151 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Machine learning algorithms such as those for object classification in images, video content analysis, and human action recognition are used to extract meaningful information from data recorded by image sensors and cameras. Among the existing machine learning algorithms for such purposes, extreme learning machines (ELMs) and online sequential ELMs (OS-ELMs) are well known for their computational efficiency and performance when processing large datasets. The latter approach was derived from the ELM approach and optimized for real-time application. However, OS-ELM classifiers are computationally demanding, and the existing state-of-the-art computing platforms are not efficient enough for embedded systems, especially for applications with strict requirements in terms of low power consumption, high throughput, and low latency. This paper presents the implementation of an ELM/OS-ELM in a customized system-on-a-chip field-programmable gate array-based architecture to ensure efficient hardware acceleration. The acceleration process comprises parallel extraction, deep pipelining, and efficient shared memory communication. |
|---|---|
| AbstractList | Machine learning algorithms such as those for object classification in images, video content analysis, and human action recognition are used to extract meaningful information from data recorded by image sensors and cameras. Among the existing machine learning algorithms for such purposes, extreme learning machines (ELMs) and online sequential ELMs (OS-ELMs) are well known for their computational efficiency and performance when processing large datasets. The latter approach was derived from the ELM approach and optimized for real-time application. However, OS-ELM classifiers are computationally demanding, and the existing state-of-the-art computing platforms are not efficient enough for embedded systems, especially for applications with strict requirements in terms of low power consumption, high throughput, and low latency. This paper presents the implementation of an ELM/OS-ELM in a customized system-on-a-chip field-programmable gate array-based architecture to ensure efficient hardware acceleration. The acceleration process comprises parallel extraction, deep pipelining, and efficient shared memory communication. |
| Author | Yang, Yimin Wu, Q. M. Jonathan Akilan, Thangarajah Safaei, Amin |
| Author_xml | – sequence: 1 givenname: Amin orcidid: 0000-0002-4217-8902 surname: Safaei fullname: Safaei, Amin email: safaeia@uwindsor.ca organization: Department of Electrical and Computer Engineering, University of Windsor, Windsor, Canada – sequence: 2 givenname: Q. M. Jonathan orcidid: 0000-0002-5208-7975 surname: Wu fullname: Wu, Q. M. Jonathan organization: Department of Electrical and Computer Engineering, University of Windsor, Windsor, Canada – sequence: 3 givenname: Thangarajah orcidid: 0000-0002-2972-3291 surname: Akilan fullname: Akilan, Thangarajah organization: Department of Electrical and Computer Engineering, University of Windsor, Windsor, Canada – sequence: 4 givenname: Yimin surname: Yang fullname: Yang, Yimin organization: Computer Science Department, Lakehead University, Thunder Bay, Canada |
| BookMark | eNp9kEtPwzAQhC0EEuXxAxAXS1zg4LJ24jg-llAeUqseWs6R66zBKHWKkwr496QUceDAaaXRzM7oOyL7oQlIyBmHIeegrxfF6HYogOdDkaucZ2KPDLhOFEu55PtkAELlDEDBITlq21cAnkqhB2Q1_2w7XLEmMMOKF7-ml_OmuGI3psWKPphYvZuIdGQt1hhN55tAXROpCXQWah-QzvFtg6Hzpqbjjy7iCukETQw-PNOpsS9bz-VszsaT6dUJOXCmbvH05x6Tp7vxonhgk9n9YzGaMJtI3TGTJVW_F1yWGSsspMqoZS8k6Li2WkkjsiSVDkSepr1ULeXSgqy4ACeFc8kxudj9XcemX9d25WuziaGvLEUCSuicQ9a7-M5lY9O2EV25jn5l4mfJodxSLbdUyy3V8odqn1F_MtZ331i6aHz9b_J8l_SI-NuUS9Bc6eQLwduEcA |
| CODEN | ITCSDI |
| CitedBy_id | crossref_primary_10_1109_TC_2020_2973631 crossref_primary_10_1109_TCSI_2023_3253705 crossref_primary_10_1007_s10825_023_02067_z crossref_primary_10_1109_ACCESS_2021_3072673 crossref_primary_10_1109_ACCESS_2022_3175574 crossref_primary_10_3390_mca29030040 crossref_primary_10_3390_s22166287 crossref_primary_10_1016_j_asoc_2025_113789 crossref_primary_10_1007_s00500_020_05289_6 crossref_primary_10_1007_s00521_022_08034_2 crossref_primary_10_1016_j_ijepes_2023_109543 crossref_primary_10_1007_s11063_019_10165_y crossref_primary_10_1007_s00521_020_05414_4 crossref_primary_10_1038_s41598_024_66676_9 crossref_primary_10_3390_s20154191 crossref_primary_10_1088_1361_6501_ac7779 crossref_primary_10_3390_healthcare10050873 crossref_primary_10_1016_j_procs_2025_03_273 crossref_primary_10_1155_2021_8592216 crossref_primary_10_1109_ACCESS_2020_3012819 crossref_primary_10_1109_MITS_2022_3182358 crossref_primary_10_1016_j_energy_2020_119530 crossref_primary_10_1016_j_neucom_2021_04_049 crossref_primary_10_1007_s13042_024_02422_x crossref_primary_10_1016_j_engappai_2025_111369 |
| Cites_doi | 10.1109/ICNN.1994.374465 10.1007/3-540-55895-0_474 10.1109/TNN.2006.880583 10.1109/TCYB.2017.2653223 10.1109/CVPR.2013.98 10.1109/TII.2016.2554521 10.1007/978-3-319-28397-5_3 10.1109/SMC.2017.8122748 10.1109/TCYB.2016.2533424 10.1016/j.ins.2011.09.015 10.1109/HPCSim.2016.7568380 10.1109/71.313123 10.1109/3477.552191 10.1142/S0218213093000266 10.1109/ISCAS.2016.7539118 10.1109/TRO.2011.2130030 10.1109/TNNLS.2015.2424995 10.1145/2145694.2145704 10.1109/TVLSI.2016.2558842 10.1016/j.jfranklin.2017.07.037 10.1016/j.neucom.2012.01.042 10.1016/j.neucom.2011.12.050 10.1016/j.patrec.2011.07.016 10.1016/0743-7315(92)90068-X 10.1109/72.217180 10.1016/0167-8191(90)90084-M 10.1109/72.363476 10.1007/BF01934122 10.1016/0925-2312(94)90053-1 10.1016/j.neunet.2014.10.001 10.1109/CVPR.2013.436 10.1109/TCSII.2012.2204112 10.1109/INCoS.2015.30 10.1109/72.363436 10.1109/MIS.2013.140 10.1016/j.neucom.2010.11.034 10.1016/0893-6080(95)00039-9 10.1109/MNNFS.1996.493794 10.1109/SMC.2017.8122663 10.1016/j.compeleceng.2016.02.007 10.1016/j.neucom.2016.05.112 10.1109/CCGrid.2012.43 10.1109/TSMCB.2011.2168604 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/TCAD.2018.2878162 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1937-4151 |
| EndPage | 2138 |
| ExternalDocumentID | 10_1109_TCAD_2018_2878162 8509179 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Xilinx University Program – fundername: Natural Sciences and Engineering Research Council of Canada funderid: 10.13039/501100000038 |
| GroupedDBID | --Z -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFS ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P PZZ RIA RIE RNS TN5 VH1 VJK AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c359t-a63d2780f66ac2c047a7b2783ef19c975a26345f02844f19db5bc05d120f52ff3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 34 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000505522900007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0278-0070 |
| IngestDate | Mon Jun 30 04:37:57 EDT 2025 Sat Nov 29 01:40:41 EST 2025 Tue Nov 18 22:31:17 EST 2025 Wed Aug 27 02:43:04 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 11 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c359t-a63d2780f66ac2c047a7b2783ef19c975a26345f02844f19db5bc05d120f52ff3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-4217-8902 0000-0002-2972-3291 0000-0002-5208-7975 |
| PQID | 2307298106 |
| PQPubID | 85470 |
| PageCount | 12 |
| ParticipantIDs | crossref_primary_10_1109_TCAD_2018_2878162 proquest_journals_2307298106 crossref_citationtrail_10_1109_TCAD_2018_2878162 ieee_primary_8509179 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-11-01 |
| PublicationDateYYYYMMDD | 2019-11-01 |
| PublicationDate_xml | – month: 11 year: 2019 text: 2019-11-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on computer-aided design of integrated circuits and systems |
| PublicationTitleAbbrev | TCAD |
| PublicationYear | 2019 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref15 ref14 (ref49) 2018 ref11 ref16 ref19 ref18 (ref9) 2017 gentle (ref45) 2007 ref50 ref46 (ref53) 2018 ref48 ref47 ref42 ref41 foo (ref24) 1997; 27 ref44 ref43 ref8 ref7 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref37 eppler (ref31) 1997 ref36 ref30 ref33 ref32 ref2 ref1 ref39 (ref10) 0 ref38 (ref51) 2016 hadfield (ref17) 2016; 121 ref23 ref25 ref20 ref22 ref21 ref28 ref27 ref29 kennedy (ref26) 1997 (ref52) 2018 |
| References_xml | – ident: ref23 doi: 10.1109/ICNN.1994.374465 – ident: ref25 doi: 10.1007/3-540-55895-0_474 – ident: ref48 doi: 10.1109/TNN.2006.880583 – ident: ref43 doi: 10.1109/TCYB.2017.2653223 – ident: ref18 doi: 10.1109/CVPR.2013.98 – ident: ref4 doi: 10.1109/TII.2016.2554521 – ident: ref3 doi: 10.1007/978-3-319-28397-5_3 – ident: ref13 doi: 10.1109/SMC.2017.8122748 – ident: ref44 doi: 10.1109/TCYB.2016.2533424 – year: 2007 ident: ref45 publication-title: Matrix Algebra Theory Computations and Applications in Statistics – ident: ref41 doi: 10.1016/j.ins.2011.09.015 – year: 2018 ident: ref53 publication-title: 7 Series FPGAs Memory Resources – ident: ref14 doi: 10.1109/HPCSim.2016.7568380 – ident: ref21 doi: 10.1109/71.313123 – volume: 27 start-page: 118 year: 1997 ident: ref24 article-title: Parallel implementation of backpropagation neural networks on a heterogeneous array of transputers publication-title: IEEE Trans Syst Man Cybern B Cybern doi: 10.1109/3477.552191 – ident: ref30 doi: 10.1142/S0218213093000266 – ident: ref11 doi: 10.1109/ISCAS.2016.7539118 – ident: ref37 doi: 10.1109/TRO.2011.2130030 – ident: ref42 doi: 10.1109/TNNLS.2015.2424995 – ident: ref8 doi: 10.1145/2145694.2145704 – ident: ref33 doi: 10.1109/TVLSI.2016.2558842 – ident: ref12 doi: 10.1016/j.jfranklin.2017.07.037 – ident: ref36 doi: 10.1016/j.neucom.2012.01.042 – ident: ref39 doi: 10.1016/j.neucom.2011.12.050 – ident: ref47 doi: 10.1016/j.patrec.2011.07.016 – ident: ref28 doi: 10.1016/0743-7315(92)90068-X – start-page: 225 year: 1997 ident: ref26 article-title: A parallel architecture for binary neural networks publication-title: Proc 6th Int Conf Microelectron Neural Netw Evol Fuzzy Syst (MICRONEURO) – ident: ref32 doi: 10.1109/72.217180 – ident: ref19 doi: 10.1016/0167-8191(90)90084-M – year: 2017 ident: ref9 publication-title: Expanding the All Programmable SoC Portfolio – ident: ref20 doi: 10.1109/72.363476 – ident: ref46 doi: 10.1007/BF01934122 – ident: ref1 doi: 10.1016/0925-2312(94)90053-1 – ident: ref40 doi: 10.1016/j.neunet.2014.10.001 – ident: ref16 doi: 10.1109/CVPR.2013.436 – ident: ref38 doi: 10.1109/TCSII.2012.2204112 – ident: ref35 doi: 10.1109/INCoS.2015.30 – ident: ref27 doi: 10.1109/72.363436 – year: 0 ident: ref10 publication-title: Intel SoCs When Architecture Matters – ident: ref2 doi: 10.1109/MIS.2013.140 – ident: ref6 doi: 10.1016/j.neucom.2010.11.034 – ident: ref22 doi: 10.1016/0893-6080(95)00039-9 – ident: ref29 doi: 10.1109/MNNFS.1996.493794 – ident: ref15 doi: 10.1109/SMC.2017.8122663 – ident: ref5 doi: 10.1016/j.compeleceng.2016.02.007 – year: 2018 ident: ref52 publication-title: 7 Series DSP48E1 Slice – ident: ref7 doi: 10.1016/j.neucom.2016.05.112 – ident: ref34 doi: 10.1109/CCGrid.2012.43 – start-page: 9 year: 1997 ident: ref31 article-title: High speed neural network chip on PCI-board publication-title: Proc MicroNeuro – year: 2018 ident: ref49 publication-title: Extreme learning machine – ident: ref50 doi: 10.1109/TSMCB.2011.2168604 – year: 2016 ident: ref51 publication-title: A Zynq Accelerator for Floating Point Matrix Multiplication Designed with Vivado HLS – volume: 121 start-page: 1 year: 2016 ident: ref17 article-title: Hollywood 3D: What are the best 3D features for action recognition? publication-title: Int J Comput Vis |
| SSID | ssj0014529 |
| Score | 2.4334767 |
| Snippet | Machine learning algorithms such as those for object classification in images, video content analysis, and human action recognition are used to extract... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 2127 |
| SubjectTerms | Acceleration Algorithms Artificial intelligence Artificial neural networks Computer architecture Content analysis Embedded systems Extreme learning machine (ELM) Field programmable gate arrays Hardware hardware (HW) Human activity recognition Human motion Image classification Machine learning Machine learning algorithms Matrix decomposition neural networks (NNs) online sequential ELM (OS-ELM) Pipelining (computers) Power consumption System on chip system-on-a-chip field-programmable gate array (SoC FPGA) Training Video data |
| Title | System-on-a-Chip (SoC)-Based Hardware Acceleration for an Online Sequential Extreme Learning Machine (OS-ELM) |
| URI | https://ieeexplore.ieee.org/document/8509179 https://www.proquest.com/docview/2307298106 |
| Volume | 38 |
| WOSCitedRecordID | wos000505522900007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1937-4151 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014529 issn: 0278-0070 databaseCode: RIE dateStart: 19820101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB2VigMc2BFlkw8cAGHI4sTxEaoiDi0gFSRukeMFkCBFpQU-n7GTViAQErcksqPEz8kbe2beAOxxZpBli5iisZ5RhqhTKUOLp5kwHPnJaJ8o3OWXl9ndnbhuwNE0F8YY44PPzLE79L58PVBjt1V2kjl242IGZjhPq1ytqcfAORD9fopTjMV5XHsww0Cc3OBLuSCu7BiXB1mYRt84yBdV-fEn9vRyvvi_B1uChdqMJKcV7svQMOUKzH8RF1yF50qMnA5KKmn74fGF7PcH7QN6hrylifPYv8uhIadKIfNU84CgBUtkSSr9UdL3Ydb4C3ginY-R20gktRzrPen5IExD9q_6tNPtHazB7Xnnpn1B6-IKVMWJGFGZxhrHKrBpKlWkAsYlL1zZDWNDoQRPZJTGLLFofzCGl3SRFCpIdBgFNomsjdehWQ5KswHEFqHTIWOSpRGTUSCVKJSyodUFWpdatyCYDHeuauVxVwDjKfcrkEDkDqHcIZTXCLXgcNrlpZLd-KvxqoNk2rBGowXbE0zz-sN8zV3ceyQyXAhv_t5rC-bw3qJKN9yG5mg4Njswq95Gj6_DXT_nPgGUhNFK |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ZT-MwEB5xSbAPy60ty-EHHgDhksM5_AhVEYi2ILVIvEWOD0BiU1TK7v58xo6pQCAk3pLIVhJ_Tr6xZ-YbgN2MaWTZMqZorOeUIepUiNDgac51hvyklUsU7mS9Xn5zw6-m4HCSC6O1dsFnumkPnS9fDeWz3So7yi27ZXwaZm3lLJ-tNfEZWBei21GxmrE4k70PMwz40QBfy4Zx5U1cIORhGr1jIVdW5cO_2BHM6eL3Hm0JfnpDkhzXyC_DlK5W4McbecFV-FPLkdNhRQVt3d0_kr3-sLVPT5C5FLE--39ipMmxlMg99UwgaMMSUZFagZT0XaA1_gQeSPv_2G4lEi_Ieku6LgxTk73LPm13uvtrcH3aHrTOqC-vQGWc8DEVaaxwrAKTpkJGMmCZyEpbeEObkEueJSJKY5YYtEAYw0uqTEoZJCqMApNExsTrMFMNK_0LiClDq0TGBEsjJqJASF5KaUKjSrQvlWpA8DrchfTa47YExkPh1iABLyxChUWo8Ag14GDS5bEW3viq8aqFZNLQo9GAzVdMC_9pPhU28j3iOS6FNz7vtQPzZ4Nup-ic9y5-wwLeh9fJh5swMx496y2Yk3_H90-jbTf_XgCm6NST |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=System-on-a-Chip+%28SoC%29-Based+Hardware+Acceleration+for+an+Online+Sequential+Extreme+Learning+Machine+%28OS-ELM%29&rft.jtitle=IEEE+transactions+on+computer-aided+design+of+integrated+circuits+and+systems&rft.au=Safaei%2C+Amin&rft.au=Wu%2C+Q+M+Jonathan&rft.au=Akilan%2C+Thangarajah&rft.au=Yang%2C+Yimin&rft.date=2019-11-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0278-0070&rft.eissn=1937-4151&rft.volume=38&rft.issue=11&rft.spage=2127&rft_id=info:doi/10.1109%2FTCAD.2018.2878162&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0070&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0070&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0070&client=summon |