EfficientFi: Toward Large-Scale Lightweight WiFi Sensing via CSI Compression

WiFi technology has been applied to various places due to the increasing requirement of high-speed Internet access. Recently, besides network services, WiFi sensing is appealing in smart homes since it is device free, cost effective and privacy preserving. Though numerous WiFi sensing methods have b...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE internet of things journal Ročník 9; číslo 15; s. 13086 - 13095
Hlavní autori: Yang, Jianfei, Chen, Xinyan, Zou, Han, Wang, Dazhuo, Xu, Qianwen, Xie, Lihua
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Piscataway IEEE 01.08.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:2327-4662, 2327-4662
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract WiFi technology has been applied to various places due to the increasing requirement of high-speed Internet access. Recently, besides network services, WiFi sensing is appealing in smart homes since it is device free, cost effective and privacy preserving. Though numerous WiFi sensing methods have been developed, most of them only consider single smart home scenario. Without the connection of powerful cloud server and massive users, large-scale WiFi sensing is still difficult. In this article, we first analyze and summarize these obstacles, and propose an efficient large-scale WiFi sensing framework, namely, EfficientFi. The EfficientFi works with edge computing at WiFi access points and cloud computing at center servers. It consists of a novel deep neural network that can compress fine-grained WiFi channel state information (CSI) at edge, restore CSI at cloud, and perform sensing tasks simultaneously. A quantized autoencoder and a joint classifier are designed to achieve these goals in an end-to-end fashion. To the best of our knowledge, the EfficientFi is the first Internet of Things-cloud-enabled WiFi sensing framework that significantly reduces communication overhead while realizing sensing tasks accurately. We utilized human activity recognition (HAR) and identification via WiFi sensing as two case studies, and conduct extensive experiments to evaluate the EfficientFi. The results show that it compresses CSI data from 1.368 Mb/s to 0.768 kb/s with extremely low error of data reconstruction and achieves over 98% accuracy for HAR.
AbstractList WiFi technology has been applied to various places due to the increasing requirement of high-speed Internet access. Recently, besides network services, WiFi sensing is appealing in smart homes since it is device free, cost effective and privacy preserving. Though numerous WiFi sensing methods have been developed, most of them only consider single smart home scenario. Without the connection of powerful cloud server and massive users, large-scale WiFi sensing is still difficult. In this article, we first analyze and summarize these obstacles, and propose an efficient large-scale WiFi sensing framework, namely, EfficientFi. The EfficientFi works with edge computing at WiFi access points and cloud computing at center servers. It consists of a novel deep neural network that can compress fine-grained WiFi channel state information (CSI) at edge, restore CSI at cloud, and perform sensing tasks simultaneously. A quantized autoencoder and a joint classifier are designed to achieve these goals in an end-to-end fashion. To the best of our knowledge, the EfficientFi is the first Internet of Things-cloud-enabled WiFi sensing framework that significantly reduces communication overhead while realizing sensing tasks accurately. We utilized human activity recognition (HAR) and identification via WiFi sensing as two case studies, and conduct extensive experiments to evaluate the EfficientFi. The results show that it compresses CSI data from 1.368 Mb/s to 0.768 kb/s with extremely low error of data reconstruction and achieves over 98% accuracy for HAR.
Author Zou, Han
Yang, Jianfei
Chen, Xinyan
Xie, Lihua
Xu, Qianwen
Wang, Dazhuo
Author_xml – sequence: 1
  givenname: Jianfei
  orcidid: 0000-0002-8075-0439
  surname: Yang
  fullname: Yang, Jianfei
  email: yang0478@ntu.edu.sg
  organization: School of Electrical and Electronics Engineering, Nanyang Technological University, Singapore
– sequence: 2
  givenname: Xinyan
  orcidid: 0000-0002-9174-6558
  surname: Chen
  fullname: Chen, Xinyan
  organization: School of Electrical and Electronics Engineering, Nanyang Technological University, Singapore
– sequence: 3
  givenname: Han
  orcidid: 0000-0002-8063-5211
  surname: Zou
  fullname: Zou, Han
  email: enthalpyzou@gmail.com
  organization: Department of Electrical Engineering and Computer Sciences, University of California at Berkeley, Berkeley, CA, USA
– sequence: 4
  givenname: Dazhuo
  orcidid: 0000-0002-1667-0573
  surname: Wang
  fullname: Wang, Dazhuo
  organization: School of Electrical and Electronics Engineering, Nanyang Technological University, Singapore
– sequence: 5
  givenname: Qianwen
  orcidid: 0000-0002-2793-9048
  surname: Xu
  fullname: Xu, Qianwen
  email: qianwenx@kth.se
  organization: Department of Electric Power and Energy Systems, KTH Royal Institute of Technology, Stockholm, Sweden
– sequence: 6
  givenname: Lihua
  orcidid: 0000-0002-7137-4136
  surname: Xie
  fullname: Xie, Lihua
  email: elhxie@ntu.edu.sg
  organization: School of Electrical and Electronics Engineering, Nanyang Technological University, Singapore
BookMark eNp9kE1PwkAQhjcGExH5AcbLJp6L-13WmyGgmCYcaOJxs7SzuARa3C0S_71tIMZ48DIzh_eZyTzXqFfVFSB0S8mIUqIfXueLfMQIoyNOudZyfIH6jLM0EUqx3q_5Cg1j3BBCWkxSrfoomzrnCw9VM_OPOK-PNpQ4s2ENybKwW8CZX783R-gqfvMzj5dQRV-t8ae3eLKc40m92weI0dfVDbp0dhtheO4DlM-m-eQlyRbP88lTlhRc6iaxshCOSQ6OU-FUqZwC5py1Kk0J52MlQHJeWlqyFNRKCKdXjowFE2VqqeMDdH9auw_1xwFiYzb1IVTtRcOUllRoKWiboqdUEeoYAzizD35nw5ehxHTaTKfNdNrMWVvLpH-Ywje2aV9rgvXbf8m7E-kB4OeSVioVVPBvf_Z7Ig
CODEN IITJAU
CitedBy_id crossref_primary_10_1109_TIM_2025_3568952
crossref_primary_10_1109_JSAC_2023_3288231
crossref_primary_10_1109_TWC_2024_3381211
crossref_primary_10_1109_JSEN_2024_3520857
crossref_primary_10_1109_JSEN_2024_3406588
crossref_primary_10_1109_JIOT_2024_3397708
crossref_primary_10_1109_TCE_2024_3435881
crossref_primary_10_3390_math13111753
crossref_primary_10_1109_JIOT_2025_3580141
crossref_primary_10_1109_JIOT_2024_3434738
crossref_primary_10_1109_LWC_2024_3415633
crossref_primary_10_1109_TCCN_2023_3322983
crossref_primary_10_1007_s13735_025_00369_5
crossref_primary_10_1109_JSEN_2023_3326490
crossref_primary_10_1109_JIOT_2022_3228820
crossref_primary_10_1016_j_eswa_2025_128912
crossref_primary_10_1109_JSEN_2025_3546619
crossref_primary_10_3390_electronics12214500
crossref_primary_10_1109_JIOT_2024_3351838
crossref_primary_10_3390_electronics12183935
crossref_primary_10_1109_JIOT_2022_3156099
crossref_primary_10_1145_3705893
crossref_primary_10_1145_3708323
crossref_primary_10_1109_TCE_2023_3245821
crossref_primary_10_1109_ACCESS_2024_3415359
crossref_primary_10_1109_JIOT_2022_3224134
crossref_primary_10_1109_JSEN_2024_3414862
crossref_primary_10_1109_ACCESS_2025_3568505
crossref_primary_10_1109_JIOT_2022_3203559
crossref_primary_10_3390_app15020890
crossref_primary_10_1109_ACCESS_2024_3517417
crossref_primary_10_1109_JIOT_2024_3375337
crossref_primary_10_1109_TCCN_2024_3476491
crossref_primary_10_1109_LSENS_2025_3551337
crossref_primary_10_1109_TMC_2023_3296987
crossref_primary_10_1109_JIOT_2024_3369856
crossref_primary_10_1109_MNET_2025_3579496
crossref_primary_10_1109_JIOT_2025_3544388
crossref_primary_10_1109_TMC_2023_3321306
crossref_primary_10_1109_TCOMM_2023_3317924
crossref_primary_10_1109_OJCOMS_2025_3600616
crossref_primary_10_1007_s13042_024_02396_w
crossref_primary_10_1109_TNSE_2024_3496496
crossref_primary_10_1109_JIOT_2023_3312941
crossref_primary_10_1109_JIOT_2025_3574568
crossref_primary_10_1109_LWC_2024_3510215
crossref_primary_10_1109_JIOT_2024_3384872
crossref_primary_10_3390_s23239534
crossref_primary_10_1145_3632177
crossref_primary_10_3390_s25030918
crossref_primary_10_3390_bioengineering11111124
crossref_primary_10_1109_JIOT_2024_3476149
crossref_primary_10_1109_TMC_2024_3374046
crossref_primary_10_3390_s25134216
crossref_primary_10_1109_TCOMM_2022_3217777
crossref_primary_10_1145_3643543
crossref_primary_10_3390_en17020485
crossref_primary_10_1016_j_pmcj_2024_101963
crossref_primary_10_3390_s24227195
crossref_primary_10_3390_app14177850
crossref_primary_10_1016_j_iot_2025_101634
Cites_doi 10.1145/3448092
10.1109/CVPRW.2019.00056
10.1109/JIOT.2016.2579198
10.1109/TII.2017.2712746
10.1145/2789168.2790093
10.1073/pnas.0909892106
10.1109/TIT.2016.2556683
10.1145/2639108.2639143
10.1145/2789168.2790124
10.1109/ICMLA.2017.0-148
10.1145/3241539.3241570
10.1007/978-981-16-0575-8_6
10.1109/MCOM.2014.6736761
10.1007/978-3-319-24702-1_11
10.1145/3210240.3210333
10.1109/TWC.2020.3043502
10.1609/aaai.v32i1.11497
10.1007/978-3-030-68590-4_5
10.1109/MASSP.1984.1162229
10.1145/3290605.3300766
10.1109/TVT.2017.2780121
10.1016/j.future.2020.06.032
10.1109/SCC.2015.47
10.1109/JIOT.2019.2941527
10.1109/ICC.2018.8422895
10.1145/1925861.1925870
10.1109/TVT.2016.2545523
10.1109/TMC.2018.2878233
10.1109/IPSN.2016.7460727
10.1016/j.fcij.2017.02.001
10.1145/3310194
10.1002/cpa.20042
10.1109/JIOT.2018.2849655
10.1109/JIOT.2020.3024234
10.1016/j.enbuild.2018.06.040
10.1109/ICCCN.2018.8487345
10.1109/TIT.2003.817466
10.1109/SECONW.2017.8011040
10.1109/LWC.2018.2818160
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/JIOT.2021.3139958
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2327-4662
EndPage 13095
ExternalDocumentID 10_1109_JIOT_2021_3139958
9667414
Genre orig-research
GrantInformation_xml – fundername: NTU Presidential Postdoctoral Fellowship, “Adaptive Multimodal Learning for Robust Sensing and Recognition in Smart Cities” Project Fund, in Nanyang Technological University, Singapore
  funderid: 10.13039/501100001475
GroupedDBID 0R~
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
IFIPE
IPLJI
JAVBF
M43
OCL
PQQKQ
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c359t-a5c4f253ef314f6d6f6e2ffaa677033864e533da1d27e6b44f9bf08424d7a1f3
IEDL.DBID RIE
ISICitedReferencesCount 88
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000831217100022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2327-4662
IngestDate Sun Jun 29 12:41:59 EDT 2025
Sat Nov 29 06:17:03 EST 2025
Tue Nov 18 22:38:05 EST 2025
Wed Aug 27 02:25:28 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 15
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c359t-a5c4f253ef314f6d6f6e2ffaa677033864e533da1d27e6b44f9bf08424d7a1f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9174-6558
0000-0002-2793-9048
0000-0002-8063-5211
0000-0002-8075-0439
0000-0002-1667-0573
0000-0002-7137-4136
PQID 2695149541
PQPubID 2040421
PageCount 10
ParticipantIDs proquest_journals_2695149541
crossref_primary_10_1109_JIOT_2021_3139958
ieee_primary_9667414
crossref_citationtrail_10_1109_JIOT_2021_3139958
PublicationCentury 2000
PublicationDate 2022-08-01
PublicationDateYYYYMMDD 2022-08-01
PublicationDate_xml – month: 08
  year: 2022
  text: 2022-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE internet of things journal
PublicationTitleAbbrev JIoT
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
Polino (ref43)
ref14
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref39
ref16
ref19
ref18
ref24
ref23
van den Oord (ref36)
ref26
ref25
ref20
ref42
ref41
ref22
ref21
ref28
ref27
ref29
ref8
LeCun (ref37); 1
ref7
Bengio (ref38) 2013
ref9
ref4
ref3
ref6
ref5
ref40
References_xml – volume: 1
  start-page: 21
  volume-title: Proc. Connectionist Models Summer School
  ident: ref37
  article-title: A theoretical framework for back-propagation
– ident: ref19
  doi: 10.1145/3448092
– ident: ref18
  doi: 10.1109/CVPRW.2019.00056
– start-page: 1
  volume-title: Proc. 6th Int. Conf. Learn. Represent.
  ident: ref43
  article-title: Model compression via distillation and quantization
– ident: ref9
  doi: 10.1109/JIOT.2016.2579198
– ident: ref7
  doi: 10.1109/TII.2017.2712746
– ident: ref41
  doi: 10.1145/2789168.2790093
– ident: ref28
  doi: 10.1073/pnas.0909892106
– year: 2013
  ident: ref38
  article-title: Estimating or propagating gradients through stochastic neurons for conditional computation
  publication-title: arXiv:1308.3432
– ident: ref30
  doi: 10.1109/TIT.2016.2556683
– ident: ref40
  doi: 10.1145/2639108.2639143
– ident: ref15
  doi: 10.1145/2789168.2790124
– ident: ref17
  doi: 10.1109/ICMLA.2017.0-148
– ident: ref34
  doi: 10.1145/3241539.3241570
– ident: ref8
  doi: 10.1007/978-981-16-0575-8_6
– ident: ref27
  doi: 10.1109/MCOM.2014.6736761
– ident: ref35
  doi: 10.1007/978-3-319-24702-1_11
– ident: ref21
  doi: 10.1145/3210240.3210333
– ident: ref32
  doi: 10.1109/TWC.2020.3043502
– ident: ref6
  doi: 10.1609/aaai.v32i1.11497
– ident: ref22
  doi: 10.1007/978-3-030-68590-4_5
– ident: ref39
  doi: 10.1109/MASSP.1984.1162229
– ident: ref33
  doi: 10.1145/3290605.3300766
– ident: ref25
  doi: 10.1109/TVT.2017.2780121
– start-page: 6309
  volume-title: Proc. 31st Int. Conf. Neural Inf. Process. Syst.
  ident: ref36
  article-title: Neural discrete representation learning
– ident: ref12
  doi: 10.1016/j.future.2020.06.032
– ident: ref11
  doi: 10.1109/SCC.2015.47
– ident: ref3
  doi: 10.1109/JIOT.2019.2941527
– ident: ref5
  doi: 10.1109/ICC.2018.8422895
– ident: ref14
  doi: 10.1145/1925861.1925870
– ident: ref26
  doi: 10.1109/TVT.2016.2545523
– ident: ref24
  doi: 10.1109/TMC.2018.2878233
– ident: ref42
  doi: 10.1109/IPSN.2016.7460727
– ident: ref10
  doi: 10.1016/j.fcij.2017.02.001
– ident: ref23
  doi: 10.1145/3310194
– ident: ref29
  doi: 10.1002/cpa.20042
– ident: ref2
  doi: 10.1109/JIOT.2018.2849655
– ident: ref13
  doi: 10.1109/JIOT.2020.3024234
– ident: ref16
  doi: 10.1016/j.enbuild.2018.06.040
– ident: ref20
  doi: 10.1109/ICCCN.2018.8487345
– ident: ref1
  doi: 10.1109/TIT.2003.817466
– ident: ref4
  doi: 10.1109/SECONW.2017.8011040
– ident: ref31
  doi: 10.1109/LWC.2018.2818160
SSID ssj0001105196
Score 2.58912
Snippet WiFi technology has been applied to various places due to the increasing requirement of high-speed Internet access. Recently, besides network services, WiFi...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 13086
SubjectTerms Artificial neural networks
Channel state information (CSI)
Cloud computing
Deep learning
deep neural network
discrete representation learning
Edge computing
Feature extraction
Human activity recognition
Internet access
Internet of Things
multitask learning
Sensors
Servers
Smart buildings
Smart houses
variational autoencoder
WiFi-based sensing
Wireless access points
Wireless fidelity
Title EfficientFi: Toward Large-Scale Lightweight WiFi Sensing via CSI Compression
URI https://ieeexplore.ieee.org/document/9667414
https://www.proquest.com/docview/2695149541
Volume 9
WOSCitedRecordID wos000831217100022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2327-4662
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001105196
  issn: 2327-4662
  databaseCode: RIE
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fS8MwEA5z-OCLU6c4nZIHn8S6pk2TxjcZG07KFFZwbyVtEilIJ_vlv2-SZhNRBN_6kCvlvl5yd_nuDoArLiPTZrzwsAqEh7mQHqMF9nKuKOFMb8vcFgondDyOp1P23AA321oYKaUln8lb82jv8sWsWJlUWU-75tROrd6hlNS1Wl_5FGScEeIuLpHPeo-jp1QHgAHScakp4Iy_HT12lsqPDdieKsPW_77nAOw77xHe13AfgoasjkBrM5kBOkNtg2RgO0No6WF5B1NLjYWJIX17Ew2KhImJyT9sWhS-lMMSTgyRvXqF65LD_mQEzTtrimx1DNLhIO0_eG5ugleEEVt6PCq05qNQqhBhRQRRRAZKcU6otu8wJlhqJ09wJAIqSY6xYrnyYxxgQTlS4QloVrNKngIYcaqUwFSFYaEDTcVRzCJM4ihHgmhfogP8jUazwvUUN6Mt3jIbW_gsMyBkBoTMgdAB11uR97qhxl-L20br24VO4R3Q3cCWOZNbZAHRzqIO9zA6-13qHOwFpnbBsve6oLmcr-QF2C3Wy3Ixv7R_0yckmci8
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1RS8MwED5EBX1x6hSnU_Pgk1ht2jRpfRNZcVqnsIK-lbRJpCCduKl_3yTLJqIIvvUhV8pdL_nucncfwBGXkRkzXnlEBcIjXEgvYRXxSq4Y5YnelrltFM7YYBA_Pib3C3Ay74WRUtriM3lqHu1dvhhVbyZVdqahObOs1UuGOct1a31lVLCBI9RdXWI_Obvu3-U6BAywjkxNC2f87fCxbCo_tmB7rqSt_33ROqw5_IgupgbfgAXZbEJrxs2AnKu2IevZ2RBaOq3PUW6LY1Fmyr69oTaLRJmJyj9sYhQ91GmNhqaUvXlC7zVHl8M-Mu-cFsk2W5CnvfzyynPMCV4VRsnE41GldR-FUoWYKCqoojJQinPKtIeHMSVSwzzBsQiYpCUhKimVH5OACMaxCrdhsRk1cgdQxJlSgjAVhpUONRXHcRIRGkclFlSjiQ74M40WlZsqbsgtngsbXfhJYYxQGCMUzggdOJ6LvExHavy1uG20Pl_oFN6B7sxshXO6cRFQDRd1wEfw7u9Sh7Byld9mRdYf3OzBamA6GWwtXxcWJ69vch-Wq_dJPX49sH_WJ8WKzAU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=EfficientFi%3A+Toward+Large-Scale+Lightweight+WiFi+Sensing+via+CSI+Compression&rft.jtitle=IEEE+internet+of+things+journal&rft.au=Yang%2C+Jianfei&rft.au=Chen%2C+Xinyan&rft.au=Zou%2C+Han&rft.au=Wang%2C+Dazhuo&rft.date=2022-08-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.eissn=2327-4662&rft.volume=9&rft.issue=15&rft.spage=13086&rft_id=info:doi/10.1109%2FJIOT.2021.3139958&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2327-4662&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2327-4662&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2327-4662&client=summon