A Kriging-Assisted Two-Archive Evolutionary Algorithm for Expensive Many-Objective Optimization
Only a small number of function evaluations can be afforded in many real-world multiobjective optimization problems (MOPs) where the function evaluations are economically/computationally expensive. Such problems pose great challenges to most existing multiobjective evolutionary algorithms (EAs), whi...
Gespeichert in:
| Veröffentlicht in: | IEEE transactions on evolutionary computation Jg. 25; H. 6; S. 1013 - 1027 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
IEEE
01.12.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 1089-778X, 1941-0026 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Only a small number of function evaluations can be afforded in many real-world multiobjective optimization problems (MOPs) where the function evaluations are economically/computationally expensive. Such problems pose great challenges to most existing multiobjective evolutionary algorithms (EAs), which require a large number of function evaluations for optimization. Surrogate-assisted EAs (SAEAs) have been employed to solve expensive MOPs. Specifically, a certain number of expensive function evaluations are used to build computationally cheap surrogate models for assisting the optimization process without conducting expensive function evaluations. The infill sampling criteria in most existing SAEAs take all requirements on convergence, diversity, and model uncertainty into account, which is, however, not the most efficient in exploiting the limited computational budget. Thus, this article proposes a Kriging-assisted two-archive EA for expensive many-objective optimization. The proposed algorithm uses one influential point-insensitive model to approximate each objective function. Moreover, an adaptive infill criterion that identifies the most important requirement on convergence, diversity, or uncertainty is proposed to determine an appropriate sampling strategy for reevaluations using the expensive objective functions. The experimental results on a set of expensive multi/many-objective test problems have demonstrated its superiority over five state-of-the-art SAEAs. |
|---|---|
| AbstractList | Only a small number of function evaluations can be afforded in many real-world multiobjective optimization problems (MOPs) where the function evaluations are economically/computationally expensive. Such problems pose great challenges to most existing multiobjective evolutionary algorithms (EAs), which require a large number of function evaluations for optimization. Surrogate-assisted EAs (SAEAs) have been employed to solve expensive MOPs. Specifically, a certain number of expensive function evaluations are used to build computationally cheap surrogate models for assisting the optimization process without conducting expensive function evaluations. The infill sampling criteria in most existing SAEAs take all requirements on convergence, diversity, and model uncertainty into account, which is, however, not the most efficient in exploiting the limited computational budget. Thus, this article proposes a Kriging-assisted two-archive EA for expensive many-objective optimization. The proposed algorithm uses one influential point-insensitive model to approximate each objective function. Moreover, an adaptive infill criterion that identifies the most important requirement on convergence, diversity, or uncertainty is proposed to determine an appropriate sampling strategy for reevaluations using the expensive objective functions. The experimental results on a set of expensive multi/many-objective test problems have demonstrated its superiority over five state-of-the-art SAEAs. |
| Author | Wang, Handing Jin, Yaochu He, Cheng Song, Zhenshou |
| Author_xml | – sequence: 1 givenname: Zhenshou orcidid: 0000-0003-3315-499X surname: Song fullname: Song, Zhenshou email: songzhenshou@gmail.com organization: School of Artificial Intelligence, Xidian University, Xi'an, China – sequence: 2 givenname: Handing orcidid: 0000-0002-4805-3780 surname: Wang fullname: Wang, Handing email: hdwang@xidian.edu.cn organization: School of Artificial Intelligence, Xidian University, Xi'an, China – sequence: 3 givenname: Cheng orcidid: 0000-0003-4218-8454 surname: He fullname: He, Cheng email: chenghehust@gmail.com organization: Department of Computer Science and Engineering, Guangdong Provincial Key Laboratory of Brain-Inspired Intelligent Computation, Southern University of Science and Technology, Shenzhen, China – sequence: 4 givenname: Yaochu orcidid: 0000-0003-1100-0631 surname: Jin fullname: Jin, Yaochu email: yaochu.jin@surrey.ac.uk organization: Department of Computer Science, University of Surrey, Guildford, U.K |
| BookMark | eNp9kElPwzAQhS0EEusPQFwicU6ZsbP5GFVlEaBeCuJmOcmkuGrjYrtsv56EIg4cOM2M9L55eu-Q7Xa2I8ZOEUaIIC9mk8fxiAPHkYBcZEmxww5QJhgD8Gy336GQcZ4XT_vs0PsFACYpygOmyujWmbnp5nHpvfGBmmj2ZuPS1c_mlaLJq11ugrGddh9RuZxbZ8LzKmqtiybva-r8ILrX3Uc8rRZUh-GcroNZmU89YMdsr9VLTyc_84g9XE5m4-v4bnp1My7v4lqkMsSac5K8IlkBCK2B16QzFHkKUEuqRVPwHAixojYvEqCmyZCnLaW5FkmVNOKInW__rp192ZAPamE3rustFc8gkRxlJnoVblW1s947atXamVUfTSGooUc19KiGHtVPjz2T_2FqE76zBafN8l_ybEsaIvp1kglkiEJ8AeOpgzA |
| CODEN | ITEVF5 |
| CitedBy_id | crossref_primary_10_1016_j_swevo_2025_101880 crossref_primary_10_1016_j_ins_2023_03_005 crossref_primary_10_1007_s41965_024_00165_w crossref_primary_10_1007_s40747_024_01478_0 crossref_primary_10_1007_s40747_025_01955_0 crossref_primary_10_1007_s10489_021_02709_4 crossref_primary_10_1016_j_oceaneng_2025_122835 crossref_primary_10_1016_j_asoc_2025_113670 crossref_primary_10_1016_j_apenergy_2024_124325 crossref_primary_10_1007_s00500_023_08227_4 crossref_primary_10_1016_j_swevo_2024_101516 crossref_primary_10_1155_2021_4281006 crossref_primary_10_1007_s40747_022_00751_4 crossref_primary_10_1109_TETCI_2023_3306351 crossref_primary_10_1109_TEVC_2023_3349313 crossref_primary_10_1016_j_engappai_2025_111715 crossref_primary_10_1109_JAS_2024_124947 crossref_primary_10_1016_j_swevo_2023_101353 crossref_primary_10_1007_s40747_022_00929_w crossref_primary_10_1016_j_conengprac_2025_106240 crossref_primary_10_1007_s10489_024_05612_w crossref_primary_10_1109_TETCI_2023_3313555 crossref_primary_10_1016_j_ins_2024_120405 crossref_primary_10_1016_j_energy_2024_134247 crossref_primary_10_1016_j_swevo_2022_101074 crossref_primary_10_1016_j_swevo_2023_101252 crossref_primary_10_1007_s00158_024_03748_4 crossref_primary_10_1007_s12293_021_00351_8 crossref_primary_10_26599_TST_2024_9010224 crossref_primary_10_1016_j_engappai_2023_107745 crossref_primary_10_1016_j_asoc_2025_113320 crossref_primary_10_1016_j_engappai_2025_110475 crossref_primary_10_1016_j_swevo_2022_101107 crossref_primary_10_1109_TETCI_2024_3359042 crossref_primary_10_1016_j_swevo_2025_101926 crossref_primary_10_1109_TEVC_2023_3314152 crossref_primary_10_1016_j_swevo_2024_101506 crossref_primary_10_1016_j_swevo_2025_101924 crossref_primary_10_1007_s00500_024_10343_8 crossref_primary_10_1007_s12293_023_00404_0 crossref_primary_10_1016_j_ins_2024_121620 crossref_primary_10_1038_s41598_025_85233_6 crossref_primary_10_1016_j_array_2025_100461 crossref_primary_10_1016_j_swevo_2024_101741 crossref_primary_10_1016_j_eswa_2024_126103 crossref_primary_10_1016_j_swevo_2025_101980 crossref_primary_10_1016_j_knosys_2022_108436 crossref_primary_10_1109_TEVC_2023_3334233 crossref_primary_10_1109_JIOT_2023_3292369 crossref_primary_10_1109_TEVC_2022_3162993 crossref_primary_10_1109_TEVC_2023_3250350 crossref_primary_10_1016_j_neucom_2024_127629 crossref_primary_10_1109_TCYB_2021_3113575 crossref_primary_10_1007_s10489_024_05270_y crossref_primary_10_3390_en16021011 crossref_primary_10_1109_TCYB_2024_3501360 crossref_primary_10_1016_j_eswa_2023_121374 crossref_primary_10_1016_j_ins_2023_01_018 crossref_primary_10_1016_j_cma_2023_116704 crossref_primary_10_1002_cpe_7474 crossref_primary_10_1109_TEVC_2022_3195668 crossref_primary_10_1109_TEVC_2022_3219062 crossref_primary_10_1016_j_asoc_2025_113388 crossref_primary_10_1007_s00500_025_10432_2 crossref_primary_10_1109_TCYB_2024_3492075 crossref_primary_10_1007_s10586_024_04545_w crossref_primary_10_1016_j_swevo_2024_101729 crossref_primary_10_1109_TEVC_2022_3226837 crossref_primary_10_1016_j_eswa_2024_126050 crossref_primary_10_1016_j_ins_2024_121045 crossref_primary_10_1016_j_asoc_2024_111857 crossref_primary_10_1016_j_swevo_2025_101988 crossref_primary_10_1049_cit2_12106 crossref_primary_10_1016_j_ins_2023_119750 crossref_primary_10_1016_j_knosys_2023_110630 crossref_primary_10_3390_s25082352 crossref_primary_10_1109_TEVC_2022_3177605 crossref_primary_10_1007_s40747_024_01715_6 crossref_primary_10_1016_j_swevo_2023_101389 crossref_primary_10_1016_j_swevo_2025_101982 crossref_primary_10_1007_s10791_025_09671_6 crossref_primary_10_1007_s40747_023_01262_6 crossref_primary_10_3390_app122211829 crossref_primary_10_3390_app15137557 crossref_primary_10_2118_214677_PA crossref_primary_10_1109_TSMC_2023_3281822 crossref_primary_10_1007_s40747_024_01499_9 crossref_primary_10_1016_j_engappai_2024_108104 crossref_primary_10_1109_TEVC_2022_3159000 crossref_primary_10_1109_MCI_2023_3304073 crossref_primary_10_3390_w14101659 crossref_primary_10_1109_TSMC_2022_3163129 crossref_primary_10_1016_j_asoc_2023_110874 crossref_primary_10_1016_j_swevo_2021_100988 crossref_primary_10_1109_TII_2024_3388602 crossref_primary_10_1007_s11633_022_1317_4 crossref_primary_10_1016_j_asoc_2024_111967 crossref_primary_10_1016_j_asoc_2023_110879 crossref_primary_10_1016_j_swevo_2025_102008 crossref_primary_10_1109_TEVC_2024_3380327 crossref_primary_10_1109_TSMC_2025_3573195 crossref_primary_10_1016_j_ins_2024_120449 crossref_primary_10_1093_jcde_qwaf023 crossref_primary_10_1016_j_cma_2025_117954 crossref_primary_10_1016_j_eswa_2024_125300 crossref_primary_10_1109_LAWP_2024_3397819 crossref_primary_10_1016_j_knosys_2023_111018 crossref_primary_10_1016_j_swevo_2025_102020 crossref_primary_10_1080_09544828_2025_2450763 crossref_primary_10_1007_s11630_024_1949_5 crossref_primary_10_1007_s40747_024_01465_5 crossref_primary_10_1016_j_asoc_2023_110370 crossref_primary_10_1016_j_asoc_2025_113367 crossref_primary_10_1016_j_engappai_2024_108616 crossref_primary_10_3390_app15094847 crossref_primary_10_1038_s41598_025_09207_4 crossref_primary_10_1016_j_swevo_2024_101703 crossref_primary_10_1109_TEVC_2022_3152582 crossref_primary_10_1016_j_swevo_2024_101666 crossref_primary_10_1109_TEVC_2022_3228516 crossref_primary_10_1016_j_eswa_2023_122179 crossref_primary_10_1016_j_swevo_2024_101700 crossref_primary_10_1016_j_eswa_2023_122575 crossref_primary_10_1016_j_swevo_2025_102019 crossref_primary_10_1016_j_eswa_2025_128670 crossref_primary_10_1109_TEVC_2023_3327459 crossref_primary_10_1016_j_swevo_2022_101146 crossref_primary_10_1177_13835416251328552 crossref_primary_10_1109_TETCI_2024_3372378 crossref_primary_10_1109_TEVC_2023_3300181 crossref_primary_10_1007_s40747_023_00969_w crossref_primary_10_1016_j_jestch_2024_101729 crossref_primary_10_1016_j_matlet_2025_137974 crossref_primary_10_1007_s40747_022_00650_8 crossref_primary_10_1016_j_knosys_2022_108197 crossref_primary_10_1109_TEVC_2024_3394005 crossref_primary_10_1016_j_asoc_2023_110892 crossref_primary_10_1016_j_swevo_2024_101813 crossref_primary_10_1016_j_ins_2024_121079 crossref_primary_10_1109_TEVC_2023_3291614 crossref_primary_10_1109_JAS_2025_125111 crossref_primary_10_1109_TNNLS_2023_3297624 crossref_primary_10_1109_TEVC_2022_3177936 crossref_primary_10_1016_j_swevo_2024_101492 crossref_primary_10_1016_j_swevo_2022_101170 crossref_primary_10_1016_j_measurement_2024_115168 crossref_primary_10_1016_j_swevo_2022_101173 crossref_primary_10_1109_TEVC_2024_3382145 crossref_primary_10_1145_3637065 crossref_primary_10_1109_TEVC_2021_3120980 crossref_primary_10_1016_j_swevo_2024_101809 crossref_primary_10_1162_evco_a_00354 crossref_primary_10_1016_j_asoc_2025_113216 crossref_primary_10_1016_j_asoc_2022_109263 crossref_primary_10_1016_j_asoc_2023_110785 crossref_primary_10_1109_TETCI_2024_3358377 crossref_primary_10_1287_ijoc_2022_1260 crossref_primary_10_1109_TEVC_2023_3340678 |
| Cites_doi | 10.1145/2792984 10.1109/TEVC.2016.2622301 10.1007/978-3-540-87700-4_78 10.1007/978-3-540-70928-2_56 10.1109/TEVC.2014.2350987 10.1109/MCI.2017.2742868 10.1109/TETCI.2017.2669104 10.1109/SSCI44817.2019.9002828 10.1145/2576768.2598271 10.1109/TEVC.2007.910138 10.1109/TCYB.2018.2794503 10.1080/00401706.2000.10485979 10.1109/CEC.2015.7257247 10.1109/TEVC.2018.2791283 10.1109/TEVC.2018.2869001 10.1007/978-3-662-49014-3_56 10.1109/TEVC.2018.2802784 10.1109/TEVC.2005.861417 10.1007/BF00994018 10.1109/TEVC.2003.810761 10.1109/TEVC.2019.2899030 10.1109/TEVC.2007.892759 10.1109/CEC.2017.7969486 10.1109/TEVC.2012.2227145 10.1109/TEVC.2009.2033671 10.1109/TEVC.2016.2519378 10.1016/j.asoc.2017.08.024 10.1007/978-3-030-12598-1_27 10.1007/978-3-540-31880-4_2 10.1515/CCLM.2004.057 10.1007/s00500-015-1940-x 10.1109/ICCIAS.2006.294139 10.1109/NABIC.2009.5393659 10.1109/TEVC.2019.2924461 10.1109/MCI.2009.933094 10.1109/TEVC.2013.2281521 10.1007/BF00932614 10.1109/TCYB.2016.2550502 10.1007/s40747-019-00126-2 10.1037/0033-2909.95.2.334 10.1007/3-540-45712-7_35 10.1109/TEVC.2005.851274 10.1002/9781118625590 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/TEVC.2021.3073648 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1941-0026 |
| EndPage | 1027 |
| ExternalDocumentID | 10_1109_TEVC_2021_3073648 9406113 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61976165; 61903178; 61590922; U20A20306 funderid: 10.13039/501100001809 – fundername: U.K. Royal Society Exchange Program grantid: IEC\NSFC\170279 funderid: 10.13039/501100000288 |
| GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 5VS 6IF 6IK 6IL 6IN 97E AAJGR AARMG AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG ACGFO ACGFS ACIWK ADZIZ AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CHZPO CS3 EBS EJD HZ~ H~9 IEGSK IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIE RIL RNS TN5 VH1 AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c359t-a22e92be9b003aa02cea6137500c9ec3d8270e11bef7840edd6125fe57a34b4d3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 180 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000724477500005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1089-778X |
| IngestDate | Sun Sep 07 03:30:37 EDT 2025 Sat Nov 29 03:13:48 EST 2025 Tue Nov 18 21:27:20 EST 2025 Wed Aug 27 05:11:49 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c359t-a22e92be9b003aa02cea6137500c9ec3d8270e11bef7840edd6125fe57a34b4d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-3315-499X 0000-0003-4218-8454 0000-0002-4805-3780 0000-0003-1100-0631 |
| PQID | 2604921963 |
| PQPubID | 85418 |
| PageCount | 15 |
| ParticipantIDs | ieee_primary_9406113 crossref_primary_10_1109_TEVC_2021_3073648 proquest_journals_2604921963 crossref_citationtrail_10_1109_TEVC_2021_3073648 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-12-01 |
| PublicationDateYYYYMMDD | 2021-12-01 |
| PublicationDate_xml | – month: 12 year: 2021 text: 2021-12-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on evolutionary computation |
| PublicationTitleAbbrev | TEVC |
| PublicationYear | 2021 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref15 ref58 ref14 ref53 ref52 ref55 ref11 bringmann (ref38) 2013 ref10 rousseeuw (ref37) 2005; 589 zitzler (ref27) 2004 hensman (ref47) 2013 ref51 ref50 krige (ref17) 1951 ref46 ref45 ref48 ref42 ref41 box (ref18) 1987; 424 williams (ref43) 2006; 2 mockus (ref35) 1978; 2 ref49 broomhead (ref21) 1988 ref8 ref7 ref9 ref4 ref6 ref5 ref40 lophaven (ref56) 2002 draper (ref44) 1998; 326 ref34 ref36 guo (ref3) 2016 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref24 ref23 ref26 ref25 ref20 zurada (ref19) 1992; 8 ref22 ishibuchi (ref54) 2015 ref28 ref29 guo (ref57) 0 jin (ref16) 2000 |
| References_xml | – ident: ref6 doi: 10.1145/2792984 – ident: ref8 doi: 10.1109/TEVC.2016.2622301 – ident: ref28 doi: 10.1007/978-3-540-87700-4_78 – ident: ref23 doi: 10.1007/978-3-540-70928-2_56 – start-page: 832 year: 2004 ident: ref27 article-title: Indicator-based selection in multiobjective search publication-title: Proc Int Conf Parallel Problem Solving Nat – ident: ref39 doi: 10.1109/TEVC.2014.2350987 – start-page: 110 year: 2015 ident: ref54 article-title: Modified distance calculation in generational distance and inverted generational distance publication-title: Proc Int Conf Evol Multicrit Optim – ident: ref49 doi: 10.1109/MCI.2017.2742868 – ident: ref2 doi: 10.1109/TETCI.2017.2669104 – ident: ref32 doi: 10.1109/SSCI44817.2019.9002828 – ident: ref33 doi: 10.1145/2576768.2598271 – ident: ref22 doi: 10.1109/TEVC.2007.910138 – ident: ref58 doi: 10.1109/TCYB.2018.2794503 – ident: ref46 doi: 10.1080/00401706.2000.10485979 – ident: ref24 doi: 10.1109/CEC.2015.7257247 – ident: ref26 doi: 10.1109/TEVC.2018.2791283 – ident: ref12 doi: 10.1109/TEVC.2018.2869001 – volume: 2 start-page: 2 year: 1978 ident: ref35 article-title: The application of Bayesian methods for seeking the extremum publication-title: Towards Global Optimazation – ident: ref34 doi: 10.1007/978-3-662-49014-3_56 – ident: ref9 doi: 10.1109/TEVC.2018.2802784 – ident: ref52 doi: 10.1109/TEVC.2005.861417 – start-page: 786 year: 2000 ident: ref16 article-title: On evolutionary optimization with approximate fitness functions publication-title: Proc 2nd Annu Conf Genet Evol Comput – ident: ref20 doi: 10.1007/BF00994018 – ident: ref53 doi: 10.1109/TEVC.2003.810761 – ident: ref31 doi: 10.1109/TEVC.2019.2899030 – ident: ref50 doi: 10.1109/TEVC.2007.892759 – ident: ref10 doi: 10.1109/CEC.2017.7969486 – volume: 8 year: 1992 ident: ref19 publication-title: Introduction to Artificial Neural Systems – ident: ref5 doi: 10.1109/TEVC.2012.2227145 – start-page: 282 year: 2013 ident: ref47 article-title: Gaussian processes for big data publication-title: Proc Conf Uncertainty of Artificial Intelligence – start-page: 1 year: 2016 ident: ref3 article-title: Small data driven evolutionary multi-objective optimization of fused magnesium furnaces publication-title: Proc IEEE Symp Comput Intell (SSCI) – year: 0 ident: ref57 article-title: Evolutionary optimization of high-dimensional multi- and many-objective expensive problems assisted by a dropout neural network publication-title: IEEE Trans Syst Man Cybern Syst – ident: ref30 doi: 10.1109/TEVC.2009.2033671 – year: 1988 ident: ref21 article-title: Radial basis functions, multi-variable functional interpolation and adaptive networks – start-page: 207 year: 2013 ident: ref38 article-title: Bringing order to special cases of Klee's measure problem publication-title: Proc Int Symp Math Found Comput Sci – ident: ref51 doi: 10.1109/TEVC.2016.2519378 – ident: ref25 doi: 10.1016/j.asoc.2017.08.024 – ident: ref55 doi: 10.1007/978-3-030-12598-1_27 – volume: 424 year: 1987 ident: ref18 publication-title: Empirical Model-Building and Response Surfaces – ident: ref1 doi: 10.1007/978-3-540-31880-4_2 – year: 2002 ident: ref56 article-title: DACE: A MATLAB kriging toolbox – ident: ref45 doi: 10.1515/CCLM.2004.057 – ident: ref7 doi: 10.1007/s00500-015-1940-x – ident: ref41 doi: 10.1109/ICCIAS.2006.294139 – ident: ref4 doi: 10.1109/NABIC.2009.5393659 – ident: ref15 doi: 10.1109/TEVC.2019.2924461 – ident: ref11 doi: 10.1109/MCI.2009.933094 – volume: 2 year: 2006 ident: ref43 publication-title: Gaussian Processes for Machine Learning – ident: ref42 doi: 10.1109/TEVC.2013.2281521 – ident: ref40 doi: 10.1007/BF00932614 – ident: ref48 doi: 10.1109/TCYB.2016.2550502 – ident: ref13 doi: 10.1007/s40747-019-00126-2 – ident: ref36 doi: 10.1037/0033-2909.95.2.334 – ident: ref14 doi: 10.1007/3-540-45712-7_35 – year: 1951 ident: ref17 article-title: A statistical approach to some mine valuation and allied problems on the Witwatersrand: By DG krige – ident: ref29 doi: 10.1109/TEVC.2005.851274 – volume: 326 year: 1998 ident: ref44 publication-title: Applied regression analysis doi: 10.1002/9781118625590 – volume: 589 year: 2005 ident: ref37 publication-title: Robust Regression and Outlier Detection |
| SSID | ssj0014519 |
| Score | 2.692433 |
| Snippet | Only a small number of function evaluations can be afforded in many real-world multiobjective optimization problems (MOPs) where the function evaluations are... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1013 |
| SubjectTerms | Adaptation models Adaptive sampling strategy Archives & records Computational modeling Convergence Data models Evolutionary algorithms evolutionary algorithms (EAs) Evolutionary computation expensive multiobjective optimization Genetic algorithms Kriging Mopping Multiple objective analysis Optimization Predictive models Sampling surrogate assisted Uncertainty |
| Title | A Kriging-Assisted Two-Archive Evolutionary Algorithm for Expensive Many-Objective Optimization |
| URI | https://ieeexplore.ieee.org/document/9406113 https://www.proquest.com/docview/2604921963 |
| Volume | 25 |
| WOSCitedRecordID | wos000724477500005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Xplore customDbUrl: eissn: 1941-0026 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014519 issn: 1089-778X databaseCode: RIE dateStart: 19970101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFH_o8KAHp1NxfpGDJzHapt3SHIdMBD_mYcpuJU1fdbIP2abif29emg1BETwUekhK6S95H30vvx_AcSixEEYLbmPXjMdCFjxpxMhFM0JNjGNN43hmb-TdXdLrqfslOF2chUFE13yGZ3Travn52LzRr7JzRd6HJGqXpZTlWa1FxYBoUspmemUjxqTnK5hhoM677ccLmwmK8IwWdJOkfr75ICeq8sMSO_dyWf3fi23Aug8jWavEfROWcFSD6lyigfkdW4O1b3yDW5C22LUTwnriFhYCOGfdjzH39LOs_e4Xop58stbgaTzpz56HzMa1jCiRXas7u7Xmg3eyl9JSso61OUN_mHMbHi7b3Ysr7hUWuIkaasa1EKhEhkSMGGkdCIPa-ncbRQRGoYnyRMgAwzDDQtpMEPOcAqICG1JHcRbn0Q5URuMR7gIrgkhpGw1lQR7HUR4rm2faC0MtEXWR1CGYf_PUePpxUsEYpC4NCVRKMKUEU-phqsPJYspryb3x1-AtwmUx0ENSh4M5sKnfndPU5nCxEmR79n6ftQ-r9OyybeUAKrPJGx7Cinmf9aeTI7fwvgCHwtWr |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LTuswEB0hQLqw4I0oTy9YoWtIHLeJlxUqAlEKi3LVneU4kwKCFpUC4u_xOG6FBLoSi0hZ2EqUY88jMz4H4DBOsRTWCO5i15xLkZY8q0vkopGgIcaxhvU8s-2008l6PXUzA3-nZ2EQ0Tef4THd-lp-MbSv9KvsRJH3IYnaubqUIq5Oa01rBkSUUrXTKxczZr1Qw4wjddJt_Tt1uaCIj2lJN0js54sX8rIq32yxdzBny797tRVYCoEka1bIr8IMDtZgeSLSwMKeXYPFL4yD66Cb7NJLYfW5A4YgLlj3fcgDAS1rvYWlaEYfrPnYH47ux3dPzEW2jEiRfbM7u3IGhF_nD5WtZNfO6jyF45wbcHvW6p6e86CxwG1SV2NuhEAlciRqxMSYSFg0zsO7OCKyCm1SZCKNMI5zLFOXC2JRUEhUYj01icxlkWzC7GA4wC1gZZQo4-KhPCqkTAqpXKbpLoxNimjKrAbR5JtrGwjISQfjUftEJFKaYNIEkw4w1eBoOuW5Yt_43-B1wmU6MEBSg90JsDrszxftsjipBFmf7Z9nHcCf8-5VW7cvOpc7sEDPqZpYdmF2PHrFPZi3b-P7l9G-X4Sfy_jY8g |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Kriging-Assisted+Two-Archive+Evolutionary+Algorithm+for+Expensive+Many-Objective+Optimization&rft.jtitle=IEEE+transactions+on+evolutionary+computation&rft.au=Song%2C+Zhenshou&rft.au=Wang%2C+Handing&rft.au=He%2C+Cheng&rft.au=Jin%2C+Yaochu&rft.date=2021-12-01&rft.pub=IEEE&rft.issn=1089-778X&rft.volume=25&rft.issue=6&rft.spage=1013&rft.epage=1027&rft_id=info:doi/10.1109%2FTEVC.2021.3073648&rft.externalDocID=9406113 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-778X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-778X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-778X&client=summon |