A Kriging-Assisted Two-Archive Evolutionary Algorithm for Expensive Many-Objective Optimization

Only a small number of function evaluations can be afforded in many real-world multiobjective optimization problems (MOPs) where the function evaluations are economically/computationally expensive. Such problems pose great challenges to most existing multiobjective evolutionary algorithms (EAs), whi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on evolutionary computation Jg. 25; H. 6; S. 1013 - 1027
Hauptverfasser: Song, Zhenshou, Wang, Handing, He, Cheng, Jin, Yaochu
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York IEEE 01.12.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:1089-778X, 1941-0026
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Only a small number of function evaluations can be afforded in many real-world multiobjective optimization problems (MOPs) where the function evaluations are economically/computationally expensive. Such problems pose great challenges to most existing multiobjective evolutionary algorithms (EAs), which require a large number of function evaluations for optimization. Surrogate-assisted EAs (SAEAs) have been employed to solve expensive MOPs. Specifically, a certain number of expensive function evaluations are used to build computationally cheap surrogate models for assisting the optimization process without conducting expensive function evaluations. The infill sampling criteria in most existing SAEAs take all requirements on convergence, diversity, and model uncertainty into account, which is, however, not the most efficient in exploiting the limited computational budget. Thus, this article proposes a Kriging-assisted two-archive EA for expensive many-objective optimization. The proposed algorithm uses one influential point-insensitive model to approximate each objective function. Moreover, an adaptive infill criterion that identifies the most important requirement on convergence, diversity, or uncertainty is proposed to determine an appropriate sampling strategy for reevaluations using the expensive objective functions. The experimental results on a set of expensive multi/many-objective test problems have demonstrated its superiority over five state-of-the-art SAEAs.
AbstractList Only a small number of function evaluations can be afforded in many real-world multiobjective optimization problems (MOPs) where the function evaluations are economically/computationally expensive. Such problems pose great challenges to most existing multiobjective evolutionary algorithms (EAs), which require a large number of function evaluations for optimization. Surrogate-assisted EAs (SAEAs) have been employed to solve expensive MOPs. Specifically, a certain number of expensive function evaluations are used to build computationally cheap surrogate models for assisting the optimization process without conducting expensive function evaluations. The infill sampling criteria in most existing SAEAs take all requirements on convergence, diversity, and model uncertainty into account, which is, however, not the most efficient in exploiting the limited computational budget. Thus, this article proposes a Kriging-assisted two-archive EA for expensive many-objective optimization. The proposed algorithm uses one influential point-insensitive model to approximate each objective function. Moreover, an adaptive infill criterion that identifies the most important requirement on convergence, diversity, or uncertainty is proposed to determine an appropriate sampling strategy for reevaluations using the expensive objective functions. The experimental results on a set of expensive multi/many-objective test problems have demonstrated its superiority over five state-of-the-art SAEAs.
Author Wang, Handing
Jin, Yaochu
He, Cheng
Song, Zhenshou
Author_xml – sequence: 1
  givenname: Zhenshou
  orcidid: 0000-0003-3315-499X
  surname: Song
  fullname: Song, Zhenshou
  email: songzhenshou@gmail.com
  organization: School of Artificial Intelligence, Xidian University, Xi'an, China
– sequence: 2
  givenname: Handing
  orcidid: 0000-0002-4805-3780
  surname: Wang
  fullname: Wang, Handing
  email: hdwang@xidian.edu.cn
  organization: School of Artificial Intelligence, Xidian University, Xi'an, China
– sequence: 3
  givenname: Cheng
  orcidid: 0000-0003-4218-8454
  surname: He
  fullname: He, Cheng
  email: chenghehust@gmail.com
  organization: Department of Computer Science and Engineering, Guangdong Provincial Key Laboratory of Brain-Inspired Intelligent Computation, Southern University of Science and Technology, Shenzhen, China
– sequence: 4
  givenname: Yaochu
  orcidid: 0000-0003-1100-0631
  surname: Jin
  fullname: Jin, Yaochu
  email: yaochu.jin@surrey.ac.uk
  organization: Department of Computer Science, University of Surrey, Guildford, U.K
BookMark eNp9kElPwzAQhS0EEusPQFwicU6ZsbP5GFVlEaBeCuJmOcmkuGrjYrtsv56EIg4cOM2M9L55eu-Q7Xa2I8ZOEUaIIC9mk8fxiAPHkYBcZEmxww5QJhgD8Gy336GQcZ4XT_vs0PsFACYpygOmyujWmbnp5nHpvfGBmmj2ZuPS1c_mlaLJq11ugrGddh9RuZxbZ8LzKmqtiybva-r8ILrX3Uc8rRZUh-GcroNZmU89YMdsr9VLTyc_84g9XE5m4-v4bnp1My7v4lqkMsSac5K8IlkBCK2B16QzFHkKUEuqRVPwHAixojYvEqCmyZCnLaW5FkmVNOKInW__rp192ZAPamE3rustFc8gkRxlJnoVblW1s947atXamVUfTSGooUc19KiGHtVPjz2T_2FqE76zBafN8l_ybEsaIvp1kglkiEJ8AeOpgzA
CODEN ITEVF5
CitedBy_id crossref_primary_10_1016_j_swevo_2025_101880
crossref_primary_10_1016_j_ins_2023_03_005
crossref_primary_10_1007_s41965_024_00165_w
crossref_primary_10_1007_s40747_024_01478_0
crossref_primary_10_1007_s40747_025_01955_0
crossref_primary_10_1007_s10489_021_02709_4
crossref_primary_10_1016_j_oceaneng_2025_122835
crossref_primary_10_1016_j_asoc_2025_113670
crossref_primary_10_1016_j_apenergy_2024_124325
crossref_primary_10_1007_s00500_023_08227_4
crossref_primary_10_1016_j_swevo_2024_101516
crossref_primary_10_1155_2021_4281006
crossref_primary_10_1007_s40747_022_00751_4
crossref_primary_10_1109_TETCI_2023_3306351
crossref_primary_10_1109_TEVC_2023_3349313
crossref_primary_10_1016_j_engappai_2025_111715
crossref_primary_10_1109_JAS_2024_124947
crossref_primary_10_1016_j_swevo_2023_101353
crossref_primary_10_1007_s40747_022_00929_w
crossref_primary_10_1016_j_conengprac_2025_106240
crossref_primary_10_1007_s10489_024_05612_w
crossref_primary_10_1109_TETCI_2023_3313555
crossref_primary_10_1016_j_ins_2024_120405
crossref_primary_10_1016_j_energy_2024_134247
crossref_primary_10_1016_j_swevo_2022_101074
crossref_primary_10_1016_j_swevo_2023_101252
crossref_primary_10_1007_s00158_024_03748_4
crossref_primary_10_1007_s12293_021_00351_8
crossref_primary_10_26599_TST_2024_9010224
crossref_primary_10_1016_j_engappai_2023_107745
crossref_primary_10_1016_j_asoc_2025_113320
crossref_primary_10_1016_j_engappai_2025_110475
crossref_primary_10_1016_j_swevo_2022_101107
crossref_primary_10_1109_TETCI_2024_3359042
crossref_primary_10_1016_j_swevo_2025_101926
crossref_primary_10_1109_TEVC_2023_3314152
crossref_primary_10_1016_j_swevo_2024_101506
crossref_primary_10_1016_j_swevo_2025_101924
crossref_primary_10_1007_s00500_024_10343_8
crossref_primary_10_1007_s12293_023_00404_0
crossref_primary_10_1016_j_ins_2024_121620
crossref_primary_10_1038_s41598_025_85233_6
crossref_primary_10_1016_j_array_2025_100461
crossref_primary_10_1016_j_swevo_2024_101741
crossref_primary_10_1016_j_eswa_2024_126103
crossref_primary_10_1016_j_swevo_2025_101980
crossref_primary_10_1016_j_knosys_2022_108436
crossref_primary_10_1109_TEVC_2023_3334233
crossref_primary_10_1109_JIOT_2023_3292369
crossref_primary_10_1109_TEVC_2022_3162993
crossref_primary_10_1109_TEVC_2023_3250350
crossref_primary_10_1016_j_neucom_2024_127629
crossref_primary_10_1109_TCYB_2021_3113575
crossref_primary_10_1007_s10489_024_05270_y
crossref_primary_10_3390_en16021011
crossref_primary_10_1109_TCYB_2024_3501360
crossref_primary_10_1016_j_eswa_2023_121374
crossref_primary_10_1016_j_ins_2023_01_018
crossref_primary_10_1016_j_cma_2023_116704
crossref_primary_10_1002_cpe_7474
crossref_primary_10_1109_TEVC_2022_3195668
crossref_primary_10_1109_TEVC_2022_3219062
crossref_primary_10_1016_j_asoc_2025_113388
crossref_primary_10_1007_s00500_025_10432_2
crossref_primary_10_1109_TCYB_2024_3492075
crossref_primary_10_1007_s10586_024_04545_w
crossref_primary_10_1016_j_swevo_2024_101729
crossref_primary_10_1109_TEVC_2022_3226837
crossref_primary_10_1016_j_eswa_2024_126050
crossref_primary_10_1016_j_ins_2024_121045
crossref_primary_10_1016_j_asoc_2024_111857
crossref_primary_10_1016_j_swevo_2025_101988
crossref_primary_10_1049_cit2_12106
crossref_primary_10_1016_j_ins_2023_119750
crossref_primary_10_1016_j_knosys_2023_110630
crossref_primary_10_3390_s25082352
crossref_primary_10_1109_TEVC_2022_3177605
crossref_primary_10_1007_s40747_024_01715_6
crossref_primary_10_1016_j_swevo_2023_101389
crossref_primary_10_1016_j_swevo_2025_101982
crossref_primary_10_1007_s10791_025_09671_6
crossref_primary_10_1007_s40747_023_01262_6
crossref_primary_10_3390_app122211829
crossref_primary_10_3390_app15137557
crossref_primary_10_2118_214677_PA
crossref_primary_10_1109_TSMC_2023_3281822
crossref_primary_10_1007_s40747_024_01499_9
crossref_primary_10_1016_j_engappai_2024_108104
crossref_primary_10_1109_TEVC_2022_3159000
crossref_primary_10_1109_MCI_2023_3304073
crossref_primary_10_3390_w14101659
crossref_primary_10_1109_TSMC_2022_3163129
crossref_primary_10_1016_j_asoc_2023_110874
crossref_primary_10_1016_j_swevo_2021_100988
crossref_primary_10_1109_TII_2024_3388602
crossref_primary_10_1007_s11633_022_1317_4
crossref_primary_10_1016_j_asoc_2024_111967
crossref_primary_10_1016_j_asoc_2023_110879
crossref_primary_10_1016_j_swevo_2025_102008
crossref_primary_10_1109_TEVC_2024_3380327
crossref_primary_10_1109_TSMC_2025_3573195
crossref_primary_10_1016_j_ins_2024_120449
crossref_primary_10_1093_jcde_qwaf023
crossref_primary_10_1016_j_cma_2025_117954
crossref_primary_10_1016_j_eswa_2024_125300
crossref_primary_10_1109_LAWP_2024_3397819
crossref_primary_10_1016_j_knosys_2023_111018
crossref_primary_10_1016_j_swevo_2025_102020
crossref_primary_10_1080_09544828_2025_2450763
crossref_primary_10_1007_s11630_024_1949_5
crossref_primary_10_1007_s40747_024_01465_5
crossref_primary_10_1016_j_asoc_2023_110370
crossref_primary_10_1016_j_asoc_2025_113367
crossref_primary_10_1016_j_engappai_2024_108616
crossref_primary_10_3390_app15094847
crossref_primary_10_1038_s41598_025_09207_4
crossref_primary_10_1016_j_swevo_2024_101703
crossref_primary_10_1109_TEVC_2022_3152582
crossref_primary_10_1016_j_swevo_2024_101666
crossref_primary_10_1109_TEVC_2022_3228516
crossref_primary_10_1016_j_eswa_2023_122179
crossref_primary_10_1016_j_swevo_2024_101700
crossref_primary_10_1016_j_eswa_2023_122575
crossref_primary_10_1016_j_swevo_2025_102019
crossref_primary_10_1016_j_eswa_2025_128670
crossref_primary_10_1109_TEVC_2023_3327459
crossref_primary_10_1016_j_swevo_2022_101146
crossref_primary_10_1177_13835416251328552
crossref_primary_10_1109_TETCI_2024_3372378
crossref_primary_10_1109_TEVC_2023_3300181
crossref_primary_10_1007_s40747_023_00969_w
crossref_primary_10_1016_j_jestch_2024_101729
crossref_primary_10_1016_j_matlet_2025_137974
crossref_primary_10_1007_s40747_022_00650_8
crossref_primary_10_1016_j_knosys_2022_108197
crossref_primary_10_1109_TEVC_2024_3394005
crossref_primary_10_1016_j_asoc_2023_110892
crossref_primary_10_1016_j_swevo_2024_101813
crossref_primary_10_1016_j_ins_2024_121079
crossref_primary_10_1109_TEVC_2023_3291614
crossref_primary_10_1109_JAS_2025_125111
crossref_primary_10_1109_TNNLS_2023_3297624
crossref_primary_10_1109_TEVC_2022_3177936
crossref_primary_10_1016_j_swevo_2024_101492
crossref_primary_10_1016_j_swevo_2022_101170
crossref_primary_10_1016_j_measurement_2024_115168
crossref_primary_10_1016_j_swevo_2022_101173
crossref_primary_10_1109_TEVC_2024_3382145
crossref_primary_10_1145_3637065
crossref_primary_10_1109_TEVC_2021_3120980
crossref_primary_10_1016_j_swevo_2024_101809
crossref_primary_10_1162_evco_a_00354
crossref_primary_10_1016_j_asoc_2025_113216
crossref_primary_10_1016_j_asoc_2022_109263
crossref_primary_10_1016_j_asoc_2023_110785
crossref_primary_10_1109_TETCI_2024_3358377
crossref_primary_10_1287_ijoc_2022_1260
crossref_primary_10_1109_TEVC_2023_3340678
Cites_doi 10.1145/2792984
10.1109/TEVC.2016.2622301
10.1007/978-3-540-87700-4_78
10.1007/978-3-540-70928-2_56
10.1109/TEVC.2014.2350987
10.1109/MCI.2017.2742868
10.1109/TETCI.2017.2669104
10.1109/SSCI44817.2019.9002828
10.1145/2576768.2598271
10.1109/TEVC.2007.910138
10.1109/TCYB.2018.2794503
10.1080/00401706.2000.10485979
10.1109/CEC.2015.7257247
10.1109/TEVC.2018.2791283
10.1109/TEVC.2018.2869001
10.1007/978-3-662-49014-3_56
10.1109/TEVC.2018.2802784
10.1109/TEVC.2005.861417
10.1007/BF00994018
10.1109/TEVC.2003.810761
10.1109/TEVC.2019.2899030
10.1109/TEVC.2007.892759
10.1109/CEC.2017.7969486
10.1109/TEVC.2012.2227145
10.1109/TEVC.2009.2033671
10.1109/TEVC.2016.2519378
10.1016/j.asoc.2017.08.024
10.1007/978-3-030-12598-1_27
10.1007/978-3-540-31880-4_2
10.1515/CCLM.2004.057
10.1007/s00500-015-1940-x
10.1109/ICCIAS.2006.294139
10.1109/NABIC.2009.5393659
10.1109/TEVC.2019.2924461
10.1109/MCI.2009.933094
10.1109/TEVC.2013.2281521
10.1007/BF00932614
10.1109/TCYB.2016.2550502
10.1007/s40747-019-00126-2
10.1037/0033-2909.95.2.334
10.1007/3-540-45712-7_35
10.1109/TEVC.2005.851274
10.1002/9781118625590
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TEVC.2021.3073648
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1941-0026
EndPage 1027
ExternalDocumentID 10_1109_TEVC_2021_3073648
9406113
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61976165; 61903178; 61590922; U20A20306
  funderid: 10.13039/501100001809
– fundername: U.K. Royal Society Exchange Program
  grantid: IEC\NSFC\170279
  funderid: 10.13039/501100000288
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
5VS
6IF
6IK
6IL
6IN
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ADZIZ
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CHZPO
CS3
EBS
EJD
HZ~
H~9
IEGSK
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RIL
RNS
TN5
VH1
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c359t-a22e92be9b003aa02cea6137500c9ec3d8270e11bef7840edd6125fe57a34b4d3
IEDL.DBID RIE
ISICitedReferencesCount 180
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000724477500005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1089-778X
IngestDate Sun Sep 07 03:30:37 EDT 2025
Sat Nov 29 03:13:48 EST 2025
Tue Nov 18 21:27:20 EST 2025
Wed Aug 27 05:11:49 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c359t-a22e92be9b003aa02cea6137500c9ec3d8270e11bef7840edd6125fe57a34b4d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3315-499X
0000-0003-4218-8454
0000-0002-4805-3780
0000-0003-1100-0631
PQID 2604921963
PQPubID 85418
PageCount 15
ParticipantIDs ieee_primary_9406113
crossref_primary_10_1109_TEVC_2021_3073648
proquest_journals_2604921963
crossref_citationtrail_10_1109_TEVC_2021_3073648
PublicationCentury 2000
PublicationDate 2021-12-01
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-12-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on evolutionary computation
PublicationTitleAbbrev TEVC
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref58
ref14
ref53
ref52
ref55
ref11
bringmann (ref38) 2013
ref10
rousseeuw (ref37) 2005; 589
zitzler (ref27) 2004
hensman (ref47) 2013
ref51
ref50
krige (ref17) 1951
ref46
ref45
ref48
ref42
ref41
box (ref18) 1987; 424
williams (ref43) 2006; 2
mockus (ref35) 1978; 2
ref49
broomhead (ref21) 1988
ref8
ref7
ref9
ref4
ref6
ref5
ref40
lophaven (ref56) 2002
draper (ref44) 1998; 326
ref34
ref36
guo (ref3) 2016
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref24
ref23
ref26
ref25
ref20
zurada (ref19) 1992; 8
ref22
ishibuchi (ref54) 2015
ref28
ref29
guo (ref57) 0
jin (ref16) 2000
References_xml – ident: ref6
  doi: 10.1145/2792984
– ident: ref8
  doi: 10.1109/TEVC.2016.2622301
– ident: ref28
  doi: 10.1007/978-3-540-87700-4_78
– ident: ref23
  doi: 10.1007/978-3-540-70928-2_56
– start-page: 832
  year: 2004
  ident: ref27
  article-title: Indicator-based selection in multiobjective search
  publication-title: Proc Int Conf Parallel Problem Solving Nat
– ident: ref39
  doi: 10.1109/TEVC.2014.2350987
– start-page: 110
  year: 2015
  ident: ref54
  article-title: Modified distance calculation in generational distance and inverted generational distance
  publication-title: Proc Int Conf Evol Multicrit Optim
– ident: ref49
  doi: 10.1109/MCI.2017.2742868
– ident: ref2
  doi: 10.1109/TETCI.2017.2669104
– ident: ref32
  doi: 10.1109/SSCI44817.2019.9002828
– ident: ref33
  doi: 10.1145/2576768.2598271
– ident: ref22
  doi: 10.1109/TEVC.2007.910138
– ident: ref58
  doi: 10.1109/TCYB.2018.2794503
– ident: ref46
  doi: 10.1080/00401706.2000.10485979
– ident: ref24
  doi: 10.1109/CEC.2015.7257247
– ident: ref26
  doi: 10.1109/TEVC.2018.2791283
– ident: ref12
  doi: 10.1109/TEVC.2018.2869001
– volume: 2
  start-page: 2
  year: 1978
  ident: ref35
  article-title: The application of Bayesian methods for seeking the extremum
  publication-title: Towards Global Optimazation
– ident: ref34
  doi: 10.1007/978-3-662-49014-3_56
– ident: ref9
  doi: 10.1109/TEVC.2018.2802784
– ident: ref52
  doi: 10.1109/TEVC.2005.861417
– start-page: 786
  year: 2000
  ident: ref16
  article-title: On evolutionary optimization with approximate fitness functions
  publication-title: Proc 2nd Annu Conf Genet Evol Comput
– ident: ref20
  doi: 10.1007/BF00994018
– ident: ref53
  doi: 10.1109/TEVC.2003.810761
– ident: ref31
  doi: 10.1109/TEVC.2019.2899030
– ident: ref50
  doi: 10.1109/TEVC.2007.892759
– ident: ref10
  doi: 10.1109/CEC.2017.7969486
– volume: 8
  year: 1992
  ident: ref19
  publication-title: Introduction to Artificial Neural Systems
– ident: ref5
  doi: 10.1109/TEVC.2012.2227145
– start-page: 282
  year: 2013
  ident: ref47
  article-title: Gaussian processes for big data
  publication-title: Proc Conf Uncertainty of Artificial Intelligence
– start-page: 1
  year: 2016
  ident: ref3
  article-title: Small data driven evolutionary multi-objective optimization of fused magnesium furnaces
  publication-title: Proc IEEE Symp Comput Intell (SSCI)
– year: 0
  ident: ref57
  article-title: Evolutionary optimization of high-dimensional multi- and many-objective expensive problems assisted by a dropout neural network
  publication-title: IEEE Trans Syst Man Cybern Syst
– ident: ref30
  doi: 10.1109/TEVC.2009.2033671
– year: 1988
  ident: ref21
  article-title: Radial basis functions, multi-variable functional interpolation and adaptive networks
– start-page: 207
  year: 2013
  ident: ref38
  article-title: Bringing order to special cases of Klee's measure problem
  publication-title: Proc Int Symp Math Found Comput Sci
– ident: ref51
  doi: 10.1109/TEVC.2016.2519378
– ident: ref25
  doi: 10.1016/j.asoc.2017.08.024
– ident: ref55
  doi: 10.1007/978-3-030-12598-1_27
– volume: 424
  year: 1987
  ident: ref18
  publication-title: Empirical Model-Building and Response Surfaces
– ident: ref1
  doi: 10.1007/978-3-540-31880-4_2
– year: 2002
  ident: ref56
  article-title: DACE: A MATLAB kriging toolbox
– ident: ref45
  doi: 10.1515/CCLM.2004.057
– ident: ref7
  doi: 10.1007/s00500-015-1940-x
– ident: ref41
  doi: 10.1109/ICCIAS.2006.294139
– ident: ref4
  doi: 10.1109/NABIC.2009.5393659
– ident: ref15
  doi: 10.1109/TEVC.2019.2924461
– ident: ref11
  doi: 10.1109/MCI.2009.933094
– volume: 2
  year: 2006
  ident: ref43
  publication-title: Gaussian Processes for Machine Learning
– ident: ref42
  doi: 10.1109/TEVC.2013.2281521
– ident: ref40
  doi: 10.1007/BF00932614
– ident: ref48
  doi: 10.1109/TCYB.2016.2550502
– ident: ref13
  doi: 10.1007/s40747-019-00126-2
– ident: ref36
  doi: 10.1037/0033-2909.95.2.334
– ident: ref14
  doi: 10.1007/3-540-45712-7_35
– year: 1951
  ident: ref17
  article-title: A statistical approach to some mine valuation and allied problems on the Witwatersrand: By DG krige
– ident: ref29
  doi: 10.1109/TEVC.2005.851274
– volume: 326
  year: 1998
  ident: ref44
  publication-title: Applied regression analysis
  doi: 10.1002/9781118625590
– volume: 589
  year: 2005
  ident: ref37
  publication-title: Robust Regression and Outlier Detection
SSID ssj0014519
Score 2.692433
Snippet Only a small number of function evaluations can be afforded in many real-world multiobjective optimization problems (MOPs) where the function evaluations are...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1013
SubjectTerms Adaptation models
Adaptive sampling strategy
Archives & records
Computational modeling
Convergence
Data models
Evolutionary algorithms
evolutionary algorithms (EAs)
Evolutionary computation
expensive multiobjective optimization
Genetic algorithms
Kriging
Mopping
Multiple objective analysis
Optimization
Predictive models
Sampling
surrogate assisted
Uncertainty
Title A Kriging-Assisted Two-Archive Evolutionary Algorithm for Expensive Many-Objective Optimization
URI https://ieeexplore.ieee.org/document/9406113
https://www.proquest.com/docview/2604921963
Volume 25
WOSCitedRecordID wos000724477500005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore
  customDbUrl:
  eissn: 1941-0026
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014519
  issn: 1089-778X
  databaseCode: RIE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFH_o8KAHp1NxfpGDJzHapt3SHIdMBD_mYcpuJU1fdbIP2abif29emg1BETwUekhK6S95H30vvx_AcSixEEYLbmPXjMdCFjxpxMhFM0JNjGNN43hmb-TdXdLrqfslOF2chUFE13yGZ3Travn52LzRr7JzRd6HJGqXpZTlWa1FxYBoUspmemUjxqTnK5hhoM677ccLmwmK8IwWdJOkfr75ICeq8sMSO_dyWf3fi23Aug8jWavEfROWcFSD6lyigfkdW4O1b3yDW5C22LUTwnriFhYCOGfdjzH39LOs_e4Xop58stbgaTzpz56HzMa1jCiRXas7u7Xmg3eyl9JSso61OUN_mHMbHi7b3Ysr7hUWuIkaasa1EKhEhkSMGGkdCIPa-ncbRQRGoYnyRMgAwzDDQtpMEPOcAqICG1JHcRbn0Q5URuMR7gIrgkhpGw1lQR7HUR4rm2faC0MtEXWR1CGYf_PUePpxUsEYpC4NCVRKMKUEU-phqsPJYspryb3x1-AtwmUx0ENSh4M5sKnfndPU5nCxEmR79n6ftQ-r9OyybeUAKrPJGx7Cinmf9aeTI7fwvgCHwtWr
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LTuswEB0hQLqw4I0oTy9YoWtIHLeJlxUqAlEKi3LVneU4kwKCFpUC4u_xOG6FBLoSi0hZ2EqUY88jMz4H4DBOsRTWCO5i15xLkZY8q0vkopGgIcaxhvU8s-2008l6PXUzA3-nZ2EQ0Tef4THd-lp-MbSv9KvsRJH3IYnaubqUIq5Oa01rBkSUUrXTKxczZr1Qw4wjddJt_Tt1uaCIj2lJN0js54sX8rIq32yxdzBny797tRVYCoEka1bIr8IMDtZgeSLSwMKeXYPFL4yD66Cb7NJLYfW5A4YgLlj3fcgDAS1rvYWlaEYfrPnYH47ux3dPzEW2jEiRfbM7u3IGhF_nD5WtZNfO6jyF45wbcHvW6p6e86CxwG1SV2NuhEAlciRqxMSYSFg0zsO7OCKyCm1SZCKNMI5zLFOXC2JRUEhUYj01icxlkWzC7GA4wC1gZZQo4-KhPCqkTAqpXKbpLoxNimjKrAbR5JtrGwjISQfjUftEJFKaYNIEkw4w1eBoOuW5Yt_43-B1wmU6MEBSg90JsDrszxftsjipBFmf7Z9nHcCf8-5VW7cvOpc7sEDPqZpYdmF2PHrFPZi3b-P7l9G-X4Sfy_jY8g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Kriging-Assisted+Two-Archive+Evolutionary+Algorithm+for+Expensive+Many-Objective+Optimization&rft.jtitle=IEEE+transactions+on+evolutionary+computation&rft.au=Song%2C+Zhenshou&rft.au=Wang%2C+Handing&rft.au=He%2C+Cheng&rft.au=Jin%2C+Yaochu&rft.date=2021-12-01&rft.pub=IEEE&rft.issn=1089-778X&rft.volume=25&rft.issue=6&rft.spage=1013&rft.epage=1027&rft_id=info:doi/10.1109%2FTEVC.2021.3073648&rft.externalDocID=9406113
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-778X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-778X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-778X&client=summon