Automated Vehicle Sideslip Angle Estimation Considering Signal Measurement Characteristic
Vehicle slip angle (VSA) estimation is of paramount importance for connected automated vehicle dynamic control, especially in critical lateral driving scenarios. In this paper, a novel kinematic-model-based VSA estimation method is proposed by fusing information from a global navigation satellite sy...
Gespeichert in:
| Veröffentlicht in: | IEEE sensors journal Jg. 21; H. 19; S. 21675 - 21687 |
|---|---|
| Hauptverfasser: | , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
IEEE
01.10.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 1530-437X, 1558-1748 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Vehicle slip angle (VSA) estimation is of paramount importance for connected automated vehicle dynamic control, especially in critical lateral driving scenarios. In this paper, a novel kinematic-model-based VSA estimation method is proposed by fusing information from a global navigation satellite system (GNSS) and an inertial measurement unit (IMU). First, to reject the gravity components induced by the vehicle roll and pitch, a vehicle attitude angle observer based on the square-root cubature Kalman filter (SCKF) is designed to estimate the roll and pitch. A novel feedback mechanism based on the vehicle intrinsic information (the steering angle and wheel speed) for the pitch and roll is designed. Then, the integration of the reverse smoothing and grey prediction is adopted to compensate for the cumulative velocity errors during the relatively low sampling interval of the GNSS. Moreover, the GNSS signal delay has been addressed by an estimation-prediction integrated framework. Finally, the results confirm that the proposed method can estimate the VSA under both the slalom and double lane change (DLC) scenarios. |
|---|---|
| AbstractList | Vehicle slip angle (VSA) estimation is of paramount importance for connected automated vehicle dynamic control, especially in critical lateral driving scenarios. In this paper, a novel kinematic-model-based VSA estimation method is proposed by fusing information from a global navigation satellite system (GNSS) and an inertial measurement unit (IMU). First, to reject the gravity components induced by the vehicle roll and pitch, a vehicle attitude angle observer based on the square-root cubature Kalman filter (SCKF) is designed to estimate the roll and pitch. A novel feedback mechanism based on the vehicle intrinsic information (the steering angle and wheel speed) for the pitch and roll is designed. Then, the integration of the reverse smoothing and grey prediction is adopted to compensate for the cumulative velocity errors during the relatively low sampling interval of the GNSS. Moreover, the GNSS signal delay has been addressed by an estimation-prediction integrated framework. Finally, the results confirm that the proposed method can estimate the VSA under both the slalom and double lane change (DLC) scenarios. |
| Author | Lu, Yishi Gao, Letian Liu, Wei Yu, Zhuoping Xia, Xin Xiong, Lu |
| Author_xml | – sequence: 1 givenname: Wei orcidid: 0000-0003-4251-5793 surname: Liu fullname: Liu, Wei organization: School of Automotive Studies, Tongji University, Shanghai, China – sequence: 2 givenname: Xin orcidid: 0000-0002-5108-7578 surname: Xia fullname: Xia, Xin email: 10xinxia@tongji.edu.cn organization: School of Automotive Studies, Tongji University, Shanghai, China – sequence: 3 givenname: Lu orcidid: 0000-0002-1673-2658 surname: Xiong fullname: Xiong, Lu organization: School of Automotive Studies, Tongji University, Shanghai, China – sequence: 4 givenname: Yishi surname: Lu fullname: Lu, Yishi organization: School of Automotive Studies, Tongji University, Shanghai, China – sequence: 5 givenname: Letian surname: Gao fullname: Gao, Letian organization: School of Automotive Studies, Tongji University, Shanghai, China – sequence: 6 givenname: Zhuoping orcidid: 0000-0002-8775-0052 surname: Yu fullname: Yu, Zhuoping organization: School of Automotive Studies, Tongji University, Shanghai, China |
| BookMark | eNp9kE9PwyAYh4nRxG36AYyXJp47gZa2HJdm_svUw9ToiVB4u7F07QR68NtL3eLBgxd4yfs8L_Abo-O2awGhC4KnhGB-_bCcP00ppmSaYMYxw0doRBgrYpKnxfFQJzhOk_z9FI2d22BMeM7yEfqY9b7bSg86eoO1UQ1ES6PBNWYXzdpVOM6dNwEwXRuVXetC05p2FahVK5voEaTrLWyh9VG5llYqH_pBUWfopJaNg_PDPkGvN_OX8i5ePN_el7NFrBLGfSwJLkiVZZhWrK6kBpZphnUGecVoqjlNKYUirEprrhUookNR41xSxVVRJRN0tZ-7s91nD86LTdfb8DYnKMsLGm7BPFD5nlK2c85CLZTxP7_yVppGECyGHMWQoxhyFIccg0n-mDsbArFf_zqXe8cAwC_PGctIgpNvGF6Brg |
| CODEN | ISJEAZ |
| CitedBy_id | crossref_primary_10_3390_s23125457 crossref_primary_10_3390_pr11030887 crossref_primary_10_3390_su15139859 crossref_primary_10_1016_j_conengprac_2024_106125 crossref_primary_10_1177_09544070241230126 crossref_primary_10_1109_JIOT_2023_3307002 crossref_primary_10_1109_TITS_2022_3195213 crossref_primary_10_3390_electronics12214433 crossref_primary_10_1049_itr2_12460 crossref_primary_10_1109_TVT_2025_3546606 crossref_primary_10_1109_JSEN_2022_3208076 crossref_primary_10_3390_en16083490 crossref_primary_10_1007_s12239_023_0106_6 crossref_primary_10_3390_rs15164040 crossref_primary_10_1109_TIV_2023_3244948 crossref_primary_10_3390_app13116465 crossref_primary_10_1109_ACCESS_2025_3585234 crossref_primary_10_1155_2023_4049672 crossref_primary_10_3390_su15075672 crossref_primary_10_1177_09544070231181163 crossref_primary_10_3390_app13169313 crossref_primary_10_3390_en16186512 crossref_primary_10_1109_TITS_2024_3517162 crossref_primary_10_1109_TIM_2024_3385822 crossref_primary_10_1109_TITS_2023_3305380 crossref_primary_10_3390_s23063335 crossref_primary_10_3390_s23136120 crossref_primary_10_1177_09544070241248560 crossref_primary_10_1016_j_ymssp_2023_110854 crossref_primary_10_3390_s23115119 crossref_primary_10_3390_wevj14020054 crossref_primary_10_1109_TIV_2023_3349324 crossref_primary_10_3390_s25051537 crossref_primary_10_3390_app132312685 crossref_primary_10_1016_j_ymssp_2024_111126 crossref_primary_10_1109_TITS_2025_3535828 crossref_primary_10_1177_09544070231221595 crossref_primary_10_1109_JSTARS_2022_3206399 crossref_primary_10_1109_JSEN_2023_3312610 crossref_primary_10_1177_09544070231167906 crossref_primary_10_1007_s10291_022_01231_5 crossref_primary_10_1049_itr2_12474 crossref_primary_10_3390_act12100371 crossref_primary_10_3390_su151813553 crossref_primary_10_3390_app13158932 crossref_primary_10_3390_pr11020501 crossref_primary_10_3390_s23136127 crossref_primary_10_3390_app13084803 crossref_primary_10_3390_app13095272 crossref_primary_10_3390_en16134897 crossref_primary_10_3390_s24154846 crossref_primary_10_1016_j_ymssp_2025_113211 crossref_primary_10_1109_TIV_2024_3377163 crossref_primary_10_3390_rs15092439 crossref_primary_10_1109_TIV_2023_3282567 crossref_primary_10_1016_j_measurement_2024_115367 crossref_primary_10_3390_electronics12143165 crossref_primary_10_3390_rs15174292 crossref_primary_10_3390_s23063119 crossref_primary_10_3390_en16124627 crossref_primary_10_3390_su151310032 crossref_primary_10_1016_j_geits_2023_100125 crossref_primary_10_1109_JSEN_2023_3250617 crossref_primary_10_1016_j_apenergy_2023_121526 crossref_primary_10_3390_s23073676 crossref_primary_10_3390_s23135845 crossref_primary_10_1155_abb_2451501 crossref_primary_10_3390_s23187883 crossref_primary_10_3390_app13116400 crossref_primary_10_3390_electronics12234882 crossref_primary_10_1109_TVT_2024_3515209 crossref_primary_10_3390_ai4020025 crossref_primary_10_1177_09544070231195233 crossref_primary_10_3390_drones7050295 crossref_primary_10_3390_en16176235 crossref_primary_10_4271_12_06_04_0030 crossref_primary_10_1109_TIV_2023_3298528 crossref_primary_10_3390_electronics12081903 crossref_primary_10_3390_electronics12092072 crossref_primary_10_3390_rs15092430 crossref_primary_10_3390_app13074152 crossref_primary_10_3390_app13095650 crossref_primary_10_3390_app13137810 crossref_primary_10_3390_agronomy13081982 crossref_primary_10_3390_s23156708 crossref_primary_10_3390_s23084176 crossref_primary_10_3390_s23094537 crossref_primary_10_3390_electronics12132905 crossref_primary_10_1049_itr2_12405 crossref_primary_10_4271_14_13_01_0006 crossref_primary_10_1007_s11431_024_2876_y crossref_primary_10_1109_TMECH_2024_3382777 crossref_primary_10_1109_TVT_2024_3479416 crossref_primary_10_1177_09544070231210565 crossref_primary_10_3390_app13095525 crossref_primary_10_3390_su151411112 crossref_primary_10_3390_mi14061181 crossref_primary_10_1109_TVT_2022_3212996 crossref_primary_10_3390_s23073454 crossref_primary_10_1109_JSEN_2024_3365718 crossref_primary_10_3390_s23156828 crossref_primary_10_3390_rs15082160 crossref_primary_10_3390_rs15112938 crossref_primary_10_1088_1742_6596_2946_1_012002 crossref_primary_10_3390_drones7040268 crossref_primary_10_1109_ACCESS_2024_3468879 crossref_primary_10_3390_electronics13030466 crossref_primary_10_3390_math11081964 crossref_primary_10_1109_TIV_2023_3271867 crossref_primary_10_1002_advs_202414438 crossref_primary_10_3390_s23187958 crossref_primary_10_3390_drones7030189 crossref_primary_10_3390_designs7030059 crossref_primary_10_3389_frobt_2023_1120658 crossref_primary_10_3390_app13074099 crossref_primary_10_1109_ACCESS_2025_3601174 crossref_primary_10_1109_TVT_2024_3389493 crossref_primary_10_1016_j_trc_2023_104120 crossref_primary_10_1109_TVT_2023_3287687 crossref_primary_10_1016_j_ymssp_2023_111050 crossref_primary_10_3390_electronics11020181 crossref_primary_10_3390_rs15102506 crossref_primary_10_1177_09544070241227265 crossref_primary_10_1109_TITS_2023_3235774 crossref_primary_10_3390_electronics12112372 crossref_primary_10_3390_drones7050329 crossref_primary_10_1109_TITS_2024_3500794 crossref_primary_10_3390_app13095340 crossref_primary_10_1109_TIV_2023_3298892 crossref_primary_10_3390_rs15153725 crossref_primary_10_3390_machines11090907 |
| Cites_doi | 10.1007/s00170-016-9426-2 10.3390/s19081930 10.1109/TITS.2006.883110 10.1109/JIOT.2020.3001167 10.1049/iet-its.2019.0826 10.1016/j.conengprac.2017.06.013 10.1177/0954407018790646 10.1109/IVS.2018.8500503 10.1115/DSCC2008-2272 10.1115/1.4030784 10.1109/TCST.2008.922503 10.1109/CDC.2015.7403216 10.1109/TMECH.2020.2993792 10.1109/TIE.2013.2271596 10.1109/TVT.2017.2771144 10.1515/jag-2015-0002 10.1109/JIOT.2018.2889303 10.1080/00423110902721824 10.1109/JIOT.2020.3019199 10.1109/TVT.2013.2294717 10.1109/IVS.2018.8500507 10.1109/ACCESS.2019.2916182 10.1109/TITS.2012.2204984 10.1109/TVT.2020.2983738 10.4271/2018-01-0569 10.1109/TITS.2020.3007631 10.1076/vesd.38.2.127.5619 10.1109/JIOT.2016.2611605 10.1109/JIOT.2019.2957778 10.1016/j.ymssp.2020.107290 10.1109/MSP.2020.2985815 10.1109/TVT.2018.2890418 10.1109/TIE.2017.2774771 10.1080/00423114.2013.859281 10.1115/1.1766026 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 7U5 8FD L7M |
| DOI | 10.1109/JSEN.2021.3059050 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Solid State and Superconductivity Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography Engineering |
| EISSN | 1558-1748 |
| EndPage | 21687 |
| ExternalDocumentID | 10_1109_JSEN_2021_3059050 9556130 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Nature Science Foundation of China grantid: 51975414 funderid: 10.13039/501100001809 |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AGQYO AHBIQ AJQPL AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 EBS F5P HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TWZ AAYXX CITATION 7SP 7U5 8FD L7M |
| ID | FETCH-LOGICAL-c359t-a1081b6602b5fbade56d50d6e7b524d92422e8242cdd9dcec1ddd9f07a2c9c8b3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 146 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000702716000065&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1530-437X |
| IngestDate | Mon Jun 30 10:10:34 EDT 2025 Tue Nov 18 22:23:38 EST 2025 Sat Nov 29 06:39:04 EST 2025 Wed Aug 27 02:27:00 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 19 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c359t-a1081b6602b5fbade56d50d6e7b524d92422e8242cdd9dcec1ddd9f07a2c9c8b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-1673-2658 0000-0002-8775-0052 0000-0003-4251-5793 0000-0002-5108-7578 |
| PQID | 2578235909 |
| PQPubID | 75733 |
| PageCount | 13 |
| ParticipantIDs | crossref_citationtrail_10_1109_JSEN_2021_3059050 ieee_primary_9556130 proquest_journals_2578235909 crossref_primary_10_1109_JSEN_2021_3059050 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-10-01 |
| PublicationDateYYYYMMDD | 2021-10-01 |
| PublicationDate_xml | – month: 10 year: 2021 text: 2021-10-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE sensors journal |
| PublicationTitleAbbrev | JSEN |
| PublicationYear | 2021 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref35 ref13 ref34 ref12 ref37 ref15 ref14 ref31 ref30 ref33 ref32 ref10 ref2 ma (ref18) 2016; 94 ref1 ref17 ref16 ref19 ref24 ref23 ref26 ref25 ref20 ref22 ref21 matthew (ref11) 1998 ref28 ref27 meng (ref36) 2015 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
| References_xml | – volume: 94 start-page: 3229 year: 2016 ident: ref18 article-title: Estimation of vehicle sideslip angle based on steering torque publication-title: Int J Adv Manuf Tech doi: 10.1007/s00170-016-9426-2 – ident: ref22 doi: 10.3390/s19081930 – ident: ref26 doi: 10.1109/TITS.2006.883110 – ident: ref31 doi: 10.1109/JIOT.2020.3001167 – ident: ref3 doi: 10.1049/iet-its.2019.0826 – ident: ref12 doi: 10.1016/j.conengprac.2017.06.013 – start-page: 183 year: 1998 ident: ref11 article-title: Real-time state estimation of vehicle handling dynamics using an adaptive Kalman filter publication-title: Proc 5th Int Symp Adv Vehicle Control – ident: ref14 doi: 10.1177/0954407018790646 – ident: ref29 doi: 10.1109/IVS.2018.8500503 – ident: ref35 doi: 10.1115/DSCC2008-2272 – ident: ref16 doi: 10.1115/1.4030784 – ident: ref19 doi: 10.1109/TCST.2008.922503 – ident: ref34 doi: 10.1109/CDC.2015.7403216 – ident: ref2 doi: 10.1109/TMECH.2020.2993792 – ident: ref24 doi: 10.1109/TIE.2013.2271596 – ident: ref23 doi: 10.1109/TVT.2017.2771144 – ident: ref10 doi: 10.1515/jag-2015-0002 – ident: ref30 doi: 10.1109/JIOT.2018.2889303 – ident: ref17 doi: 10.1080/00423110902721824 – ident: ref6 doi: 10.1109/JIOT.2020.3019199 – start-page: 142 year: 2015 ident: ref36 publication-title: Research on Fractional Order Operators and Grey Prediction Models – ident: ref28 doi: 10.1109/TVT.2013.2294717 – ident: ref33 doi: 10.1109/IVS.2018.8500507 – ident: ref32 doi: 10.1109/ACCESS.2019.2916182 – ident: ref21 doi: 10.1109/TITS.2012.2204984 – ident: ref37 doi: 10.1109/TVT.2020.2983738 – ident: ref9 doi: 10.4271/2018-01-0569 – ident: ref7 doi: 10.1109/TITS.2020.3007631 – ident: ref25 doi: 10.1076/vesd.38.2.127.5619 – ident: ref5 doi: 10.1109/JIOT.2016.2611605 – ident: ref13 doi: 10.1109/JIOT.2019.2957778 – ident: ref4 doi: 10.1016/j.ymssp.2020.107290 – ident: ref8 doi: 10.1109/MSP.2020.2985815 – ident: ref1 doi: 10.1109/TVT.2018.2890418 – ident: ref20 doi: 10.1109/TIE.2017.2774771 – ident: ref15 doi: 10.1080/00423114.2013.859281 – ident: ref27 doi: 10.1115/1.1766026 |
| SSID | ssj0019757 |
| Score | 2.6309876 |
| Snippet | Vehicle slip angle (VSA) estimation is of paramount importance for connected automated vehicle dynamic control, especially in critical lateral driving... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 21675 |
| SubjectTerms | Automated vehicle Automation Delays Dynamic control Estimation Global navigation satellite system Grey prediction Inertial platforms information fusion Kalman filters Lane changing low sampling rate measurement signal delay Observers Pitch (inclination) Prediction algorithms Rolling motion Sideslip Signal delay Signal measurement Smoothing methods Steering Velocity errors Wheels |
| Title | Automated Vehicle Sideslip Angle Estimation Considering Signal Measurement Characteristic |
| URI | https://ieeexplore.ieee.org/document/9556130 https://www.proquest.com/docview/2578235909 |
| Volume | 21 |
| WOSCitedRecordID | wos000702716000065&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-1748 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0019757 issn: 1530-437X databaseCode: RIE dateStart: 20010101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB5qEdSDj1axWmUPnsRts9lHmmMpLSJahKrU05JNpg-QtrRbwX9vkt3WiiJ4WbIwyYZ8O5nJY74BuKI-Y5KF6HI_QDeQRLmNgZSuUDJiTNsvGdhA4XvW7Tb6ff5YgJt1LAwi2stnWDNFe5avpnJptsrqPLTu7hZsMRZlsVrrEwPOLKunVmDiBj7r5yeYHuH1u167q1eC1Kv5JtTShNhv2CCbVOXHTGzNS-fgfx07hP3cjXSaGe5HUMBJCfY2yAVLsJPnNx99lOG1uUyn2jdF5bzgyFRxemOF2secOc3JUL-2tapnUYzOKoenbkVLDc13Hr52Ep3WN4rnY3jutJ9at26eVMGVfshTV3jaCUiiiNAkHCRCYRipkKgIWRLSQOnlGKXY0E-pFFcSpad0YUCYoJLLRuKfQHEyneApOIKzAQ3RkLhGgUQlqCdQiEAY1rBAqQqQ1TDHMmccN4kv3mK78iA8NsjEBpk4R6YC1-sqs4xu4y_hsoFiLZijUIHqCss4V8hFbGYmqgeA8LPfa53Drmk7u6dXhWI6X-IFbMv3dLyYX9p_7RNAtdKv |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB58gXrwLdbnHjyJq9lssmmORVp81CJUpZ6WbDK1BWlLbQX_vUl2WxVF8LJkYbIJ-XYyk8d8A3BMYyG04BjKmGHINDFhua11qIxOhLD2SzMfKFwXjUa51ZJ3M3A6jYVBRH_5DM9c0Z_lm74eu62yc8m9uzsL85wxSvJoremZgRSe19OqMAlZLFrFGWZE5Pl1s9qwa0EancUu2NIF2X-xQj6tyo-52BuY2ur_urYGK4UjGVRy5NdhBnsbsPyFXnADFosM5533TXiqjEd9652iCR6x46oEza5B62UOgkrv2b5WrbLncYzBJIun_YqVenbt3H7uJQYX30iet-ChVr2_uAyLtAqhjrkchSqybkCWJIRmvJ0pgzwxnJgERcYpM3ZBRimW7VMbI41GHRlbaBOhqJa6nMXbMNfr93AHAiVFm3J0NK4J02gUjRQqxZTjDWPGlIBMhjnVBee4S33xkvq1B5GpQyZ1yKQFMiU4mVYZ5IQbfwlvOiimggUKJdifYJkWKvmaurmJ2gEgcvf3WkeweHl_W0_rV42bPVhy7eS39vZhbjQc4wEs6LdR93V46P-7D13M1fY |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automated+Vehicle+Sideslip+Angle+Estimation+Considering+Signal+Measurement+Characteristic&rft.jtitle=IEEE+sensors+journal&rft.au=Liu%2C+Wei&rft.au=Xia%2C+Xin&rft.au=Lu%2C+Xiong&rft.au=Lu%2C+Yishi&rft.date=2021-10-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1530-437X&rft.eissn=1558-1748&rft.volume=21&rft.issue=19&rft.spage=21675&rft_id=info:doi/10.1109%2FJSEN.2021.3059050&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon |