Automated Vehicle Sideslip Angle Estimation Considering Signal Measurement Characteristic

Vehicle slip angle (VSA) estimation is of paramount importance for connected automated vehicle dynamic control, especially in critical lateral driving scenarios. In this paper, a novel kinematic-model-based VSA estimation method is proposed by fusing information from a global navigation satellite sy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE sensors journal Jg. 21; H. 19; S. 21675 - 21687
Hauptverfasser: Liu, Wei, Xia, Xin, Xiong, Lu, Lu, Yishi, Gao, Letian, Yu, Zhuoping
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York IEEE 01.10.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:1530-437X, 1558-1748
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Vehicle slip angle (VSA) estimation is of paramount importance for connected automated vehicle dynamic control, especially in critical lateral driving scenarios. In this paper, a novel kinematic-model-based VSA estimation method is proposed by fusing information from a global navigation satellite system (GNSS) and an inertial measurement unit (IMU). First, to reject the gravity components induced by the vehicle roll and pitch, a vehicle attitude angle observer based on the square-root cubature Kalman filter (SCKF) is designed to estimate the roll and pitch. A novel feedback mechanism based on the vehicle intrinsic information (the steering angle and wheel speed) for the pitch and roll is designed. Then, the integration of the reverse smoothing and grey prediction is adopted to compensate for the cumulative velocity errors during the relatively low sampling interval of the GNSS. Moreover, the GNSS signal delay has been addressed by an estimation-prediction integrated framework. Finally, the results confirm that the proposed method can estimate the VSA under both the slalom and double lane change (DLC) scenarios.
AbstractList Vehicle slip angle (VSA) estimation is of paramount importance for connected automated vehicle dynamic control, especially in critical lateral driving scenarios. In this paper, a novel kinematic-model-based VSA estimation method is proposed by fusing information from a global navigation satellite system (GNSS) and an inertial measurement unit (IMU). First, to reject the gravity components induced by the vehicle roll and pitch, a vehicle attitude angle observer based on the square-root cubature Kalman filter (SCKF) is designed to estimate the roll and pitch. A novel feedback mechanism based on the vehicle intrinsic information (the steering angle and wheel speed) for the pitch and roll is designed. Then, the integration of the reverse smoothing and grey prediction is adopted to compensate for the cumulative velocity errors during the relatively low sampling interval of the GNSS. Moreover, the GNSS signal delay has been addressed by an estimation-prediction integrated framework. Finally, the results confirm that the proposed method can estimate the VSA under both the slalom and double lane change (DLC) scenarios.
Author Lu, Yishi
Gao, Letian
Liu, Wei
Yu, Zhuoping
Xia, Xin
Xiong, Lu
Author_xml – sequence: 1
  givenname: Wei
  orcidid: 0000-0003-4251-5793
  surname: Liu
  fullname: Liu, Wei
  organization: School of Automotive Studies, Tongji University, Shanghai, China
– sequence: 2
  givenname: Xin
  orcidid: 0000-0002-5108-7578
  surname: Xia
  fullname: Xia, Xin
  email: 10xinxia@tongji.edu.cn
  organization: School of Automotive Studies, Tongji University, Shanghai, China
– sequence: 3
  givenname: Lu
  orcidid: 0000-0002-1673-2658
  surname: Xiong
  fullname: Xiong, Lu
  organization: School of Automotive Studies, Tongji University, Shanghai, China
– sequence: 4
  givenname: Yishi
  surname: Lu
  fullname: Lu, Yishi
  organization: School of Automotive Studies, Tongji University, Shanghai, China
– sequence: 5
  givenname: Letian
  surname: Gao
  fullname: Gao, Letian
  organization: School of Automotive Studies, Tongji University, Shanghai, China
– sequence: 6
  givenname: Zhuoping
  orcidid: 0000-0002-8775-0052
  surname: Yu
  fullname: Yu, Zhuoping
  organization: School of Automotive Studies, Tongji University, Shanghai, China
BookMark eNp9kE9PwyAYh4nRxG36AYyXJp47gZa2HJdm_svUw9ToiVB4u7F07QR68NtL3eLBgxd4yfs8L_Abo-O2awGhC4KnhGB-_bCcP00ppmSaYMYxw0doRBgrYpKnxfFQJzhOk_z9FI2d22BMeM7yEfqY9b7bSg86eoO1UQ1ES6PBNWYXzdpVOM6dNwEwXRuVXetC05p2FahVK5voEaTrLWyh9VG5llYqH_pBUWfopJaNg_PDPkGvN_OX8i5ePN_el7NFrBLGfSwJLkiVZZhWrK6kBpZphnUGecVoqjlNKYUirEprrhUookNR41xSxVVRJRN0tZ-7s91nD86LTdfb8DYnKMsLGm7BPFD5nlK2c85CLZTxP7_yVppGECyGHMWQoxhyFIccg0n-mDsbArFf_zqXe8cAwC_PGctIgpNvGF6Brg
CODEN ISJEAZ
CitedBy_id crossref_primary_10_3390_s23125457
crossref_primary_10_3390_pr11030887
crossref_primary_10_3390_su15139859
crossref_primary_10_1016_j_conengprac_2024_106125
crossref_primary_10_1177_09544070241230126
crossref_primary_10_1109_JIOT_2023_3307002
crossref_primary_10_1109_TITS_2022_3195213
crossref_primary_10_3390_electronics12214433
crossref_primary_10_1049_itr2_12460
crossref_primary_10_1109_TVT_2025_3546606
crossref_primary_10_1109_JSEN_2022_3208076
crossref_primary_10_3390_en16083490
crossref_primary_10_1007_s12239_023_0106_6
crossref_primary_10_3390_rs15164040
crossref_primary_10_1109_TIV_2023_3244948
crossref_primary_10_3390_app13116465
crossref_primary_10_1109_ACCESS_2025_3585234
crossref_primary_10_1155_2023_4049672
crossref_primary_10_3390_su15075672
crossref_primary_10_1177_09544070231181163
crossref_primary_10_3390_app13169313
crossref_primary_10_3390_en16186512
crossref_primary_10_1109_TITS_2024_3517162
crossref_primary_10_1109_TIM_2024_3385822
crossref_primary_10_1109_TITS_2023_3305380
crossref_primary_10_3390_s23063335
crossref_primary_10_3390_s23136120
crossref_primary_10_1177_09544070241248560
crossref_primary_10_1016_j_ymssp_2023_110854
crossref_primary_10_3390_s23115119
crossref_primary_10_3390_wevj14020054
crossref_primary_10_1109_TIV_2023_3349324
crossref_primary_10_3390_s25051537
crossref_primary_10_3390_app132312685
crossref_primary_10_1016_j_ymssp_2024_111126
crossref_primary_10_1109_TITS_2025_3535828
crossref_primary_10_1177_09544070231221595
crossref_primary_10_1109_JSTARS_2022_3206399
crossref_primary_10_1109_JSEN_2023_3312610
crossref_primary_10_1177_09544070231167906
crossref_primary_10_1007_s10291_022_01231_5
crossref_primary_10_1049_itr2_12474
crossref_primary_10_3390_act12100371
crossref_primary_10_3390_su151813553
crossref_primary_10_3390_app13158932
crossref_primary_10_3390_pr11020501
crossref_primary_10_3390_s23136127
crossref_primary_10_3390_app13084803
crossref_primary_10_3390_app13095272
crossref_primary_10_3390_en16134897
crossref_primary_10_3390_s24154846
crossref_primary_10_1016_j_ymssp_2025_113211
crossref_primary_10_1109_TIV_2024_3377163
crossref_primary_10_3390_rs15092439
crossref_primary_10_1109_TIV_2023_3282567
crossref_primary_10_1016_j_measurement_2024_115367
crossref_primary_10_3390_electronics12143165
crossref_primary_10_3390_rs15174292
crossref_primary_10_3390_s23063119
crossref_primary_10_3390_en16124627
crossref_primary_10_3390_su151310032
crossref_primary_10_1016_j_geits_2023_100125
crossref_primary_10_1109_JSEN_2023_3250617
crossref_primary_10_1016_j_apenergy_2023_121526
crossref_primary_10_3390_s23073676
crossref_primary_10_3390_s23135845
crossref_primary_10_1155_abb_2451501
crossref_primary_10_3390_s23187883
crossref_primary_10_3390_app13116400
crossref_primary_10_3390_electronics12234882
crossref_primary_10_1109_TVT_2024_3515209
crossref_primary_10_3390_ai4020025
crossref_primary_10_1177_09544070231195233
crossref_primary_10_3390_drones7050295
crossref_primary_10_3390_en16176235
crossref_primary_10_4271_12_06_04_0030
crossref_primary_10_1109_TIV_2023_3298528
crossref_primary_10_3390_electronics12081903
crossref_primary_10_3390_electronics12092072
crossref_primary_10_3390_rs15092430
crossref_primary_10_3390_app13074152
crossref_primary_10_3390_app13095650
crossref_primary_10_3390_app13137810
crossref_primary_10_3390_agronomy13081982
crossref_primary_10_3390_s23156708
crossref_primary_10_3390_s23084176
crossref_primary_10_3390_s23094537
crossref_primary_10_3390_electronics12132905
crossref_primary_10_1049_itr2_12405
crossref_primary_10_4271_14_13_01_0006
crossref_primary_10_1007_s11431_024_2876_y
crossref_primary_10_1109_TMECH_2024_3382777
crossref_primary_10_1109_TVT_2024_3479416
crossref_primary_10_1177_09544070231210565
crossref_primary_10_3390_app13095525
crossref_primary_10_3390_su151411112
crossref_primary_10_3390_mi14061181
crossref_primary_10_1109_TVT_2022_3212996
crossref_primary_10_3390_s23073454
crossref_primary_10_1109_JSEN_2024_3365718
crossref_primary_10_3390_s23156828
crossref_primary_10_3390_rs15082160
crossref_primary_10_3390_rs15112938
crossref_primary_10_1088_1742_6596_2946_1_012002
crossref_primary_10_3390_drones7040268
crossref_primary_10_1109_ACCESS_2024_3468879
crossref_primary_10_3390_electronics13030466
crossref_primary_10_3390_math11081964
crossref_primary_10_1109_TIV_2023_3271867
crossref_primary_10_1002_advs_202414438
crossref_primary_10_3390_s23187958
crossref_primary_10_3390_drones7030189
crossref_primary_10_3390_designs7030059
crossref_primary_10_3389_frobt_2023_1120658
crossref_primary_10_3390_app13074099
crossref_primary_10_1109_ACCESS_2025_3601174
crossref_primary_10_1109_TVT_2024_3389493
crossref_primary_10_1016_j_trc_2023_104120
crossref_primary_10_1109_TVT_2023_3287687
crossref_primary_10_1016_j_ymssp_2023_111050
crossref_primary_10_3390_electronics11020181
crossref_primary_10_3390_rs15102506
crossref_primary_10_1177_09544070241227265
crossref_primary_10_1109_TITS_2023_3235774
crossref_primary_10_3390_electronics12112372
crossref_primary_10_3390_drones7050329
crossref_primary_10_1109_TITS_2024_3500794
crossref_primary_10_3390_app13095340
crossref_primary_10_1109_TIV_2023_3298892
crossref_primary_10_3390_rs15153725
crossref_primary_10_3390_machines11090907
Cites_doi 10.1007/s00170-016-9426-2
10.3390/s19081930
10.1109/TITS.2006.883110
10.1109/JIOT.2020.3001167
10.1049/iet-its.2019.0826
10.1016/j.conengprac.2017.06.013
10.1177/0954407018790646
10.1109/IVS.2018.8500503
10.1115/DSCC2008-2272
10.1115/1.4030784
10.1109/TCST.2008.922503
10.1109/CDC.2015.7403216
10.1109/TMECH.2020.2993792
10.1109/TIE.2013.2271596
10.1109/TVT.2017.2771144
10.1515/jag-2015-0002
10.1109/JIOT.2018.2889303
10.1080/00423110902721824
10.1109/JIOT.2020.3019199
10.1109/TVT.2013.2294717
10.1109/IVS.2018.8500507
10.1109/ACCESS.2019.2916182
10.1109/TITS.2012.2204984
10.1109/TVT.2020.2983738
10.4271/2018-01-0569
10.1109/TITS.2020.3007631
10.1076/vesd.38.2.127.5619
10.1109/JIOT.2016.2611605
10.1109/JIOT.2019.2957778
10.1016/j.ymssp.2020.107290
10.1109/MSP.2020.2985815
10.1109/TVT.2018.2890418
10.1109/TIE.2017.2774771
10.1080/00423114.2013.859281
10.1115/1.1766026
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1109/JSEN.2021.3059050
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Solid State and Superconductivity Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Engineering
EISSN 1558-1748
EndPage 21687
ExternalDocumentID 10_1109_JSEN_2021_3059050
9556130
Genre orig-research
GrantInformation_xml – fundername: National Nature Science Foundation of China
  grantid: 51975414
  funderid: 10.13039/501100001809
GroupedDBID -~X
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AGQYO
AHBIQ
AJQPL
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EBS
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TWZ
AAYXX
CITATION
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c359t-a1081b6602b5fbade56d50d6e7b524d92422e8242cdd9dcec1ddd9f07a2c9c8b3
IEDL.DBID RIE
ISICitedReferencesCount 146
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000702716000065&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1530-437X
IngestDate Mon Jun 30 10:10:34 EDT 2025
Tue Nov 18 22:23:38 EST 2025
Sat Nov 29 06:39:04 EST 2025
Wed Aug 27 02:27:00 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 19
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c359t-a1081b6602b5fbade56d50d6e7b524d92422e8242cdd9dcec1ddd9f07a2c9c8b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1673-2658
0000-0002-8775-0052
0000-0003-4251-5793
0000-0002-5108-7578
PQID 2578235909
PQPubID 75733
PageCount 13
ParticipantIDs crossref_citationtrail_10_1109_JSEN_2021_3059050
ieee_primary_9556130
proquest_journals_2578235909
crossref_primary_10_1109_JSEN_2021_3059050
PublicationCentury 2000
PublicationDate 2021-10-01
PublicationDateYYYYMMDD 2021-10-01
PublicationDate_xml – month: 10
  year: 2021
  text: 2021-10-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE sensors journal
PublicationTitleAbbrev JSEN
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref34
ref12
ref37
ref15
ref14
ref31
ref30
ref33
ref32
ref10
ref2
ma (ref18) 2016; 94
ref1
ref17
ref16
ref19
ref24
ref23
ref26
ref25
ref20
ref22
ref21
matthew (ref11) 1998
ref28
ref27
meng (ref36) 2015
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – volume: 94
  start-page: 3229
  year: 2016
  ident: ref18
  article-title: Estimation of vehicle sideslip angle based on steering torque
  publication-title: Int J Adv Manuf Tech
  doi: 10.1007/s00170-016-9426-2
– ident: ref22
  doi: 10.3390/s19081930
– ident: ref26
  doi: 10.1109/TITS.2006.883110
– ident: ref31
  doi: 10.1109/JIOT.2020.3001167
– ident: ref3
  doi: 10.1049/iet-its.2019.0826
– ident: ref12
  doi: 10.1016/j.conengprac.2017.06.013
– start-page: 183
  year: 1998
  ident: ref11
  article-title: Real-time state estimation of vehicle handling dynamics using an adaptive Kalman filter
  publication-title: Proc 5th Int Symp Adv Vehicle Control
– ident: ref14
  doi: 10.1177/0954407018790646
– ident: ref29
  doi: 10.1109/IVS.2018.8500503
– ident: ref35
  doi: 10.1115/DSCC2008-2272
– ident: ref16
  doi: 10.1115/1.4030784
– ident: ref19
  doi: 10.1109/TCST.2008.922503
– ident: ref34
  doi: 10.1109/CDC.2015.7403216
– ident: ref2
  doi: 10.1109/TMECH.2020.2993792
– ident: ref24
  doi: 10.1109/TIE.2013.2271596
– ident: ref23
  doi: 10.1109/TVT.2017.2771144
– ident: ref10
  doi: 10.1515/jag-2015-0002
– ident: ref30
  doi: 10.1109/JIOT.2018.2889303
– ident: ref17
  doi: 10.1080/00423110902721824
– ident: ref6
  doi: 10.1109/JIOT.2020.3019199
– start-page: 142
  year: 2015
  ident: ref36
  publication-title: Research on Fractional Order Operators and Grey Prediction Models
– ident: ref28
  doi: 10.1109/TVT.2013.2294717
– ident: ref33
  doi: 10.1109/IVS.2018.8500507
– ident: ref32
  doi: 10.1109/ACCESS.2019.2916182
– ident: ref21
  doi: 10.1109/TITS.2012.2204984
– ident: ref37
  doi: 10.1109/TVT.2020.2983738
– ident: ref9
  doi: 10.4271/2018-01-0569
– ident: ref7
  doi: 10.1109/TITS.2020.3007631
– ident: ref25
  doi: 10.1076/vesd.38.2.127.5619
– ident: ref5
  doi: 10.1109/JIOT.2016.2611605
– ident: ref13
  doi: 10.1109/JIOT.2019.2957778
– ident: ref4
  doi: 10.1016/j.ymssp.2020.107290
– ident: ref8
  doi: 10.1109/MSP.2020.2985815
– ident: ref1
  doi: 10.1109/TVT.2018.2890418
– ident: ref20
  doi: 10.1109/TIE.2017.2774771
– ident: ref15
  doi: 10.1080/00423114.2013.859281
– ident: ref27
  doi: 10.1115/1.1766026
SSID ssj0019757
Score 2.6309876
Snippet Vehicle slip angle (VSA) estimation is of paramount importance for connected automated vehicle dynamic control, especially in critical lateral driving...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 21675
SubjectTerms Automated vehicle
Automation
Delays
Dynamic control
Estimation
Global navigation satellite system
Grey prediction
Inertial platforms
information fusion
Kalman filters
Lane changing
low sampling rate
measurement signal delay
Observers
Pitch (inclination)
Prediction algorithms
Rolling motion
Sideslip
Signal delay
Signal measurement
Smoothing methods
Steering
Velocity errors
Wheels
Title Automated Vehicle Sideslip Angle Estimation Considering Signal Measurement Characteristic
URI https://ieeexplore.ieee.org/document/9556130
https://www.proquest.com/docview/2578235909
Volume 21
WOSCitedRecordID wos000702716000065&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-1748
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0019757
  issn: 1530-437X
  databaseCode: RIE
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB5qEdSDj1axWmUPnsRts9lHmmMpLSJahKrU05JNpg-QtrRbwX9vkt3WiiJ4WbIwyYZ8O5nJY74BuKI-Y5KF6HI_QDeQRLmNgZSuUDJiTNsvGdhA4XvW7Tb6ff5YgJt1LAwi2stnWDNFe5avpnJptsrqPLTu7hZsMRZlsVrrEwPOLKunVmDiBj7r5yeYHuH1u167q1eC1Kv5JtTShNhv2CCbVOXHTGzNS-fgfx07hP3cjXSaGe5HUMBJCfY2yAVLsJPnNx99lOG1uUyn2jdF5bzgyFRxemOF2secOc3JUL-2tapnUYzOKoenbkVLDc13Hr52Ep3WN4rnY3jutJ9at26eVMGVfshTV3jaCUiiiNAkHCRCYRipkKgIWRLSQOnlGKXY0E-pFFcSpad0YUCYoJLLRuKfQHEyneApOIKzAQ3RkLhGgUQlqCdQiEAY1rBAqQqQ1TDHMmccN4kv3mK78iA8NsjEBpk4R6YC1-sqs4xu4y_hsoFiLZijUIHqCss4V8hFbGYmqgeA8LPfa53Drmk7u6dXhWI6X-IFbMv3dLyYX9p_7RNAtdKv
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB58gXrwLdbnHjyJq9lssmmORVp81CJUpZ6WbDK1BWlLbQX_vUl2WxVF8LJkYbIJ-XYyk8d8A3BMYyG04BjKmGHINDFhua11qIxOhLD2SzMfKFwXjUa51ZJ3M3A6jYVBRH_5DM9c0Z_lm74eu62yc8m9uzsL85wxSvJoremZgRSe19OqMAlZLFrFGWZE5Pl1s9qwa0EancUu2NIF2X-xQj6tyo-52BuY2ur_urYGK4UjGVRy5NdhBnsbsPyFXnADFosM5533TXiqjEd9652iCR6x46oEza5B62UOgkrv2b5WrbLncYzBJIun_YqVenbt3H7uJQYX30iet-ChVr2_uAyLtAqhjrkchSqybkCWJIRmvJ0pgzwxnJgERcYpM3ZBRimW7VMbI41GHRlbaBOhqJa6nMXbMNfr93AHAiVFm3J0NK4J02gUjRQqxZTjDWPGlIBMhjnVBee4S33xkvq1B5GpQyZ1yKQFMiU4mVYZ5IQbfwlvOiimggUKJdifYJkWKvmaurmJ2gEgcvf3WkeweHl_W0_rV42bPVhy7eS39vZhbjQc4wEs6LdR93V46P-7D13M1fY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automated+Vehicle+Sideslip+Angle+Estimation+Considering+Signal+Measurement+Characteristic&rft.jtitle=IEEE+sensors+journal&rft.au=Liu%2C+Wei&rft.au=Xia%2C+Xin&rft.au=Lu%2C+Xiong&rft.au=Lu%2C+Yishi&rft.date=2021-10-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1530-437X&rft.eissn=1558-1748&rft.volume=21&rft.issue=19&rft.spage=21675&rft_id=info:doi/10.1109%2FJSEN.2021.3059050&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon