Source Estimation Using Coprime Array: A Sparse Reconstruction Perspective

Direction-of-arrival (DOA), power, and achievable degrees-of-freedom (DOFs) are fundamental parameters for source estimation. In this paper, we propose a novel sparse reconstruction-based source estimation algorithm by using a coprime array. Specifically, a difference coarray is derived from a copri...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE sensors journal Ročník 17; číslo 3; s. 755 - 765
Hlavní autoři: Zhiguo Shi, Chengwei Zhou, Yujie Gu, Goodman, Nathan A., Fengzhong Qu
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.02.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1530-437X, 1558-1748
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Direction-of-arrival (DOA), power, and achievable degrees-of-freedom (DOFs) are fundamental parameters for source estimation. In this paper, we propose a novel sparse reconstruction-based source estimation algorithm by using a coprime array. Specifically, a difference coarray is derived from a coprime array as the foundation for increasing the number of DOFs, and a virtual uniform linear subarray covariance matrix sparse reconstruction-based optimization problem is formulated for DOA estimation. Meanwhile, a modified sliding window scheme is devised to remove the spurious peaks from the reconstructed sparse spatial spectrum, and the power estimation is enhanced through a least squares problem. Simulation results demonstrate the effectiveness of the proposed algorithm in terms of DOA estimation and power estimation as well as the achievable DOFs.
AbstractList Direction-of-arrival (DOA), power, and achievable degrees-of-freedom (DOFs) are fundamental parameters for source estimation. In this paper, we propose a novel sparse reconstruction-based source estimation algorithm by using a coprime array. Specifically, a difference coarray is derived from a coprime array as the foundation for increasing the number of DOFs, and a virtual uniform linear subarray covariance matrix sparse reconstruction-based optimization problem is formulated for DOA estimation. Meanwhile, a modified sliding window scheme is devised to remove the spurious peaks from the reconstructed sparse spatial spectrum, and the power estimation is enhanced through a least squares problem. Simulation results demonstrate the effectiveness of the proposed algorithm in terms of DOA estimation and power estimation as well as the achievable DOFs.
Author Chengwei Zhou
Fengzhong Qu
Zhiguo Shi
Yujie Gu
Goodman, Nathan A.
Author_xml – sequence: 1
  surname: Zhiguo Shi
  fullname: Zhiguo Shi
  organization: Coll. of Inf. Sci. & Electron. Eng., Zhejiang Univ., Hangzhou, China
– sequence: 2
  surname: Chengwei Zhou
  fullname: Chengwei Zhou
  organization: Coll. of Inf. Sci. & Electron. Eng., Zhejiang Univ., Hangzhou, China
– sequence: 3
  surname: Yujie Gu
  fullname: Yujie Gu
  email: guyujie@hotmail.com
  organization: Adv. Radar Res. Center, Univ. of Oklahoma, Norman, OK, USA
– sequence: 4
  givenname: Nathan A.
  surname: Goodman
  fullname: Goodman, Nathan A.
  organization: Adv. Radar Res. Center, Univ. of Oklahoma, Norman, OK, USA
– sequence: 5
  surname: Fengzhong Qu
  fullname: Fengzhong Qu
  organization: Ocean Coll., Zhejiang Univ., Zhoushan, China
BookMark eNp9kE9PwkAUxDcGEwH9AMZLE8_Ffd3un3ojBFRC1Igk3jbb7aspgbbuFhO-vS0QDx48vTnMvMn8BqRXViUScg10BECTu_ly-jyKKIhRJJikPDkjfeBchSBj1es0o2HM5McFGXi_phQSyWWfzJfVzlkMpr4ptqYpqjJY-aL8DCZV7YotBmPnzP4-GAfL2jiPwRvaqvSN29mD-RWdr7HV33hJznOz8Xh1ukOymk3fJ4_h4uXhaTJehJbxpAkNtSLCPM0ZMApxLDBjRhiVWc6QMq4AeJpFLEpBMoMclDU8lVmeKmmZSNiQ3B7_1q762qFv9LrdULaVGhRXMoljEK0Lji7rKu8d5rrbY9xeA9UdMt0h0x0yfULWZuSfjC2aA5TGmWLzb_LmmCwQ8bdJSikkB_YDMFl7Gg
CODEN ISJEAZ
CitedBy_id crossref_primary_10_1109_ACCESS_2017_2706193
crossref_primary_10_1109_LSP_2022_3179336
crossref_primary_10_1109_JSEN_2022_3233820
crossref_primary_10_1109_TVT_2023_3265426
crossref_primary_10_1016_j_sigpro_2020_107813
crossref_primary_10_1016_j_dsp_2019_05_009
crossref_primary_10_1109_LCOMM_2021_3075227
crossref_primary_10_3390_s20071914
crossref_primary_10_1109_TSP_2018_2872012
crossref_primary_10_1109_TVT_2022_3173418
crossref_primary_10_3390_s17061460
crossref_primary_10_1109_ACCESS_2018_2820165
crossref_primary_10_3390_s17040939
crossref_primary_10_3390_s17051140
crossref_primary_10_1109_TSP_2021_3113468
crossref_primary_10_1007_s12083_019_00753_z
crossref_primary_10_1088_1757_899X_719_1_012035
crossref_primary_10_1155_2020_6698446
crossref_primary_10_1016_j_sigpro_2020_107523
crossref_primary_10_3390_s17050963
crossref_primary_10_1109_ACCESS_2019_2903106
crossref_primary_10_3390_s18041286
crossref_primary_10_3390_s20030878
crossref_primary_10_1016_j_sigpro_2018_06_025
crossref_primary_10_1109_TVT_2019_2950907
crossref_primary_10_1109_JSEN_2023_3304686
crossref_primary_10_1109_TVT_2018_2817638
crossref_primary_10_1016_j_dsp_2021_103243
crossref_primary_10_1049_joe_2019_0663
crossref_primary_10_1109_JSEN_2019_2912642
crossref_primary_10_1016_j_sigpro_2021_108238
crossref_primary_10_3390_s20071865
crossref_primary_10_1016_j_dsp_2019_05_006
crossref_primary_10_1007_s00034_019_01033_0
crossref_primary_10_3390_s17091956
crossref_primary_10_1049_iet_map_2019_0518
crossref_primary_10_1007_s00034_024_02746_7
crossref_primary_10_1109_LWC_2020_3003446
crossref_primary_10_1016_j_sigpro_2017_07_004
crossref_primary_10_1007_s00034_020_01478_8
crossref_primary_10_1155_2021_6616112
crossref_primary_10_1016_j_jfranklin_2023_01_041
crossref_primary_10_1109_TVT_2019_2913437
crossref_primary_10_1109_TIM_2023_3328069
crossref_primary_10_1016_j_pmcj_2017_02_006
crossref_primary_10_3390_s17092074
crossref_primary_10_3390_s21062191
crossref_primary_10_3390_s22103754
crossref_primary_10_1109_ACCESS_2019_2904208
crossref_primary_10_1109_TSP_2024_3438757
crossref_primary_10_3390_s20164562
crossref_primary_10_1109_JSEN_2020_3034761
crossref_primary_10_1049_iet_com_2017_1086
crossref_primary_10_1016_j_dsp_2021_103013
crossref_primary_10_1016_j_dsp_2021_103378
crossref_primary_10_1049_joe_2019_0806
crossref_primary_10_1049_iet_com_2017_0399
crossref_primary_10_1051_matecconf_201823201055
crossref_primary_10_1109_TMC_2019_2921962
crossref_primary_10_1007_s00034_021_01920_5
crossref_primary_10_1016_j_sigpro_2019_04_006
crossref_primary_10_1109_ACCESS_2018_2799984
crossref_primary_10_3390_s19061398
crossref_primary_10_1016_j_dsp_2024_104973
crossref_primary_10_1109_TVT_2017_2704610
crossref_primary_10_1109_TVT_2023_3288611
crossref_primary_10_1109_TVT_2023_3317864
crossref_primary_10_1007_s00034_018_0892_7
crossref_primary_10_1109_JSEN_2018_2875198
crossref_primary_10_3390_s18103516
crossref_primary_10_3390_s20010302
crossref_primary_10_1109_ACCESS_2020_2964024
crossref_primary_10_1016_j_sigpro_2024_109444
crossref_primary_10_3390_s20082296
crossref_primary_10_1109_ACCESS_2020_3000360
crossref_primary_10_3390_s20082177
crossref_primary_10_3390_s17040702
crossref_primary_10_1049_iet_com_2016_1048
crossref_primary_10_1109_ACCESS_2019_2922382
crossref_primary_10_3390_app132312740
crossref_primary_10_1109_LCOMM_2019_2958913
crossref_primary_10_1109_TAES_2021_3087836
crossref_primary_10_1016_j_dsp_2018_04_003
crossref_primary_10_1109_TSP_2020_3013389
crossref_primary_10_1109_JSEN_2023_3245832
crossref_primary_10_1109_LCOMM_2019_2953466
crossref_primary_10_1109_TVT_2023_3349026
crossref_primary_10_3390_s20154300
crossref_primary_10_3390_s20205818
crossref_primary_10_1109_TVT_2025_3532521
crossref_primary_10_3390_s20164508
crossref_primary_10_1109_ACCESS_2024_3393893
crossref_primary_10_3390_math10060874
crossref_primary_10_3390_s20061629
crossref_primary_10_1155_2021_9983615
crossref_primary_10_1109_LSP_2021_3099074
crossref_primary_10_3390_s17061269
crossref_primary_10_1016_j_dsp_2021_103034
crossref_primary_10_1049_iet_com_2018_5307
crossref_primary_10_1109_JSEN_2017_2782746
crossref_primary_10_1007_s11277_021_08874_6
crossref_primary_10_1109_TSP_2023_3251110
crossref_primary_10_1109_ACCESS_2019_2913744
crossref_primary_10_1109_JIOT_2017_2782318
crossref_primary_10_1002_itl2_192
crossref_primary_10_1186_s13634_023_00976_6
crossref_primary_10_1109_LSP_2024_3457449
crossref_primary_10_1155_2020_3219516
crossref_primary_10_1049_iet_spr_2020_0021
crossref_primary_10_1016_j_dsp_2019_06_004
crossref_primary_10_1016_j_dsp_2023_104014
crossref_primary_10_1016_j_sigpro_2021_107987
crossref_primary_10_1016_j_dsp_2019_06_003
crossref_primary_10_1016_j_dsp_2019_06_005
crossref_primary_10_3390_s18041088
crossref_primary_10_1007_s11277_019_06318_w
crossref_primary_10_1109_TVT_2019_2925528
crossref_primary_10_1016_j_sigpro_2021_108038
crossref_primary_10_1109_ACCESS_2020_2980031
crossref_primary_10_1049_rsn2_12141
crossref_primary_10_1049_iet_spr_2019_0048
crossref_primary_10_1007_s00034_018_0930_5
crossref_primary_10_3390_s19245422
crossref_primary_10_1109_TSIPN_2018_2790361
crossref_primary_10_1109_JSEN_2023_3295509
crossref_primary_10_1007_s11277_021_09263_9
crossref_primary_10_1007_s00034_022_02275_1
crossref_primary_10_1007_s00034_023_02576_z
crossref_primary_10_1109_TAES_2021_3126370
crossref_primary_10_3390_s17051170
crossref_primary_10_1109_LCOMM_2017_2747547
crossref_primary_10_1109_LSP_2020_3039935
crossref_primary_10_1109_LCOMM_2019_2911285
crossref_primary_10_3390_info9110277
crossref_primary_10_1016_j_apacoust_2023_109329
crossref_primary_10_1016_j_dsp_2019_04_005
crossref_primary_10_1109_LSP_2023_3261127
crossref_primary_10_3390_s20040994
crossref_primary_10_1109_ACCESS_2020_3041009
crossref_primary_10_1109_LSP_2020_2982769
crossref_primary_10_1109_TSP_2017_2706187
crossref_primary_10_1016_j_aeue_2020_153109
crossref_primary_10_3390_s17081779
crossref_primary_10_3390_s19091961
crossref_primary_10_1002_dac_4466
crossref_primary_10_1049_rsn2_12014
crossref_primary_10_1109_TSP_2021_3100977
crossref_primary_10_1016_j_dsp_2021_103332
crossref_primary_10_1109_TVT_2017_2695226
crossref_primary_10_1016_j_dsp_2023_104224
crossref_primary_10_1109_TVT_2024_3399693
crossref_primary_10_1007_s11760_019_01480_x
crossref_primary_10_1016_j_sigpro_2025_110099
crossref_primary_10_3390_s19184031
crossref_primary_10_3390_s23218990
crossref_primary_10_1109_ACCESS_2018_2822046
crossref_primary_10_1109_LSENS_2023_3332673
crossref_primary_10_1016_j_apacoust_2020_107499
crossref_primary_10_1049_iet_spr_2017_0276
crossref_primary_10_1109_TSP_2019_2897954
crossref_primary_10_1155_2018_4370637
crossref_primary_10_3390_s20072071
crossref_primary_10_1007_s12083_019_00757_9
crossref_primary_10_3390_s20154233
crossref_primary_10_1109_JSEN_2021_3093889
crossref_primary_10_1109_ACCESS_2019_2949920
crossref_primary_10_1109_ACCESS_2020_3011161
crossref_primary_10_1109_LCOMM_2018_2821672
crossref_primary_10_1109_TVT_2020_2984705
crossref_primary_10_3390_electronics8111209
crossref_primary_10_1109_ACCESS_2018_2872578
crossref_primary_10_1109_JSEN_2022_3211024
crossref_primary_10_3390_info10050165
crossref_primary_10_1109_LSP_2018_2872400
crossref_primary_10_1109_TAP_2020_3005203
crossref_primary_10_3390_s18103553
crossref_primary_10_1049_rsn2_12085
crossref_primary_10_3390_s17061433
crossref_primary_10_1109_JSEN_2017_2709329
crossref_primary_10_1109_TVT_2025_3543865
crossref_primary_10_1007_s00034_018_0766_z
crossref_primary_10_1109_LSP_2022_3203298
crossref_primary_10_1016_j_dsp_2019_07_014
crossref_primary_10_1007_s00034_019_01078_1
crossref_primary_10_1155_2019_1264715
crossref_primary_10_1016_j_sigpro_2019_107382
crossref_primary_10_1109_TAES_2020_3034012
crossref_primary_10_3390_electronics11091321
crossref_primary_10_3390_s17102241
crossref_primary_10_1155_2021_6673235
crossref_primary_10_3390_info10040136
crossref_primary_10_3390_s17092149
Cites_doi 10.1109/JSEN.2016.2517128
10.1109/TII.2012.2228875
10.1137/S1064827596304010
10.1002/sec.1543
10.1109/ICASSP.2016.7472522
10.1109/7.144583
10.1109/TSP.2010.2089682
10.1109/ICASSP.2016.7472225
10.1109/TIT.2013.2277451
10.1109/LSP.2015.2409153
10.1109/TSP.2014.2339792
10.1109/MSP.2009.934719
10.1109/PROC.1977.10517
10.1109/TASLP.2015.2436214
10.1016/j.sigpro.2013.10.009
10.1109/TSP.2014.2354316
10.1109/ICASSP.2016.7472242
10.1109/TSP.2012.2194289
10.1109/DSP-SPE.2011.5739227
10.1109/29.17564
10.1109/TASSP.1985.1164557
10.1109/TAES.2014.130018
10.1109/TSP.2010.2049264
10.1109/ICASSP.2015.7178395
10.1109/PROC.1969.7278
10.1109/TSP.2014.2386295
10.1109/TSP.2015.2393838
10.1109/JSEN.2015.2508059
10.1214/aoms/1177704250
10.1109/SSP.2012.6319753
10.1080/23335777.2015.1062049
10.1007/978-3-319-21837-3_65
10.1109/ACSSC.2012.6489158
10.1109/TPAMI.2010.15
10.1109/ICASSP.2016.7472224
10.1109/TSP.2005.850882
10.1109/TAP.1968.1139138
10.1016/j.sigpro.2015.02.018
10.1109/TMC.2013.129
10.1016/j.dsp.2013.10.005
10.1109/TSP.2011.2144591
10.1109/BigData.2015.7363839
10.1109/LSP.2013.2289740
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1109/JSEN.2016.2637059
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Solid State and Superconductivity Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Engineering
EISSN 1558-1748
EndPage 765
ExternalDocumentID 10_1109_JSEN_2016_2637059
7776751
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: U1401253; 61171149
  funderid: 10.13039/501100001809
– fundername: Zhejiang Provincial Natural Science Foundation of China
  grantid: LR16F010002
  funderid: 10.13039/501100004731
GroupedDBID -~X
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AGQYO
AHBIQ
AJQPL
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EBS
EJD
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TWZ
AAYXX
CITATION
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c359t-a0c62efbf31301446ed3a6a8dc53e0358115bd232b173ae518ca5b7dfb87c3693
IEDL.DBID RIE
ISICitedReferencesCount 243
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000393998700026&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1530-437X
IngestDate Sun Nov 30 05:06:57 EST 2025
Tue Nov 18 21:39:25 EST 2025
Sat Nov 29 05:42:40 EST 2025
Wed Aug 27 03:06:20 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c359t-a0c62efbf31301446ed3a6a8dc53e0358115bd232b173ae518ca5b7dfb87c3693
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1312-1605
PQID 1858794416
PQPubID 75733
PageCount 11
ParticipantIDs crossref_primary_10_1109_JSEN_2016_2637059
ieee_primary_7776751
proquest_journals_1858794416
crossref_citationtrail_10_1109_JSEN_2016_2637059
PublicationCentury 2000
PublicationDate 2017-02-01
PublicationDateYYYYMMDD 2017-02-01
PublicationDate_xml – month: 02
  year: 2017
  text: 2017-02-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE sensors journal
PublicationTitleAbbrev JSEN
PublicationYear 2017
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref34
ref12
ref37
gu (ref36) 2014; 96
ref15
ref14
ref31
ref30
ref33
ref11
ref10
macqueen (ref40) 1967; 1
ref2
ref39
ref17
ref16
ref19
ref18
yang (ref6) 2015
zhang (ref32) 2013
heiskala (ref38) 2001
ref46
ref24
ref45
ref23
ref48
ref26
ref47
ref25
ref20
ref42
he (ref41) 2010; 32
ref22
zhou (ref21) 2013
ref44
ref43
van trees (ref1) 2004
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref5
References_xml – ident: ref13
  doi: 10.1109/JSEN.2016.2517128
– ident: ref44
  doi: 10.1109/TII.2012.2228875
– ident: ref37
  doi: 10.1137/S1064827596304010
– ident: ref16
  doi: 10.1002/sec.1543
– year: 2004
  ident: ref1
  publication-title: Detection Estimation and Modulation Theory Part IV Optimum Array Processing
– ident: ref25
  doi: 10.1109/ICASSP.2016.7472522
– ident: ref35
  doi: 10.1109/7.144583
– ident: ref20
  doi: 10.1109/TSP.2010.2089682
– ident: ref27
  doi: 10.1109/ICASSP.2016.7472225
– ident: ref47
  doi: 10.1109/TIT.2013.2277451
– ident: ref24
  doi: 10.1109/LSP.2015.2409153
– start-page: 3967
  year: 2013
  ident: ref32
  article-title: Sparsity-based DOA estimation using co-prime arrays
  publication-title: Proc IEEE Int Conf Acoust Speech Signal Process (ICASSP)
– ident: ref46
  doi: 10.1109/TSP.2014.2339792
– ident: ref3
  doi: 10.1109/MSP.2009.934719
– ident: ref18
  doi: 10.1109/PROC.1977.10517
– ident: ref23
  doi: 10.1109/TASLP.2015.2436214
– volume: 96
  start-page: 375
  year: 2014
  ident: ref36
  article-title: Robust adaptive beamforming based on interference covariance matrix sparse reconstruction
  publication-title: Signal Process
  doi: 10.1016/j.sigpro.2013.10.009
– ident: ref29
  doi: 10.1109/TSP.2014.2354316
– start-page: 1
  year: 2013
  ident: ref21
  article-title: DECOM: DOA estimation with combined MUSIC for coprime array
  publication-title: Proc IEEE Int Conf Wireless Commun Signal Process (WCSP)
– ident: ref15
  doi: 10.1109/ICASSP.2016.7472242
– ident: ref5
  doi: 10.1109/TSP.2012.2194289
– ident: ref28
  doi: 10.1109/DSP-SPE.2011.5739227
– ident: ref2
  doi: 10.1109/29.17564
– ident: ref43
  doi: 10.1109/TASSP.1985.1164557
– ident: ref8
  doi: 10.1109/TAES.2014.130018
– ident: ref19
  doi: 10.1109/TSP.2010.2049264
– ident: ref42
  doi: 10.1109/ICASSP.2015.7178395
– ident: ref39
  doi: 10.1109/PROC.1969.7278
– ident: ref7
  doi: 10.1109/TSP.2014.2386295
– ident: ref33
  doi: 10.1109/TSP.2015.2393838
– ident: ref12
  doi: 10.1109/JSEN.2015.2508059
– ident: ref34
  doi: 10.1214/aoms/1177704250
– year: 2001
  ident: ref38
  publication-title: OFDM Wireless LANs A Theoretical and Practical Guide
– ident: ref31
  doi: 10.1109/SSP.2012.6319753
– ident: ref11
  doi: 10.1080/23335777.2015.1062049
– start-page: 664
  year: 2015
  ident: ref6
  article-title: Performance of target tracking in radar network system under deception attack
  publication-title: Proc Int Conf Wireless Algorithms Syst Appl
  doi: 10.1007/978-3-319-21837-3_65
– ident: ref30
  doi: 10.1109/ACSSC.2012.6489158
– volume: 32
  start-page: 2006
  year: 2010
  ident: ref41
  article-title: Detecting the number of clusters in n-way probabilistic clustering
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2010.15
– volume: 1
  start-page: 281
  year: 1967
  ident: ref40
  article-title: Some methods for classification and analysis of multivariate observations
  publication-title: Proc 5th Berkeley Symp Math Statist Probab
– ident: ref26
  doi: 10.1109/ICASSP.2016.7472224
– ident: ref48
  doi: 10.1109/TSP.2005.850882
– ident: ref17
  doi: 10.1109/TAP.1968.1139138
– ident: ref9
  doi: 10.1016/j.sigpro.2015.02.018
– ident: ref14
  doi: 10.1109/TMC.2013.129
– ident: ref22
  doi: 10.1016/j.dsp.2013.10.005
– ident: ref4
  doi: 10.1109/TSP.2011.2144591
– ident: ref10
  doi: 10.1109/BigData.2015.7363839
– ident: ref45
  doi: 10.1109/LSP.2013.2289740
SSID ssj0019757
Score 2.5860028
Snippet Direction-of-arrival (DOA), power, and achievable degrees-of-freedom (DOFs) are fundamental parameters for source estimation. In this paper, we propose a novel...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 755
SubjectTerms Computer simulation
Coprime array
Covariance matrices
Covariance matrix
Direction of arrival
Direction-of-arrival estimation
DOA estimation
Estimation
Image reconstruction
Linear matrix inequalities
Mathematical analysis
Matrix methods
Parameter estimation
power estimation
Reconstruction
Sensor arrays
source enumeration
sparse reconstruction
Title Source Estimation Using Coprime Array: A Sparse Reconstruction Perspective
URI https://ieeexplore.ieee.org/document/7776751
https://www.proquest.com/docview/1858794416
Volume 17
WOSCitedRecordID wos000393998700026&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-1748
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0019757
  issn: 1530-437X
  databaseCode: RIE
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED_mENQHPzbF6ZQ8-CR2S5s2aXyTsSF7GIMp7K00aYqCbGObwv57L2n3AYrgWx4uodz1vpK73wHccZmhY9HSS6kKvVBEylMCE9eAapWpXIaBUG7YhBgM4vFYDivwsOmFMca44jPTskv3lp9N9ae9KmsLCz1j-6X3cFH0am1eDKRwqJ6owNQLmRiXL5g-le3-qDuwRVy8FXAmHCzpjg9yQ1V-WGLnXnon__uwUzguw0jyVMj9DCpmUoOjHXDBGhyU883fVnXoj9wdPemiQhe9isTVCpDOdGbx_fGgebp6JE9kNMNM1xCblW6xZclw25J5Dq-97kvn2SunKHiaRXKJQtA8MLnKme_SJ24ylvI0znTEDLXwZ36kMgyslC9YaiI_1mmkRJarWGjGJbuA6mQ6MZdAgtznXMYpRnV5mOHpSKNUrkI0kpJq2gC65muiS4hxO-niI3GpBpWJFUViRZGUomjA_WbLrMDX-Iu4bnm_ISzZ3oDmWnhJqYGLBOOQGG0NxptXv--6hsPAumhXgd2EKrLU3MC-_lq-L-a37uf6Bq9czB4
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT8IwEL8QNEEf_ACNKGoffDIOunVrV98IgSAiIQET3pa166KJAQJown9vW8ZHojHxbQ_XZrnrfbV3vwO4ozzRjkVyJ8bCd3wWCEcwnbh6WIpEpNz3mLDDJlivF45GvJ-Dh00vjFLKFp-pqvm0b_nJRH6aq7IaM9Azpl96z0zO4qturc2bAWcW11OrMHZ8wkbZG6aLea0zaPZMGRetepQwC0y644XsWJUfttg6mNbx_37tBI6yQBLVV5I_hZwaF-FwB16wCIVswvnbsgSdgb2lR02t0qtuRWSrBVBjMjUI_3qjWbx8RHU0mOpcVyGTl27RZVF_25R5Bq-t5rDRdrI5Co4kAV9oMUjqqVSkxLUJFFUJiWkcJjIgChsANDcQiQ6thMtIrAI3lHEgWJKKkElCOTmH_HgyVheAvNSllIexjutSP9G7axohUuFrM8mxxGXAa75GMgMZN7MuPiKbbGAeGVFERhRRJooy3G-WTFcIG38RlwzvN4QZ28tQWQsvynRwHulIJNTWRkecl7-vuoVCe_jSjbpPvecrOPCMw7b12BXIa_aqa9iXX4v3-ezGHrRvivfPbQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Source+Estimation+Using+Coprime+Array%3A+A+Sparse+Reconstruction+Perspective&rft.jtitle=IEEE+sensors+journal&rft.au=Shi%2C+Zhiguo&rft.au=Zhou%2C+Chengwei&rft.au=Gu%2C+Yujie&rft.au=Goodman%2C+Nathan+A.&rft.date=2017-02-01&rft.issn=1530-437X&rft.eissn=1558-1748&rft.volume=17&rft.issue=3&rft.spage=755&rft.epage=765&rft_id=info:doi/10.1109%2FJSEN.2016.2637059&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JSEN_2016_2637059
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon