Source Estimation Using Coprime Array: A Sparse Reconstruction Perspective
Direction-of-arrival (DOA), power, and achievable degrees-of-freedom (DOFs) are fundamental parameters for source estimation. In this paper, we propose a novel sparse reconstruction-based source estimation algorithm by using a coprime array. Specifically, a difference coarray is derived from a copri...
Uloženo v:
| Vydáno v: | IEEE sensors journal Ročník 17; číslo 3; s. 755 - 765 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
IEEE
01.02.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 1530-437X, 1558-1748 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Direction-of-arrival (DOA), power, and achievable degrees-of-freedom (DOFs) are fundamental parameters for source estimation. In this paper, we propose a novel sparse reconstruction-based source estimation algorithm by using a coprime array. Specifically, a difference coarray is derived from a coprime array as the foundation for increasing the number of DOFs, and a virtual uniform linear subarray covariance matrix sparse reconstruction-based optimization problem is formulated for DOA estimation. Meanwhile, a modified sliding window scheme is devised to remove the spurious peaks from the reconstructed sparse spatial spectrum, and the power estimation is enhanced through a least squares problem. Simulation results demonstrate the effectiveness of the proposed algorithm in terms of DOA estimation and power estimation as well as the achievable DOFs. |
|---|---|
| AbstractList | Direction-of-arrival (DOA), power, and achievable degrees-of-freedom (DOFs) are fundamental parameters for source estimation. In this paper, we propose a novel sparse reconstruction-based source estimation algorithm by using a coprime array. Specifically, a difference coarray is derived from a coprime array as the foundation for increasing the number of DOFs, and a virtual uniform linear subarray covariance matrix sparse reconstruction-based optimization problem is formulated for DOA estimation. Meanwhile, a modified sliding window scheme is devised to remove the spurious peaks from the reconstructed sparse spatial spectrum, and the power estimation is enhanced through a least squares problem. Simulation results demonstrate the effectiveness of the proposed algorithm in terms of DOA estimation and power estimation as well as the achievable DOFs. |
| Author | Chengwei Zhou Fengzhong Qu Zhiguo Shi Yujie Gu Goodman, Nathan A. |
| Author_xml | – sequence: 1 surname: Zhiguo Shi fullname: Zhiguo Shi organization: Coll. of Inf. Sci. & Electron. Eng., Zhejiang Univ., Hangzhou, China – sequence: 2 surname: Chengwei Zhou fullname: Chengwei Zhou organization: Coll. of Inf. Sci. & Electron. Eng., Zhejiang Univ., Hangzhou, China – sequence: 3 surname: Yujie Gu fullname: Yujie Gu email: guyujie@hotmail.com organization: Adv. Radar Res. Center, Univ. of Oklahoma, Norman, OK, USA – sequence: 4 givenname: Nathan A. surname: Goodman fullname: Goodman, Nathan A. organization: Adv. Radar Res. Center, Univ. of Oklahoma, Norman, OK, USA – sequence: 5 surname: Fengzhong Qu fullname: Fengzhong Qu organization: Ocean Coll., Zhejiang Univ., Zhoushan, China |
| BookMark | eNp9kE9PwkAUxDcGEwH9AMZLE8_Ffd3un3ojBFRC1Igk3jbb7aspgbbuFhO-vS0QDx48vTnMvMn8BqRXViUScg10BECTu_ly-jyKKIhRJJikPDkjfeBchSBj1es0o2HM5McFGXi_phQSyWWfzJfVzlkMpr4ptqYpqjJY-aL8DCZV7YotBmPnzP4-GAfL2jiPwRvaqvSN29mD-RWdr7HV33hJznOz8Xh1ukOymk3fJ4_h4uXhaTJehJbxpAkNtSLCPM0ZMApxLDBjRhiVWc6QMq4AeJpFLEpBMoMclDU8lVmeKmmZSNiQ3B7_1q762qFv9LrdULaVGhRXMoljEK0Lji7rKu8d5rrbY9xeA9UdMt0h0x0yfULWZuSfjC2aA5TGmWLzb_LmmCwQ8bdJSikkB_YDMFl7Gg |
| CODEN | ISJEAZ |
| CitedBy_id | crossref_primary_10_1109_ACCESS_2017_2706193 crossref_primary_10_1109_LSP_2022_3179336 crossref_primary_10_1109_JSEN_2022_3233820 crossref_primary_10_1109_TVT_2023_3265426 crossref_primary_10_1016_j_sigpro_2020_107813 crossref_primary_10_1016_j_dsp_2019_05_009 crossref_primary_10_1109_LCOMM_2021_3075227 crossref_primary_10_3390_s20071914 crossref_primary_10_1109_TSP_2018_2872012 crossref_primary_10_1109_TVT_2022_3173418 crossref_primary_10_3390_s17061460 crossref_primary_10_1109_ACCESS_2018_2820165 crossref_primary_10_3390_s17040939 crossref_primary_10_3390_s17051140 crossref_primary_10_1109_TSP_2021_3113468 crossref_primary_10_1007_s12083_019_00753_z crossref_primary_10_1088_1757_899X_719_1_012035 crossref_primary_10_1155_2020_6698446 crossref_primary_10_1016_j_sigpro_2020_107523 crossref_primary_10_3390_s17050963 crossref_primary_10_1109_ACCESS_2019_2903106 crossref_primary_10_3390_s18041286 crossref_primary_10_3390_s20030878 crossref_primary_10_1016_j_sigpro_2018_06_025 crossref_primary_10_1109_TVT_2019_2950907 crossref_primary_10_1109_JSEN_2023_3304686 crossref_primary_10_1109_TVT_2018_2817638 crossref_primary_10_1016_j_dsp_2021_103243 crossref_primary_10_1049_joe_2019_0663 crossref_primary_10_1109_JSEN_2019_2912642 crossref_primary_10_1016_j_sigpro_2021_108238 crossref_primary_10_3390_s20071865 crossref_primary_10_1016_j_dsp_2019_05_006 crossref_primary_10_1007_s00034_019_01033_0 crossref_primary_10_3390_s17091956 crossref_primary_10_1049_iet_map_2019_0518 crossref_primary_10_1007_s00034_024_02746_7 crossref_primary_10_1109_LWC_2020_3003446 crossref_primary_10_1016_j_sigpro_2017_07_004 crossref_primary_10_1007_s00034_020_01478_8 crossref_primary_10_1155_2021_6616112 crossref_primary_10_1016_j_jfranklin_2023_01_041 crossref_primary_10_1109_TVT_2019_2913437 crossref_primary_10_1109_TIM_2023_3328069 crossref_primary_10_1016_j_pmcj_2017_02_006 crossref_primary_10_3390_s17092074 crossref_primary_10_3390_s21062191 crossref_primary_10_3390_s22103754 crossref_primary_10_1109_ACCESS_2019_2904208 crossref_primary_10_1109_TSP_2024_3438757 crossref_primary_10_3390_s20164562 crossref_primary_10_1109_JSEN_2020_3034761 crossref_primary_10_1049_iet_com_2017_1086 crossref_primary_10_1016_j_dsp_2021_103013 crossref_primary_10_1016_j_dsp_2021_103378 crossref_primary_10_1049_joe_2019_0806 crossref_primary_10_1049_iet_com_2017_0399 crossref_primary_10_1051_matecconf_201823201055 crossref_primary_10_1109_TMC_2019_2921962 crossref_primary_10_1007_s00034_021_01920_5 crossref_primary_10_1016_j_sigpro_2019_04_006 crossref_primary_10_1109_ACCESS_2018_2799984 crossref_primary_10_3390_s19061398 crossref_primary_10_1016_j_dsp_2024_104973 crossref_primary_10_1109_TVT_2017_2704610 crossref_primary_10_1109_TVT_2023_3288611 crossref_primary_10_1109_TVT_2023_3317864 crossref_primary_10_1007_s00034_018_0892_7 crossref_primary_10_1109_JSEN_2018_2875198 crossref_primary_10_3390_s18103516 crossref_primary_10_3390_s20010302 crossref_primary_10_1109_ACCESS_2020_2964024 crossref_primary_10_1016_j_sigpro_2024_109444 crossref_primary_10_3390_s20082296 crossref_primary_10_1109_ACCESS_2020_3000360 crossref_primary_10_3390_s20082177 crossref_primary_10_3390_s17040702 crossref_primary_10_1049_iet_com_2016_1048 crossref_primary_10_1109_ACCESS_2019_2922382 crossref_primary_10_3390_app132312740 crossref_primary_10_1109_LCOMM_2019_2958913 crossref_primary_10_1109_TAES_2021_3087836 crossref_primary_10_1016_j_dsp_2018_04_003 crossref_primary_10_1109_TSP_2020_3013389 crossref_primary_10_1109_JSEN_2023_3245832 crossref_primary_10_1109_LCOMM_2019_2953466 crossref_primary_10_1109_TVT_2023_3349026 crossref_primary_10_3390_s20154300 crossref_primary_10_3390_s20205818 crossref_primary_10_1109_TVT_2025_3532521 crossref_primary_10_3390_s20164508 crossref_primary_10_1109_ACCESS_2024_3393893 crossref_primary_10_3390_math10060874 crossref_primary_10_3390_s20061629 crossref_primary_10_1155_2021_9983615 crossref_primary_10_1109_LSP_2021_3099074 crossref_primary_10_3390_s17061269 crossref_primary_10_1016_j_dsp_2021_103034 crossref_primary_10_1049_iet_com_2018_5307 crossref_primary_10_1109_JSEN_2017_2782746 crossref_primary_10_1007_s11277_021_08874_6 crossref_primary_10_1109_TSP_2023_3251110 crossref_primary_10_1109_ACCESS_2019_2913744 crossref_primary_10_1109_JIOT_2017_2782318 crossref_primary_10_1002_itl2_192 crossref_primary_10_1186_s13634_023_00976_6 crossref_primary_10_1109_LSP_2024_3457449 crossref_primary_10_1155_2020_3219516 crossref_primary_10_1049_iet_spr_2020_0021 crossref_primary_10_1016_j_dsp_2019_06_004 crossref_primary_10_1016_j_dsp_2023_104014 crossref_primary_10_1016_j_sigpro_2021_107987 crossref_primary_10_1016_j_dsp_2019_06_003 crossref_primary_10_1016_j_dsp_2019_06_005 crossref_primary_10_3390_s18041088 crossref_primary_10_1007_s11277_019_06318_w crossref_primary_10_1109_TVT_2019_2925528 crossref_primary_10_1016_j_sigpro_2021_108038 crossref_primary_10_1109_ACCESS_2020_2980031 crossref_primary_10_1049_rsn2_12141 crossref_primary_10_1049_iet_spr_2019_0048 crossref_primary_10_1007_s00034_018_0930_5 crossref_primary_10_3390_s19245422 crossref_primary_10_1109_TSIPN_2018_2790361 crossref_primary_10_1109_JSEN_2023_3295509 crossref_primary_10_1007_s11277_021_09263_9 crossref_primary_10_1007_s00034_022_02275_1 crossref_primary_10_1007_s00034_023_02576_z crossref_primary_10_1109_TAES_2021_3126370 crossref_primary_10_3390_s17051170 crossref_primary_10_1109_LCOMM_2017_2747547 crossref_primary_10_1109_LSP_2020_3039935 crossref_primary_10_1109_LCOMM_2019_2911285 crossref_primary_10_3390_info9110277 crossref_primary_10_1016_j_apacoust_2023_109329 crossref_primary_10_1016_j_dsp_2019_04_005 crossref_primary_10_1109_LSP_2023_3261127 crossref_primary_10_3390_s20040994 crossref_primary_10_1109_ACCESS_2020_3041009 crossref_primary_10_1109_LSP_2020_2982769 crossref_primary_10_1109_TSP_2017_2706187 crossref_primary_10_1016_j_aeue_2020_153109 crossref_primary_10_3390_s17081779 crossref_primary_10_3390_s19091961 crossref_primary_10_1002_dac_4466 crossref_primary_10_1049_rsn2_12014 crossref_primary_10_1109_TSP_2021_3100977 crossref_primary_10_1016_j_dsp_2021_103332 crossref_primary_10_1109_TVT_2017_2695226 crossref_primary_10_1016_j_dsp_2023_104224 crossref_primary_10_1109_TVT_2024_3399693 crossref_primary_10_1007_s11760_019_01480_x crossref_primary_10_1016_j_sigpro_2025_110099 crossref_primary_10_3390_s19184031 crossref_primary_10_3390_s23218990 crossref_primary_10_1109_ACCESS_2018_2822046 crossref_primary_10_1109_LSENS_2023_3332673 crossref_primary_10_1016_j_apacoust_2020_107499 crossref_primary_10_1049_iet_spr_2017_0276 crossref_primary_10_1109_TSP_2019_2897954 crossref_primary_10_1155_2018_4370637 crossref_primary_10_3390_s20072071 crossref_primary_10_1007_s12083_019_00757_9 crossref_primary_10_3390_s20154233 crossref_primary_10_1109_JSEN_2021_3093889 crossref_primary_10_1109_ACCESS_2019_2949920 crossref_primary_10_1109_ACCESS_2020_3011161 crossref_primary_10_1109_LCOMM_2018_2821672 crossref_primary_10_1109_TVT_2020_2984705 crossref_primary_10_3390_electronics8111209 crossref_primary_10_1109_ACCESS_2018_2872578 crossref_primary_10_1109_JSEN_2022_3211024 crossref_primary_10_3390_info10050165 crossref_primary_10_1109_LSP_2018_2872400 crossref_primary_10_1109_TAP_2020_3005203 crossref_primary_10_3390_s18103553 crossref_primary_10_1049_rsn2_12085 crossref_primary_10_3390_s17061433 crossref_primary_10_1109_JSEN_2017_2709329 crossref_primary_10_1109_TVT_2025_3543865 crossref_primary_10_1007_s00034_018_0766_z crossref_primary_10_1109_LSP_2022_3203298 crossref_primary_10_1016_j_dsp_2019_07_014 crossref_primary_10_1007_s00034_019_01078_1 crossref_primary_10_1155_2019_1264715 crossref_primary_10_1016_j_sigpro_2019_107382 crossref_primary_10_1109_TAES_2020_3034012 crossref_primary_10_3390_electronics11091321 crossref_primary_10_3390_s17102241 crossref_primary_10_1155_2021_6673235 crossref_primary_10_3390_info10040136 crossref_primary_10_3390_s17092149 |
| Cites_doi | 10.1109/JSEN.2016.2517128 10.1109/TII.2012.2228875 10.1137/S1064827596304010 10.1002/sec.1543 10.1109/ICASSP.2016.7472522 10.1109/7.144583 10.1109/TSP.2010.2089682 10.1109/ICASSP.2016.7472225 10.1109/TIT.2013.2277451 10.1109/LSP.2015.2409153 10.1109/TSP.2014.2339792 10.1109/MSP.2009.934719 10.1109/PROC.1977.10517 10.1109/TASLP.2015.2436214 10.1016/j.sigpro.2013.10.009 10.1109/TSP.2014.2354316 10.1109/ICASSP.2016.7472242 10.1109/TSP.2012.2194289 10.1109/DSP-SPE.2011.5739227 10.1109/29.17564 10.1109/TASSP.1985.1164557 10.1109/TAES.2014.130018 10.1109/TSP.2010.2049264 10.1109/ICASSP.2015.7178395 10.1109/PROC.1969.7278 10.1109/TSP.2014.2386295 10.1109/TSP.2015.2393838 10.1109/JSEN.2015.2508059 10.1214/aoms/1177704250 10.1109/SSP.2012.6319753 10.1080/23335777.2015.1062049 10.1007/978-3-319-21837-3_65 10.1109/ACSSC.2012.6489158 10.1109/TPAMI.2010.15 10.1109/ICASSP.2016.7472224 10.1109/TSP.2005.850882 10.1109/TAP.1968.1139138 10.1016/j.sigpro.2015.02.018 10.1109/TMC.2013.129 10.1016/j.dsp.2013.10.005 10.1109/TSP.2011.2144591 10.1109/BigData.2015.7363839 10.1109/LSP.2013.2289740 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017 |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 7U5 8FD L7M |
| DOI | 10.1109/JSEN.2016.2637059 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Solid State and Superconductivity Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography Engineering |
| EISSN | 1558-1748 |
| EndPage | 765 |
| ExternalDocumentID | 10_1109_JSEN_2016_2637059 7776751 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: U1401253; 61171149 funderid: 10.13039/501100001809 – fundername: Zhejiang Provincial Natural Science Foundation of China grantid: LR16F010002 funderid: 10.13039/501100004731 |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AGQYO AHBIQ AJQPL AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 EBS EJD F5P HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TWZ AAYXX CITATION 7SP 7U5 8FD L7M |
| ID | FETCH-LOGICAL-c359t-a0c62efbf31301446ed3a6a8dc53e0358115bd232b173ae518ca5b7dfb87c3693 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 243 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000393998700026&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1530-437X |
| IngestDate | Sun Nov 30 05:06:57 EST 2025 Tue Nov 18 21:39:25 EST 2025 Sat Nov 29 05:42:40 EST 2025 Wed Aug 27 03:06:20 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c359t-a0c62efbf31301446ed3a6a8dc53e0358115bd232b173ae518ca5b7dfb87c3693 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-1312-1605 |
| PQID | 1858794416 |
| PQPubID | 75733 |
| PageCount | 11 |
| ParticipantIDs | crossref_primary_10_1109_JSEN_2016_2637059 ieee_primary_7776751 proquest_journals_1858794416 crossref_citationtrail_10_1109_JSEN_2016_2637059 |
| PublicationCentury | 2000 |
| PublicationDate | 2017-02-01 |
| PublicationDateYYYYMMDD | 2017-02-01 |
| PublicationDate_xml | – month: 02 year: 2017 text: 2017-02-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE sensors journal |
| PublicationTitleAbbrev | JSEN |
| PublicationYear | 2017 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref35 ref13 ref34 ref12 ref37 gu (ref36) 2014; 96 ref15 ref14 ref31 ref30 ref33 ref11 ref10 macqueen (ref40) 1967; 1 ref2 ref39 ref17 ref16 ref19 ref18 yang (ref6) 2015 zhang (ref32) 2013 heiskala (ref38) 2001 ref46 ref24 ref45 ref23 ref48 ref26 ref47 ref25 ref20 ref42 he (ref41) 2010; 32 ref22 zhou (ref21) 2013 ref44 ref43 van trees (ref1) 2004 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref5 |
| References_xml | – ident: ref13 doi: 10.1109/JSEN.2016.2517128 – ident: ref44 doi: 10.1109/TII.2012.2228875 – ident: ref37 doi: 10.1137/S1064827596304010 – ident: ref16 doi: 10.1002/sec.1543 – year: 2004 ident: ref1 publication-title: Detection Estimation and Modulation Theory Part IV Optimum Array Processing – ident: ref25 doi: 10.1109/ICASSP.2016.7472522 – ident: ref35 doi: 10.1109/7.144583 – ident: ref20 doi: 10.1109/TSP.2010.2089682 – ident: ref27 doi: 10.1109/ICASSP.2016.7472225 – ident: ref47 doi: 10.1109/TIT.2013.2277451 – ident: ref24 doi: 10.1109/LSP.2015.2409153 – start-page: 3967 year: 2013 ident: ref32 article-title: Sparsity-based DOA estimation using co-prime arrays publication-title: Proc IEEE Int Conf Acoust Speech Signal Process (ICASSP) – ident: ref46 doi: 10.1109/TSP.2014.2339792 – ident: ref3 doi: 10.1109/MSP.2009.934719 – ident: ref18 doi: 10.1109/PROC.1977.10517 – ident: ref23 doi: 10.1109/TASLP.2015.2436214 – volume: 96 start-page: 375 year: 2014 ident: ref36 article-title: Robust adaptive beamforming based on interference covariance matrix sparse reconstruction publication-title: Signal Process doi: 10.1016/j.sigpro.2013.10.009 – ident: ref29 doi: 10.1109/TSP.2014.2354316 – start-page: 1 year: 2013 ident: ref21 article-title: DECOM: DOA estimation with combined MUSIC for coprime array publication-title: Proc IEEE Int Conf Wireless Commun Signal Process (WCSP) – ident: ref15 doi: 10.1109/ICASSP.2016.7472242 – ident: ref5 doi: 10.1109/TSP.2012.2194289 – ident: ref28 doi: 10.1109/DSP-SPE.2011.5739227 – ident: ref2 doi: 10.1109/29.17564 – ident: ref43 doi: 10.1109/TASSP.1985.1164557 – ident: ref8 doi: 10.1109/TAES.2014.130018 – ident: ref19 doi: 10.1109/TSP.2010.2049264 – ident: ref42 doi: 10.1109/ICASSP.2015.7178395 – ident: ref39 doi: 10.1109/PROC.1969.7278 – ident: ref7 doi: 10.1109/TSP.2014.2386295 – ident: ref33 doi: 10.1109/TSP.2015.2393838 – ident: ref12 doi: 10.1109/JSEN.2015.2508059 – ident: ref34 doi: 10.1214/aoms/1177704250 – year: 2001 ident: ref38 publication-title: OFDM Wireless LANs A Theoretical and Practical Guide – ident: ref31 doi: 10.1109/SSP.2012.6319753 – ident: ref11 doi: 10.1080/23335777.2015.1062049 – start-page: 664 year: 2015 ident: ref6 article-title: Performance of target tracking in radar network system under deception attack publication-title: Proc Int Conf Wireless Algorithms Syst Appl doi: 10.1007/978-3-319-21837-3_65 – ident: ref30 doi: 10.1109/ACSSC.2012.6489158 – volume: 32 start-page: 2006 year: 2010 ident: ref41 article-title: Detecting the number of clusters in n-way probabilistic clustering publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2010.15 – volume: 1 start-page: 281 year: 1967 ident: ref40 article-title: Some methods for classification and analysis of multivariate observations publication-title: Proc 5th Berkeley Symp Math Statist Probab – ident: ref26 doi: 10.1109/ICASSP.2016.7472224 – ident: ref48 doi: 10.1109/TSP.2005.850882 – ident: ref17 doi: 10.1109/TAP.1968.1139138 – ident: ref9 doi: 10.1016/j.sigpro.2015.02.018 – ident: ref14 doi: 10.1109/TMC.2013.129 – ident: ref22 doi: 10.1016/j.dsp.2013.10.005 – ident: ref4 doi: 10.1109/TSP.2011.2144591 – ident: ref10 doi: 10.1109/BigData.2015.7363839 – ident: ref45 doi: 10.1109/LSP.2013.2289740 |
| SSID | ssj0019757 |
| Score | 2.5860028 |
| Snippet | Direction-of-arrival (DOA), power, and achievable degrees-of-freedom (DOFs) are fundamental parameters for source estimation. In this paper, we propose a novel... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 755 |
| SubjectTerms | Computer simulation Coprime array Covariance matrices Covariance matrix Direction of arrival Direction-of-arrival estimation DOA estimation Estimation Image reconstruction Linear matrix inequalities Mathematical analysis Matrix methods Parameter estimation power estimation Reconstruction Sensor arrays source enumeration sparse reconstruction |
| Title | Source Estimation Using Coprime Array: A Sparse Reconstruction Perspective |
| URI | https://ieeexplore.ieee.org/document/7776751 https://www.proquest.com/docview/1858794416 |
| Volume | 17 |
| WOSCitedRecordID | wos000393998700026&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-1748 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0019757 issn: 1530-437X databaseCode: RIE dateStart: 20010101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED_mENQHPzbF6ZQ8-CR2S5s2aXyTsSF7GIMp7K00aYqCbGObwv57L2n3AYrgWx4uodz1vpK73wHccZmhY9HSS6kKvVBEylMCE9eAapWpXIaBUG7YhBgM4vFYDivwsOmFMca44jPTskv3lp9N9ae9KmsLCz1j-6X3cFH0am1eDKRwqJ6owNQLmRiXL5g-le3-qDuwRVy8FXAmHCzpjg9yQ1V-WGLnXnon__uwUzguw0jyVMj9DCpmUoOjHXDBGhyU883fVnXoj9wdPemiQhe9isTVCpDOdGbx_fGgebp6JE9kNMNM1xCblW6xZclw25J5Dq-97kvn2SunKHiaRXKJQtA8MLnKme_SJ24ylvI0znTEDLXwZ36kMgyslC9YaiI_1mmkRJarWGjGJbuA6mQ6MZdAgtznXMYpRnV5mOHpSKNUrkI0kpJq2gC65muiS4hxO-niI3GpBpWJFUViRZGUomjA_WbLrMDX-Iu4bnm_ISzZ3oDmWnhJqYGLBOOQGG0NxptXv--6hsPAumhXgd2EKrLU3MC-_lq-L-a37uf6Bq9czB4 |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT8IwEL8QNEEf_ACNKGoffDIOunVrV98IgSAiIQET3pa166KJAQJown9vW8ZHojHxbQ_XZrnrfbV3vwO4ozzRjkVyJ8bCd3wWCEcwnbh6WIpEpNz3mLDDJlivF45GvJ-Dh00vjFLKFp-pqvm0b_nJRH6aq7IaM9Azpl96z0zO4qturc2bAWcW11OrMHZ8wkbZG6aLea0zaPZMGRetepQwC0y644XsWJUfttg6mNbx_37tBI6yQBLVV5I_hZwaF-FwB16wCIVswvnbsgSdgb2lR02t0qtuRWSrBVBjMjUI_3qjWbx8RHU0mOpcVyGTl27RZVF_25R5Bq-t5rDRdrI5Co4kAV9oMUjqqVSkxLUJFFUJiWkcJjIgChsANDcQiQ6thMtIrAI3lHEgWJKKkElCOTmH_HgyVheAvNSllIexjutSP9G7axohUuFrM8mxxGXAa75GMgMZN7MuPiKbbGAeGVFERhRRJooy3G-WTFcIG38RlwzvN4QZ28tQWQsvynRwHulIJNTWRkecl7-vuoVCe_jSjbpPvecrOPCMw7b12BXIa_aqa9iXX4v3-ezGHrRvivfPbQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Source+Estimation+Using+Coprime+Array%3A+A+Sparse+Reconstruction+Perspective&rft.jtitle=IEEE+sensors+journal&rft.au=Shi%2C+Zhiguo&rft.au=Zhou%2C+Chengwei&rft.au=Gu%2C+Yujie&rft.au=Goodman%2C+Nathan+A.&rft.date=2017-02-01&rft.issn=1530-437X&rft.eissn=1558-1748&rft.volume=17&rft.issue=3&rft.spage=755&rft.epage=765&rft_id=info:doi/10.1109%2FJSEN.2016.2637059&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JSEN_2016_2637059 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon |