Multifeature-Assisted Neuro-transfer Function Surrogate-Based EM Optimization Exploiting Trust-Region Algorithms for Microwave Filter Design

This article proposes a multifeature-assisted neuro-transfer function (neuro-TF) surrogate-based electromagnetic (EM) optimization technique exploiting trust-region algorithms for microwave filter design. The proposed optimization technique addresses the situation where the response of the starting...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on microwave theory and techniques Jg. 68; H. 2; S. 531 - 542
Hauptverfasser: Feng, Feng, Na, Weicong, Liu, Wenyuan, Yan, Shuxia, Zhu, Lin, Ma, Jianguo, Zhang, Qi-Jun
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York IEEE 01.02.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:0018-9480, 1557-9670
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract This article proposes a multifeature-assisted neuro-transfer function (neuro-TF) surrogate-based electromagnetic (EM) optimization technique exploiting trust-region algorithms for microwave filter design. The proposed optimization technique addresses the situation where the response of the starting point is far away from the design specifications. We propose to utilize multiple feature parameters to help move the passband of the filter response into the range of design specifications. The pole-zero-based neuro-TF is introduced in this article to help extract the multiple feature parameters when the feature parameters of filter responses are not explicitly identified. Furthermore, we propose to derive new optimization objective functions to involve the multiple feature parameters. A new trust-region updating formulation for the modified optimization objective functions is derived to guarantee the optimization convergence. With the assistance of multiple feature parameters, the proposed surrogate-based EM optimization has a better capability of avoiding local minima and can reach the optimal EM solution faster than the surrogate-based EM optimizations without feature assistance. Three examples of EM optimizations of microwave filters are used to demonstrate the proposed technique.
AbstractList This article proposes a multifeature-assisted neuro-transfer function (neuro-TF) surrogate-based electromagnetic (EM) optimization technique exploiting trust-region algorithms for microwave filter design. The proposed optimization technique addresses the situation where the response of the starting point is far away from the design specifications. We propose to utilize multiple feature parameters to help move the passband of the filter response into the range of design specifications. The pole-zero-based neuro-TF is introduced in this article to help extract the multiple feature parameters when the feature parameters of filter responses are not explicitly identified. Furthermore, we propose to derive new optimization objective functions to involve the multiple feature parameters. A new trust-region updating formulation for the modified optimization objective functions is derived to guarantee the optimization convergence. With the assistance of multiple feature parameters, the proposed surrogate-based EM optimization has a better capability of avoiding local minima and can reach the optimal EM solution faster than the surrogate-based EM optimizations without feature assistance. Three examples of EM optimizations of microwave filters are used to demonstrate the proposed technique.
Author Na, Weicong
Yan, Shuxia
Zhu, Lin
Feng, Feng
Zhang, Qi-Jun
Ma, Jianguo
Liu, Wenyuan
Author_xml – sequence: 1
  givenname: Feng
  orcidid: 0000-0002-3569-8782
  surname: Feng
  fullname: Feng, Feng
  email: fengfeng@doe.carleton.ca
  organization: Department of Electronics, Carleton University, Ottawa, Canada
– sequence: 2
  givenname: Weicong
  orcidid: 0000-0001-9775-5124
  surname: Na
  fullname: Na, Weicong
  email: weicongna@bjut.edu.cn
  organization: Faculty of Information Technology, Beijing University of Technology, Beijing, China
– sequence: 3
  givenname: Wenyuan
  surname: Liu
  fullname: Liu, Wenyuan
  email: liuwenyuan@sust.edu.cn
  organization: College of Electrical and Information Engineering, Shaanxi University of Science and Technology, Xi'an, China
– sequence: 4
  givenname: Shuxia
  orcidid: 0000-0002-1991-3526
  surname: Yan
  fullname: Yan, Shuxia
  email: tjuysx@163.com
  organization: School of Electronics and Information Engineering, Tianjin Polytechnic University, Tianjin, China
– sequence: 5
  givenname: Lin
  surname: Zhu
  fullname: Zhu, Lin
  email: zhulin@tcu.edu.cn
  organization: School of Control and Mechanical Engineering, Tianjin Chengjian University, Tianjin, China
– sequence: 6
  givenname: Jianguo
  surname: Ma
  fullname: Ma, Jianguo
  email: mjg@gdut.edu.cn
  organization: School of Computer Science and Technology, Guangdong University of Technology, Guangzhou, China
– sequence: 7
  givenname: Qi-Jun
  orcidid: 0000-0001-7852-5331
  surname: Zhang
  fullname: Zhang, Qi-Jun
  email: qjz@doe.carleton.ca
  organization: Department of Electronics, Carleton University, Ottawa, Canada
BookMark eNp9kMtOAyEYhYnRxHp5AONmEtdUYIYWllVbNbGa6LieMMM_I810qMB4ewYfWmqNCxeGBeFwzn_59tB2ZztA6IiSIaVEnubzPB8yQuWQSc4ooVtoQDkfYzkak200IIQKLDNBdtGe94v4zDgRA_Q579tgalChd4An3hsfQCe30DuLg1Odr8Els76rgrFd8tA7ZxsVAJ8pH33TeXK3CmZpPtT3__Rt1VoTTNckuet9wPfQrPVJ21hnwtPSJ7V1ydxUzr6qF0hmpg2xwQV403QHaKdWrYfDn3sfPc6m-fkVvrm7vD6f3OAq5TJgWVeipEwIXpcsoykt05ITrXVGZcZ1yaoMiIaRqkXKtRgTqkstVTxV1DVL99HJpu7K2ecefCgWtnddbFmwNNKThEgRXeONK87qvYO6qEz4XjNyMW1BSbFGX6zRF2v0xQ_6mKR_kitnlsq9_5s53mQMAPz6hWSZpDz9AvdylQU
CODEN IETMAB
CitedBy_id crossref_primary_10_1109_TMTT_2022_3163745
crossref_primary_10_1109_TMTT_2024_3400152
crossref_primary_10_1038_s41598_024_73323_w
crossref_primary_10_3390_s21030851
crossref_primary_10_1109_TMTT_2023_3297403
crossref_primary_10_1007_s10470_020_01733_7
crossref_primary_10_1109_TMTT_2022_3176885
crossref_primary_10_1038_s41598_022_04810_1
crossref_primary_10_1109_LMWC_2022_3150312
crossref_primary_10_1109_LMWT_2023_3329783
crossref_primary_10_1109_ACCESS_2021_3105811
crossref_primary_10_1109_MMM_2024_3486596
crossref_primary_10_1109_MMM_2024_3486599
crossref_primary_10_1002_ett_4579
crossref_primary_10_1109_MMM_2024_3387036
crossref_primary_10_1109_MMM_2021_3095990
crossref_primary_10_1109_ACCESS_2022_3226323
crossref_primary_10_1109_TMTT_2020_3034906
crossref_primary_10_1109_TMTT_2022_3219072
crossref_primary_10_1109_ACCESS_2020_3036600
crossref_primary_10_1038_s41598_022_17661_7
crossref_primary_10_1109_ACCESS_2021_3104338
crossref_primary_10_1109_TMTT_2021_3061566
crossref_primary_10_1088_1361_6463_ad6fb1
crossref_primary_10_1109_TMTT_2021_3061128
crossref_primary_10_1002_jnm_2879
crossref_primary_10_1109_TMTT_2023_3341584
crossref_primary_10_1109_TMTT_2023_3275232
crossref_primary_10_1109_LMWT_2024_3374792
crossref_primary_10_1109_TMTT_2021_3088870
crossref_primary_10_3390_mi11090831
crossref_primary_10_1109_LMWT_2023_3276746
crossref_primary_10_1109_TMTT_2022_3197751
crossref_primary_10_1109_TMTT_2021_3105677
crossref_primary_10_1109_TMTT_2022_3208898
crossref_primary_10_1109_LMWC_2021_3101258
crossref_primary_10_1002_jnm_3154
crossref_primary_10_1038_s41598_022_20728_0
crossref_primary_10_1109_TMTT_2022_3207761
crossref_primary_10_1109_MMM_2024_3486588
crossref_primary_10_1007_s10489_024_05853_9
crossref_primary_10_1109_TMTT_2024_3484760
crossref_primary_10_1109_MCOM_001_2400209
crossref_primary_10_1109_TMTT_2024_3374371
crossref_primary_10_1002_mmce_23034
crossref_primary_10_3390_electronics11223705
crossref_primary_10_1109_TAP_2023_3341226
crossref_primary_10_1002_mmce_23032
Cites_doi 10.1049/iet-map.2015.0246
10.1109/TMTT.2015.2504096
10.1109/TMTT.2013.2278148
10.1109/APMC.2013.6694945
10.1109/LMWC.2018.2884643
10.1109/TMTT.2005.854190
10.1109/TMTT.2015.2504099
10.1109/TMAG.2011.2174349
10.1109/MMM.2015.2514188
10.1007/BF01197433
10.1109/TMTT.2016.2605666
10.1109/TMTT.2009.2032476
10.1109/TMTT.2014.2315781
10.1109/MMM.2008.929554
10.1109/TMTT.2003.814318
10.1109/TMTT.2005.845685
10.1109/61.772353
10.1109/TMTT.2011.2182655
10.1109/TMTT.2004.842482
10.1109/TMTT.2003.820901
10.1109/TMTT.2015.2495180
10.1109/TAP.2013.2254695
10.1109/TMTT.2015.2431675
10.1109/MWSYM.2016.7539963
10.1109/TMTT.2008.2011243
10.1109/TMTT.2003.820904
10.1109/22.808989
10.1049/iet-map.2017.0238
10.1109/TMAG.2006.872018
10.1109/TMTT.2010.2078890
10.1109/TMTT.2003.820900
10.1109/TMTT.2006.882894
10.1109/TMTT.2003.820892
10.1109/TMTT.2003.820897
10.1109/TMTT.2010.2090169
10.1049/iet-map.2011.0138
10.1049/iet-map.2010.0607
10.1109/TMTT.2006.872811
10.1109/TMTT.2017.2650904
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1109/TMTT.2019.2952101
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library (IEL) (UW System Shared)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1557-9670
EndPage 542
ExternalDocumentID 10_1109_TMTT_2019_2952101
8924915
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61601323
  funderid: 10.13039/501100001809
– fundername: Scientific Research Project of Tianjin Education Commission
  grantid: 2017KJ088
– fundername: Natural Science Foundation of Tianjin City
  grantid: 18JCQNJC00900
  funderid: 10.13039/501100006606
– fundername: China Postdoctoral Science Foundation
  grantid: 2019M650404
  funderid: 10.13039/501100002858
– fundername: National Natural Science Foundation of China
  grantid: 61901010
  funderid: 10.13039/501100001809
– fundername: Natural Sciences and Engineering Research Council of Canada
  grantid: RGPIN-2017-06420
  funderid: 10.13039/501100000038
GroupedDBID -~X
.GJ
0R~
29I
3EH
4.4
5GY
5VS
66.
6IK
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TAF
TN5
VH1
VJK
VOH
AAYXX
CITATION
7SP
8FD
L7M
ID FETCH-LOGICAL-c359t-9fc8b12885fb24131b3b50ddd41945db2c4e0de6af835d8701dbd9a9a9ce0dd23
IEDL.DBID RIE
ISICitedReferencesCount 70
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000526546100011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0018-9480
IngestDate Mon Jun 30 10:18:10 EDT 2025
Tue Nov 25 02:39:26 EST 2025
Tue Nov 18 21:58:05 EST 2025
Wed Aug 27 06:27:55 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c359t-9fc8b12885fb24131b3b50ddd41945db2c4e0de6af835d8701dbd9a9a9ce0dd23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1991-3526
0000-0002-3569-8782
0000-0001-9775-5124
0000-0001-7852-5331
PQID 2352190098
PQPubID 106035
PageCount 12
ParticipantIDs crossref_citationtrail_10_1109_TMTT_2019_2952101
ieee_primary_8924915
crossref_primary_10_1109_TMTT_2019_2952101
proquest_journals_2352190098
PublicationCentury 2000
PublicationDate 2020-02-01
PublicationDateYYYYMMDD 2020-02-01
PublicationDate_xml – month: 02
  year: 2020
  text: 2020-02-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on microwave theory and techniques
PublicationTitleAbbrev TMTT
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref34
ref12
ref37
ref15
ref36
ref14
ref31
ref30
ref33
ref11
ref32
ref10
ref2
ref1
ref39
ref17
ref38
ref16
ref19
ref18
morro (ref21) 2005; 53
ref24
ref23
ref26
ref25
ref20
ref22
zhang (ref35) 2018; 12
ref28
cao (ref27) 2009; 57
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref33
  doi: 10.1049/iet-map.2015.0246
– ident: ref30
  doi: 10.1109/TMTT.2015.2504096
– ident: ref18
  doi: 10.1109/TMTT.2013.2278148
– ident: ref20
  doi: 10.1109/APMC.2013.6694945
– ident: ref38
  doi: 10.1109/LMWC.2018.2884643
– ident: ref13
  doi: 10.1109/TMTT.2005.854190
– ident: ref28
  doi: 10.1109/TMTT.2015.2504099
– ident: ref9
  doi: 10.1109/TMAG.2011.2174349
– ident: ref6
  doi: 10.1109/MMM.2015.2514188
– ident: ref39
  doi: 10.1007/BF01197433
– ident: ref31
  doi: 10.1109/TMTT.2016.2605666
– volume: 57
  start-page: 2727
  year: 2009
  ident: ref27
  article-title: A new training approach for parametric modeling of microwave passive components using combined neural networks and transfer functions
  publication-title: IEEE Trans Microw Theory Techn
  doi: 10.1109/TMTT.2009.2032476
– ident: ref19
  doi: 10.1109/TMTT.2014.2315781
– ident: ref3
  doi: 10.1109/MMM.2008.929554
– ident: ref10
  doi: 10.1109/TMTT.2003.814318
– volume: 53
  start-page: 1130
  year: 2005
  ident: ref21
  article-title: Fast automated design of waveguide filters using aggressive space mapping with a new segmentation strategy and a hybrid optimization algorithm
  publication-title: IEEE Trans Microw Theory Techn
  doi: 10.1109/TMTT.2005.845685
– ident: ref37
  doi: 10.1109/61.772353
– ident: ref17
  doi: 10.1109/TMTT.2011.2182655
– ident: ref12
  doi: 10.1109/TMTT.2004.842482
– ident: ref23
  doi: 10.1109/TMTT.2003.820901
– ident: ref7
  doi: 10.1109/TMTT.2015.2495180
– ident: ref26
  doi: 10.1109/TAP.2013.2254695
– ident: ref34
  doi: 10.1109/TMTT.2015.2431675
– ident: ref36
  doi: 10.1109/MWSYM.2016.7539963
– ident: ref8
  doi: 10.1109/TMTT.2008.2011243
– ident: ref2
  doi: 10.1109/TMTT.2003.820904
– ident: ref1
  doi: 10.1109/22.808989
– volume: 12
  start-page: 82
  year: 2018
  ident: ref35
  article-title: An enhanced cognition-driven formulation of space mapping for equal-ripple optimization of microwave filters
  publication-title: IET Microw Antennas Propag
  doi: 10.1049/iet-map.2017.0238
– ident: ref25
  doi: 10.1109/TMAG.2006.872018
– ident: ref32
  doi: 10.1109/TMTT.2010.2078890
– ident: ref22
  doi: 10.1109/TMTT.2003.820900
– ident: ref15
  doi: 10.1109/TMTT.2006.882894
– ident: ref4
  doi: 10.1109/TMTT.2003.820892
– ident: ref11
  doi: 10.1109/TMTT.2003.820897
– ident: ref14
  doi: 10.1109/TMTT.2010.2090169
– ident: ref16
  doi: 10.1049/iet-map.2011.0138
– ident: ref5
  doi: 10.1049/iet-map.2010.0607
– ident: ref24
  doi: 10.1109/TMTT.2006.872811
– ident: ref29
  doi: 10.1109/TMTT.2017.2650904
SSID ssj0014508
Score 2.548113
Snippet This article proposes a multifeature-assisted neuro-transfer function (neuro-TF) surrogate-based electromagnetic (EM) optimization technique exploiting...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 531
SubjectTerms Algorithms
Computational modeling
Design optimization
Design specifications
Electromagnetic (EM) optimization
feature
Feature extraction
Filter design (mathematics)
Linear programming
microwave filter
Microwave filters
neuro-transfer function (neuro-TF)
Optimization
Optimization techniques
Parameter identification
Parameter modification
Specifications
Transfer functions
trust region
Title Multifeature-Assisted Neuro-transfer Function Surrogate-Based EM Optimization Exploiting Trust-Region Algorithms for Microwave Filter Design
URI https://ieeexplore.ieee.org/document/8924915
https://www.proquest.com/docview/2352190098
Volume 68
WOSCitedRecordID wos000526546100011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1557-9670
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014508
  issn: 0018-9480
  databaseCode: RIE
  dateStart: 19630101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NaxsxEBWO6SE59MspdZMWHXoqlb2fXumYJjY91E5ItuDbstJo24XYLuu18yfyozMjy6bQUih7EYu0LLyV5s3OmxnGPppSx0aaVGQSlEgAIqEp_q4zJeMSObSsXNeSb9lsJudzddNhnw-5MNZaJz6zAxq6WD6szIZ-lQ0lOQuUUX6UZaNdrtYhYpCkgT91cQMnch_BDAM1zKd5TiIuNYgUWivf_2Vvg1xTlT9OYmdeJi_-78VesueeRvKLHe6vWMcuX7OT34oL9tijy62trKvcKRAGAhS4q8YhWsdXbcMnaNcIG363aZoV_VMTX9CwAR9P-TUeJwufp8mdWK8mkTTPKU9D3FqSMvOL-x-rpm5_LtYc-S-fksDvodxaPqkpEM-vnETklH2fjPPLr8L3XhAmTlUrVGWkRtsl00pT6C3UsU4DAEhClaSgI5PYAOyorJDCAW76EDSoEi-D9yGK37DucrW0bxkvQ1tBGRltZZqMcJhJlegAvXJ8QAzQZ8EejcL4wuTUH-O-cA5KoAoCsCAACw9gn306LPm1q8rxr8k9Quww0YPVZ-d7yAu_b9dFhHwUKVKg5Lu_rzpjxxF53E63fc66bbOx79kzs23rdfPBfZJP_4_iqg
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwED5NAwn2wK-BKAzwA08Ib07irPbjgFVDtAVBkPYWxT4HKm3tlKbjn-CP5s51KyQQEsqLFdlRpC_2fZf77g7gpW9c4Y0v5dCglRoxl47j725oTdEQhzZt7FoyHk6n5vzcftqB19tcmBBCFJ-FQx7GWD4u_Ip_lR0ZdhY4o_xGqXWu1tla25iBLlU6d2kLa7OJYWbKHlWTqmIZlz3MLdmr1AFmY4ViW5U_zuJoYEZ3_-_V7sGdRCTFyRr5-7AT5g9g77fygvvwM2bXtiHW7pQEBEOKItbjkH1krKETI7JsjI74suq6Bf9Vk2_ItKE4nYiPdKBcpkxNEeV6M5ZJi4ozNeTnwGJmcXLxbdHN-u-XS0EMWExY4vejuQ5iNONQvHgXRSIP4evotHp7JlP3BemL0vbStt44sl6mbB0H3zJXuFIhos6sLtHlXgeF4bhpicQhbfsMHdqGLk_3MS8ewe58MQ-PQTRZaLHJvQum1Mc0HBqrnSK_nB5QIA5AbdCofSpNzh0yLurooihbM4A1A1gnAAfwarvkal2X41-T9xmx7cQE1gAONpDXaecu65wYKZEkZc2Tv696AbfOqsm4Hr-ffngKt3P2v6OK-wB2-24VnsFNf93Plt3z-Hn-AupU5fE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multifeature-Assisted+Neuro-transfer+Function+Surrogate-Based+EM+Optimization+Exploiting+Trust-Region+Algorithms+for+Microwave+Filter+Design&rft.jtitle=IEEE+transactions+on+microwave+theory+and+techniques&rft.au=Feng%2C+Feng&rft.au=Weicong+Na&rft.au=Liu%2C+Wenyuan&rft.au=Yan%2C+Shuxia&rft.date=2020-02-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0018-9480&rft.eissn=1557-9670&rft.volume=68&rft.issue=2&rft.spage=531&rft_id=info:doi/10.1109%2FTMTT.2019.2952101&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9480&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9480&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9480&client=summon