A linear cobalt(II) complex with maximal orbital angular momentum from a non-Aufbau ground state
Orbital angular momentum is a prerequisite for magnetic anisotropy, although in transition metal complexes it is typically quenched by the ligand field. By reducing the basicity of the carbon donor atoms in a pair of alkyl ligands, we synthesized a cobalt(II) dialkyl complex, Co(C(SiMe ONaph) ) (whe...
Saved in:
| Published in: | Science (American Association for the Advancement of Science) Vol. 362; no. 6421 |
|---|---|
| Main Authors: | , , , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
21.12.2018
|
| ISSN: | 1095-9203, 1095-9203 |
| Online Access: | Get more information |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Orbital angular momentum is a prerequisite for magnetic anisotropy, although in transition metal complexes it is typically quenched by the ligand field. By reducing the basicity of the carbon donor atoms in a pair of alkyl ligands, we synthesized a cobalt(II) dialkyl complex, Co(C(SiMe
ONaph)
)
(where Me is methyl and Naph is a naphthyl group), wherein the ligand field is sufficiently weak that interelectron repulsion and spin-orbit coupling play a dominant role in determining the electronic ground state. Assignment of a non-Aufbau (d
, d
)
(d
, d
)
(d
)
electron configuration is supported by dc magnetic susceptibility data, experimental charge density maps, and ab initio calculations. Variable-field far-infrared spectroscopy and ac magnetic susceptibility measurements further reveal slow magnetic relaxation via a 450-wave number magnetic excited state. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ISSN: | 1095-9203 1095-9203 |
| DOI: | 10.1126/science.aat7319 |