Coevolutionary Multiobjective Evolutionary Algorithms: Survey of the State-of-the-Art

In the last 20 years, evolutionary algorithms (EAs) have shown to be an effective method to solve multiobjective optimization problems (MOPs). Due to their population-based nature, multiobjective EAs (MOEAs) are able to generate a set of tradeoff solutions (called nondominated solutions) in a single...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on evolutionary computation Jg. 22; H. 6; S. 851 - 865
Hauptverfasser: Miguel Antonio, Luis, Coello Coello, Carlos A.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York IEEE 01.12.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:1089-778X, 1941-0026
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In the last 20 years, evolutionary algorithms (EAs) have shown to be an effective method to solve multiobjective optimization problems (MOPs). Due to their population-based nature, multiobjective EAs (MOEAs) are able to generate a set of tradeoff solutions (called nondominated solutions) in a single algorithmic execution instead of having to perform a series of independent executions, as normally done with mathematical programming techniques. Additionally, MOEAs can be successfully applied to problems with difficult features such as multifrontality, discontinuity and disjoint feasible regions, among others. On the other hand, coevolutionary algorithms (CAs) are extensions of traditional EAs which have become subject of numerous studies in the last few years, particularly for dealing with large-scale global optimization problems. CAs have also been applied to the solution of MOPs, motivating the development of new algorithmic and analytical formulations that have advanced the state-of-the-art in CAs research, while simultaneously opening a new research path within MOEAs. This paper presents a critical review of the most representative coevolutionary MOEAs (CMOEAs) that have been reported in the specialized literature. This survey includes a taxonomy of approaches together with a brief description of their main features. In the final part of this paper, we also identify what we believe to be promising areas of future research in the field of CMOEAs.
AbstractList In the last 20 years, evolutionary algorithms (EAs) have shown to be an effective method to solve multiobjective optimization problems (MOPs). Due to their population-based nature, multiobjective EAs (MOEAs) are able to generate a set of tradeoff solutions (called nondominated solutions) in a single algorithmic execution instead of having to perform a series of independent executions, as normally done with mathematical programming techniques. Additionally, MOEAs can be successfully applied to problems with difficult features such as multifrontality, discontinuity and disjoint feasible regions, among others. On the other hand, coevolutionary algorithms (CAs) are extensions of traditional EAs which have become subject of numerous studies in the last few years, particularly for dealing with large-scale global optimization problems. CAs have also been applied to the solution of MOPs, motivating the development of new algorithmic and analytical formulations that have advanced the state-of-the-art in CAs research, while simultaneously opening a new research path within MOEAs. This paper presents a critical review of the most representative coevolutionary MOEAs (CMOEAs) that have been reported in the specialized literature. This survey includes a taxonomy of approaches together with a brief description of their main features. In the final part of this paper, we also identify what we believe to be promising areas of future research in the field of CMOEAs.
Author Miguel Antonio, Luis
Coello Coello, Carlos A.
Author_xml – sequence: 1
  givenname: Luis
  orcidid: 0000-0001-7530-4701
  surname: Miguel Antonio
  fullname: Miguel Antonio, Luis
  email: lmiguel@computacion.cs.cinvestav.mx
  organization: Department of Computer Science, Evolutionary Computation Group, CINVESTAV-IPN, Mexico City, Mexico
– sequence: 2
  givenname: Carlos A.
  orcidid: 0000-0002-8435-680X
  surname: Coello Coello
  fullname: Coello Coello, Carlos A.
  email: ccoello@cs.cinvestav.mx
  organization: Department of Computer Science, Evolutionary Computation Group, CINVESTAV-IPN, Mexico City, Mexico
BookMark eNp9kE1Lw0AQhhepYFv9AeIl4Dl1Zz-yWW8l1A9QPLQVbyHdTmxKmq2bTaH_3i0tIh48zQzzvvPxDEivsQ0Scg10BED13Wzyno0YBTViKlGU8TPSBy0gppQlvZDTVMdKpR8XZNC2a0pBSNB9Ms8s7mzd-co2hdtHr10d0sUaja92GE1-98b1p3WVX23a-2jauR3uI1tGfoXR1BceY1vGoYjHzl-S87KoW7w6xSGZP0xm2VP88vb4nI1fYsOl9rE2BdeSJWCENJIhBV0sEcpUGCoWptSYpFwsuUyAKlRapJwVyYIvNRZpYjQfktvj3K2zXx22Pl_bzjVhZc5AALCEMhlU6qgyzratwzI3VTg4fOVdUdU50PzAMD8wzA8M8xPD4IQ_zq2rNoHFv56bo6dCxB99SlMJivNvOrZ_LQ
CODEN ITEVF5
CitedBy_id crossref_primary_10_1109_ACCESS_2020_2989219
crossref_primary_10_1109_TCYB_2021_3082200
crossref_primary_10_1016_j_fuel_2020_119678
crossref_primary_10_1007_s12293_021_00328_7
crossref_primary_10_1016_j_knosys_2022_108738
crossref_primary_10_1109_TETCI_2023_3300526
crossref_primary_10_1111_exsy_13410
crossref_primary_10_3390_pr6120250
crossref_primary_10_1016_j_asoc_2024_112614
crossref_primary_10_1109_MCI_2023_3277773
crossref_primary_10_1109_TSG_2021_3096638
crossref_primary_10_1016_j_asoc_2021_107152
crossref_primary_10_1007_s10710_020_09389_y
crossref_primary_10_1016_j_swevo_2022_101198
crossref_primary_10_1109_TSMC_2019_2907575
crossref_primary_10_1007_s11227_024_06496_w
crossref_primary_10_1109_TII_2019_2961340
crossref_primary_10_1109_TNSE_2023_3234152
crossref_primary_10_1002_cpe_6362
crossref_primary_10_1016_j_enconman_2021_114714
crossref_primary_10_1109_ACCESS_2020_3027008
crossref_primary_10_1007_s12204_020_2244_6
crossref_primary_10_1016_j_asoc_2022_109040
crossref_primary_10_3390_s22020617
crossref_primary_10_3390_app142210309
crossref_primary_10_1016_j_isatra_2021_11_038
crossref_primary_10_1109_TEVC_2019_2895748
crossref_primary_10_1016_j_neucom_2020_01_114
crossref_primary_10_1109_TEVC_2022_3144684
crossref_primary_10_1007_s00500_023_08825_2
crossref_primary_10_1007_s40747_019_0113_4
crossref_primary_10_1109_TEVC_2022_3212058
crossref_primary_10_1109_TCYB_2022_3225341
crossref_primary_10_3390_a15100380
crossref_primary_10_1109_TFUZZ_2022_3141761
crossref_primary_10_1109_TSMC_2023_3305541
crossref_primary_10_1016_j_compag_2023_107694
crossref_primary_10_1155_2020_8853735
crossref_primary_10_1016_j_swevo_2023_101255
crossref_primary_10_1016_j_swevo_2024_101734
crossref_primary_10_1016_j_ijepes_2023_109584
crossref_primary_10_1007_s00500_022_07286_3
crossref_primary_10_1016_j_ins_2024_121837
crossref_primary_10_1109_TCYB_2020_2986600
crossref_primary_10_1145_3495159
crossref_primary_10_1007_s40747_024_01523_y
crossref_primary_10_1016_j_swevo_2022_101093
crossref_primary_10_1109_TSMC_2024_3446624
crossref_primary_10_1007_s00500_023_09468_z
crossref_primary_10_1109_ACCESS_2020_3014871
crossref_primary_10_1016_j_knosys_2024_111614
crossref_primary_10_1109_TEVC_2020_2968743
crossref_primary_10_1016_j_ejor_2021_10_033
crossref_primary_10_1145_3472616
crossref_primary_10_1016_j_swevo_2019_04_008
crossref_primary_10_1016_j_eswa_2020_113396
crossref_primary_10_1088_1742_6596_2562_1_012089
crossref_primary_10_1145_3458845
crossref_primary_10_1007_s40747_023_00990_z
crossref_primary_10_1109_TEVC_2023_3328886
crossref_primary_10_1007_s00500_019_04379_4
crossref_primary_10_3390_math10193581
crossref_primary_10_3390_pr13010095
crossref_primary_10_1016_j_isatra_2025_09_006
crossref_primary_10_1007_s10489_023_04822_y
crossref_primary_10_1016_j_eswa_2024_124226
crossref_primary_10_1016_j_ins_2021_04_003
crossref_primary_10_1016_j_envsoft_2023_105812
crossref_primary_10_3390_app10227978
crossref_primary_10_1016_j_ins_2019_11_028
crossref_primary_10_1109_TEVC_2021_3066301
crossref_primary_10_1007_s10462_023_10526_z
crossref_primary_10_1007_s10489_019_01475_8
crossref_primary_10_1109_TEVC_2023_3294307
crossref_primary_10_1016_j_asoc_2020_106382
crossref_primary_10_1109_TEVC_2022_3160196
crossref_primary_10_1145_3446937
crossref_primary_10_1016_j_swevo_2019_05_007
crossref_primary_10_1109_ACCESS_2025_3530952
crossref_primary_10_1016_j_swevo_2019_05_009
crossref_primary_10_1109_ACCESS_2024_3354714
crossref_primary_10_1109_TEVC_2019_2896002
crossref_primary_10_1007_s12155_019_10009_6
crossref_primary_10_1016_j_ijpe_2024_109399
crossref_primary_10_1016_j_knosys_2021_107693
crossref_primary_10_1016_j_swevo_2021_100995
crossref_primary_10_1016_j_swevo_2023_101449
crossref_primary_10_1007_s11633_020_1253_0
crossref_primary_10_1109_TSG_2023_3307178
crossref_primary_10_3390_en13225871
crossref_primary_10_1016_j_knosys_2025_113327
crossref_primary_10_1016_j_swevo_2024_101667
crossref_primary_10_1109_JIOT_2020_2996762
crossref_primary_10_1016_j_asoc_2020_106650
crossref_primary_10_1016_j_swevo_2019_100578
crossref_primary_10_1109_TEVC_2020_3020423
crossref_primary_10_1016_j_swevo_2022_101181
crossref_primary_10_1007_s40747_022_00963_8
crossref_primary_10_1016_j_swevo_2025_102077
crossref_primary_10_1016_j_swevo_2018_04_012
crossref_primary_10_1109_ACCESS_2019_2916634
crossref_primary_10_1109_ACCESS_2019_2954542
crossref_primary_10_1080_19942060_2024_2444418
crossref_primary_10_1016_j_eswa_2022_119258
crossref_primary_10_1109_TEVC_2020_3004012
crossref_primary_10_1016_j_swevo_2021_100847
crossref_primary_10_1016_j_swevo_2024_101815
crossref_primary_10_1016_j_ins_2019_06_051
crossref_primary_10_1109_JAS_2021_1003817
crossref_primary_10_1016_j_infsof_2024_107412
crossref_primary_10_1007_s10458_022_09552_y
crossref_primary_10_1016_j_swevo_2021_100960
crossref_primary_10_1109_TSMC_2024_3446822
crossref_primary_10_1016_j_ins_2020_11_030
crossref_primary_10_1109_TFUZZ_2019_2955043
crossref_primary_10_1016_j_swevo_2025_101949
crossref_primary_10_1016_j_swevo_2023_101349
crossref_primary_10_1007_s42979_023_01749_6
crossref_primary_10_1109_TSMC_2024_3454051
crossref_primary_10_1109_TEVC_2021_3097043
crossref_primary_10_1109_TVT_2022_3196366
crossref_primary_10_1016_j_ins_2023_01_047
crossref_primary_10_1109_TEVC_2024_3365814
crossref_primary_10_1109_TEVC_2023_3340678
crossref_primary_10_1016_j_ins_2024_121648
crossref_primary_10_3233_HIS_190273
crossref_primary_10_1145_3626104
Cites_doi 10.1109/CEC.2003.1299614
10.1007/3-540-45712-7_28
10.1016/j.ejor.2014.05.019
10.2307/1969529
10.1109/TCYB.2015.2490669
10.1162/106365600568202
10.1109/CEC.2015.7256881
10.1016/j.asoc.2014.06.011
10.1162/evco.1994.2.3.221
10.1007/s10107-007-0169-6
10.1162/artl.1995.2.4.355
10.1109/ICNC.2007.309
10.1162/106454698568620
10.1007/978-3-540-74769-7_8
10.1109/TEVC.2005.861417
10.1007/978-3-540-87700-4_68
10.1007/BFb0056867
10.1109/CEC.2002.1004406
10.1109/CEC.2008.4631014
10.1109/4235.797969
10.1109/CEC.2000.870296
10.1016/0167-2789(90)90076-2
10.1109/CEC.2016.7743846
10.1007/978-3-540-72964-8_2
10.1109/TEVC.2012.2204264
10.1007/s10710-005-6164-x
10.1162/106365600568086
10.1504/IJMMNO.2009.030085
10.1007/BF02916328
10.1007/s00500-014-1346-1
10.1109/CEC.2016.7743897
10.1109/CEC.1999.781913
10.1162/evco.1997.5.1.1
10.1109/TEVC.2016.2598858
10.1109/CEC.2006.1688516
10.1007/978-1-4757-5184-0
10.1109/CEC.2013.6557903
10.1109/CIS.2007.181
10.1109/TMAG.2011.2174205
10.1007/978-3-540-70829-2_9
10.1016/j.ejor.2009.05.005
10.1162/106365600568167
10.1109/TEVC.2014.2350987
10.1109/TEVC.2005.860762
10.1007/3-540-36970-8_15
10.1109/TEVC.2015.2504730
10.1109/CEC.2008.4631301
10.1145/1068009.1068148
10.1109/SIS.2014.7011812
10.1007/1-84628-137-7_6
10.1109/TEVC.2011.2169968
10.1109/ICSMC.2003.1243847
10.1109/CEC.2010.5586127
10.1007/978-3-540-30217-9_85
10.1109/CEC.2008.4631121
10.1111/j.1558-5646.1964.tb01674.x
10.1007/978-3-642-21271-0_3
10.1109/AICI.2009.405
10.1007/s10489-012-0405-5
10.1016/j.ins.2008.02.017
10.1162/106365604773955148
10.1007/978-3-642-00267-0_17
10.1007/3-540-44719-9_9
10.1007/3-540-45356-3_83
10.1145/1143997.1144121
10.1007/978-3-540-24854-5_59
10.1007/978-3-642-37959-8_14
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TEVC.2017.2767023
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1941-0026
EndPage 865
ExternalDocumentID 10_1109_TEVC_2017_2767023
8085173
Genre orig-research
GrantInformation_xml – fundername: CONACyT
  grantid: 221551
– fundername: CONACyT through a Ph.D. scholarship
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
5VS
6IF
6IK
6IL
6IN
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ADZIZ
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CHZPO
CS3
EBS
EJD
HZ~
H~9
IEGSK
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RIL
RNS
TN5
VH1
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c359t-9ca395261c45c52e019ade1f84c04bcf9e6834d356107e794832a6b3d9ea86c93
IEDL.DBID RIE
ISICitedReferencesCount 149
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000451911500003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1089-778X
IngestDate Sun Nov 09 06:47:43 EST 2025
Sat Nov 29 07:52:04 EST 2025
Tue Nov 18 22:21:55 EST 2025
Wed Aug 27 02:03:57 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c359t-9ca395261c45c52e019ade1f84c04bcf9e6834d356107e794832a6b3d9ea86c93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8435-680X
0000-0001-7530-4701
PQID 2141126025
PQPubID 85418
PageCount 15
ParticipantIDs ieee_primary_8085173
proquest_journals_2141126025
crossref_primary_10_1109_TEVC_2017_2767023
crossref_citationtrail_10_1109_TEVC_2017_2767023
PublicationCentury 2000
PublicationDate 2018-12-01
PublicationDateYYYYMMDD 2018-12-01
PublicationDate_xml – month: 12
  year: 2018
  text: 2018-12-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on evolutionary computation
PublicationTitleAbbrev TEVC
PublicationYear 2018
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref13
ref56
ref12
deb (ref64) 2000
ref59
ref53
ref52
ref55
ref11
ref54
ficici (ref68) 1998
ref17
ref18
dre?ewski (ref47) 2007; 4431
iorio (ref19) 2004; 3102
sim (ref41) 2004; 2
keerativuttiumrong (ref16) 2002
luke (ref80) 2002
ref50
liu (ref61) 2010
ref90
ref46
ref89
ref86
ref42
cliff (ref85) 1995; 929
ref88
ref44
ref43
parmee (ref58) 1999; 2
fonseca (ref71) 1993
zitzler (ref87) 2004
potter (ref8) 1994
ref7
laumanns (ref45) 1998
ref9
ref4
coello coello (ref69) 2004; 2972
ref3
deb (ref49) 2005
ref6
ref5
schott (ref75) 1995
maneeratana (ref20) 2004
ref82
ref81
ref40
ref84
ref83
ref35
ref78
ref34
ref37
ref31
ref74
ref30
ref33
ref76
ref32
ref2
ref1
ref38
watson (ref79) 2001
de (ref51) 2012; 48
chowdhury (ref48) 2008
zitzler (ref39) 2002
yang (ref14) 2008
ref70
zhang (ref36) 2008
ref72
yang (ref10) 2007; 1
ref24
ref67
ref23
ref26
ref25
ref63
ref66
ref22
ref65
coello coello (ref73) 2001
lamont (ref77) 1999
ref28
ref27
ref29
barbosa (ref15) 2001
ref60
tan (ref21) 2007
ref62
References_xml – start-page: 416
  year: 1993
  ident: ref71
  article-title: Genetic algorithms for multiobjective optimization: Formulation, discussion and generalization
  publication-title: Proc of 5th International Conference on Genetic Algorithms
– ident: ref70
  doi: 10.1109/CEC.2003.1299614
– start-page: 238
  year: 1998
  ident: ref68
  article-title: Challenges in coevolutionary learning: Arms-race dynamics, openendedness, and mediocre stable states
  publication-title: Proc 6th Int Conf Artif Life (Alife)
– start-page: 288
  year: 2002
  ident: ref16
  article-title: Multi-objective co-operative co-evolutionary genetic algorithm
  publication-title: Parallel Problem Solving from Nature-PPSN VII
  doi: 10.1007/3-540-45712-7_28
– ident: ref42
  doi: 10.1016/j.ejor.2014.05.019
– ident: ref38
  doi: 10.2307/1969529
– ident: ref34
  doi: 10.1109/TCYB.2015.2490669
– ident: ref40
  doi: 10.1162/106365600568202
– volume: 2972
  start-page: 688
  year: 2004
  ident: ref69
  article-title: A study of the parallelization of a coevolutionary multi-objective evolutionary algorithm
  publication-title: Proc Int Joint Artif Intell Conf
– ident: ref6
  doi: 10.1109/CEC.2015.7256881
– start-page: 249
  year: 1994
  ident: ref8
  article-title: A cooperative coevolutionary approach to function optimization
  publication-title: Proc Int Conf Evol Comput 3rd Conf Parallel Problem Solving Nat Parallel Problem Solving Nat (PPSN III)
– ident: ref29
  doi: 10.1016/j.asoc.2014.06.011
– ident: ref66
  doi: 10.1162/evco.1994.2.3.221
– ident: ref88
  doi: 10.1007/s10107-007-0169-6
– ident: ref1
  doi: 10.1162/artl.1995.2.4.355
– ident: ref57
  doi: 10.1109/ICNC.2007.309
– ident: ref83
  doi: 10.1162/106454698568620
– year: 2005
  ident: ref49
  article-title: Investigating predator-prey algorithms for multi-objective optimization
– ident: ref25
  doi: 10.1007/978-3-540-74769-7_8
– ident: ref37
  doi: 10.1109/TEVC.2005.861417
– year: 1995
  ident: ref75
  article-title: Fault tolerant design using single and multicriteria genetic algorithm optimization
– ident: ref53
  doi: 10.1007/978-3-540-87700-4_68
– start-page: 241
  year: 1998
  ident: ref45
  article-title: A spatial predator-prey approach to multi-objective optimization: A preliminary study
  publication-title: Parallel Problem Solving from Nature-PPSN V
  doi: 10.1007/BFb0056867
– ident: ref59
  doi: 10.1109/CEC.2002.1004406
– volume: 2
  start-page: 463
  year: 2004
  ident: ref41
  article-title: Game theory based coevolutionary algorithm: A new computational coevolutionary approach
  publication-title: Int J Control Autom Syst
– start-page: 1663
  year: 2008
  ident: ref14
  article-title: Multilevel cooperative coevolution for large scale optimization
  publication-title: Proc IEEE Congr Evol Comput World Congr Comput Intell (CES)
  doi: 10.1109/CEC.2008.4631014
– ident: ref65
  doi: 10.1109/4235.797969
– ident: ref76
  doi: 10.1109/CEC.2000.870296
– volume: 4431
  start-page: 67
  year: 2007
  ident: ref47
  article-title: Co-evolutionary multi-agent system with predator-prey mechanism for multi-objective optimization
  publication-title: Proc 8th Int Conf Adapt Nat Comput Algorithms Part I (ICANNGA)
– ident: ref44
  doi: 10.1016/0167-2789(90)90076-2
– ident: ref63
  doi: 10.1109/CEC.2016.7743846
– start-page: 772
  year: 2004
  ident: ref20
  article-title: Multi-objective optimisation by co-operative co-evolution
  publication-title: Parallel Problem Solving from Nature-PPSN VII
– start-page: 702
  year: 2001
  ident: ref79
  article-title: Coevolutionary dynamics in a minimal substrate
  publication-title: Proc 3rd Annu Conf Genet Evol Comput (GECCO)
– volume: 2
  start-page: 1657
  year: 1999
  ident: ref58
  article-title: Preliminary airframe design using co-evolutionary multiobjective genetic algorithms
  publication-title: Proc Genet Evol Comput Conf
– ident: ref4
  doi: 10.1007/978-3-540-72964-8_2
– ident: ref43
  doi: 10.1109/TEVC.2012.2204264
– ident: ref35
  doi: 10.1007/s10710-005-6164-x
– ident: ref2
  doi: 10.1162/106365600568086
– ident: ref52
  doi: 10.1504/IJMMNO.2009.030085
– ident: ref62
  doi: 10.1007/BF02916328
– ident: ref67
  doi: 10.1007/s00500-014-1346-1
– ident: ref18
  doi: 10.1109/CEC.2016.7743897
– ident: ref74
  doi: 10.1109/CEC.1999.781913
– ident: ref3
  doi: 10.1162/evco.1997.5.1.1
– start-page: 95
  year: 2002
  ident: ref39
  article-title: SPEA2: Improving the strength Pareto evolutionary algorithm
  publication-title: Proc Evol Methods Design Optim Control Appl Ind Problems (EUROGEN)
– start-page: 1
  year: 2007
  ident: ref21
  article-title: Cooperative coevolution for Pareto multiobjective optimization: An empirical study using SPEA2
  publication-title: Proc IEEE Region 10 Conf TENCON
– ident: ref31
  doi: 10.1109/TEVC.2016.2598858
– volume: 3102
  start-page: 537
  year: 2004
  ident: ref19
  article-title: A cooperative coevolutionary multiobjective algorithm using non-dominated sorting
  publication-title: Proc Genet Evol Comput Conf Part I (GECCO)
– volume: 929
  start-page: 200
  year: 1995
  ident: ref85
  article-title: Tracking the red queen: Measurements of adaptive progress in co-evolutionary simulations
  publication-title: Advances in Artificial Life-ACAL 1995
– start-page: 832
  year: 2004
  ident: ref87
  article-title: Indicator-based selection in multiobjective search
  publication-title: Parallel Problem Solving from Nature-PPSN VII
– ident: ref55
  doi: 10.1109/CEC.2006.1688516
– ident: ref5
  doi: 10.1007/978-1-4757-5184-0
– ident: ref17
  doi: 10.1109/CEC.2013.6557903
– ident: ref27
  doi: 10.1109/CIS.2007.181
– start-page: 7
  year: 2001
  ident: ref15
  article-title: An interactive genetic algorithm with co-evolution of weights for multiobjective problems
  publication-title: Proc Genet Evol Comput Conf (GECCO)
– volume: 1
  start-page: 3523
  year: 2007
  ident: ref10
  article-title: Differential evolution for high-dimensional function optimization
  publication-title: Proc IEEE Congr Evol Comput (CEC)
– volume: 48
  start-page: 951
  year: 2012
  ident: ref51
  article-title: Multiobjective biogeography-based optimization based on predator-prey approach
  publication-title: IEEE Trans Magn
  doi: 10.1109/TMAG.2011.2174205
– ident: ref56
  doi: 10.1007/978-3-540-70829-2_9
– ident: ref78
  doi: 10.1016/j.ejor.2009.05.005
– start-page: 236
  year: 2002
  ident: ref80
  article-title: When coevolutionary algorithms exhibit evolutionary dynamics
  publication-title: Proc Genet Evol Comput Conf Workshop Program
– ident: ref72
  doi: 10.1162/106365600568167
– year: 1999
  ident: ref77
  article-title: Multiobjective evolutionary algorithms: Classifications, analyses, and new innovations
– ident: ref32
  doi: 10.1109/TEVC.2014.2350987
– ident: ref26
  doi: 10.1109/TEVC.2005.860762
– ident: ref46
  doi: 10.1007/3-540-36970-8_15
– start-page: 1
  year: 2008
  ident: ref48
  article-title: Predator-prey evolutionary multi-objective optimization algorithm: Performance and improvements
  publication-title: Proc 7th Int Conf Eng Design Optim (ASMO U K /ISSMO)
– ident: ref33
  doi: 10.1109/TEVC.2015.2504730
– ident: ref13
  doi: 10.1109/CEC.2008.4631301
– ident: ref50
  doi: 10.1145/1068009.1068148
– ident: ref9
  doi: 10.1109/SIS.2014.7011812
– ident: ref30
  doi: 10.1007/1-84628-137-7_6
– start-page: 5264
  year: 2010
  ident: ref61
  article-title: Multiobjective optimization with competitive coevolutionary genetic algorithms
  publication-title: 29th Chinese Control Conf (CCC)
– ident: ref90
  doi: 10.1109/TEVC.2011.2169968
– ident: ref28
  doi: 10.1109/ICSMC.2003.1243847
– ident: ref11
  doi: 10.1109/CEC.2010.5586127
– ident: ref82
  doi: 10.1007/978-3-540-30217-9_85
– ident: ref86
  doi: 10.1109/CEC.2008.4631121
– ident: ref7
  doi: 10.1111/j.1558-5646.1964.tb01674.x
– ident: ref23
  doi: 10.1007/978-3-642-21271-0_3
– start-page: 1
  year: 2008
  ident: ref36
  article-title: Multiobjective optimization test instances for the CEC 2009 special session and competition
– ident: ref60
  doi: 10.1109/AICI.2009.405
– ident: ref22
  doi: 10.1007/s10489-012-0405-5
– ident: ref12
  doi: 10.1016/j.ins.2008.02.017
– ident: ref84
  doi: 10.1162/106365604773955148
– ident: ref24
  doi: 10.1007/978-3-642-00267-0_17
– start-page: 126
  year: 2001
  ident: ref73
  article-title: A micro-genetic algorithm for multiobjective optimization
  publication-title: Proc Int Conf Evol Multi-Criterion Optim
  doi: 10.1007/3-540-44719-9_9
– year: 2000
  ident: ref64
  article-title: A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II
  doi: 10.1007/3-540-45356-3_83
– ident: ref54
  doi: 10.1145/1143997.1144121
– ident: ref81
  doi: 10.1007/978-3-540-24854-5_59
– ident: ref89
  doi: 10.1007/978-3-642-37959-8_14
SSID ssj0014519
Score 2.6316864
Snippet In the last 20 years, evolutionary algorithms (EAs) have shown to be an effective method to solve multiobjective optimization problems (MOPs). Due to their...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 851
SubjectTerms Coevolutionary algorithms (CAs)
competitive coevolution
Computer science
cooperative coevolution (CC)
Evolutionary algorithms
Evolutionary computation
Formulations
Genetic algorithms
Global optimization
Mathematical analysis
Mathematical programming
Mopping
multiobjective optimization
Multiple objective analysis
Pareto optimization
Sociology
Taxonomy
Title Coevolutionary Multiobjective Evolutionary Algorithms: Survey of the State-of-the-Art
URI https://ieeexplore.ieee.org/document/8085173
https://www.proquest.com/docview/2141126025
Volume 22
WOSCitedRecordID wos000451911500003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0026
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014519
  issn: 1089-778X
  databaseCode: RIE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB508aAH3-LqKjl4EqNtkzaNN1lWPIgIPthbSdOpD9atdB_gvzdJs4uiCN5ampTQL5P5pvMCOBIYF2kRJTSXilEecUXzRIRUlCLKwyTGMHCJwtfi5ibt9-XtApzMc2EQ0QWf4am9dL78otIT-6vsLLX8QLBFWBRCNLlac4-BLZPSBNNLwxjTvvdghoE8u-89dm0QlziNRCKCiH3TQa6pyo-T2KmXy7X_LWwdVj2NJBcN7huwgMNNWJu1aCBeYjdh5Uu9wS146FY49XtN1R_EZd9W-Wtz6JHe12cXg6eqfhk_v43Oyd2knuIHqUpi6CJx_JRWJTU31KxgGx4ue_fdK-r7KlDNYjmmUismY2M6aR7rOELD8lSBYZlyHfBclxKTlPGCWWol0AiskXqV5KyQqNJES7YDrWE1xF0g1o8XoTGCGBe2cnuupGZKcKPytChi1oZg9qUz7YuO294Xg8wZH4HMLDiZBSfz4LTheD7lvam48dfgLYvGfKAHog2dGZyZl8lRFoXc5ksZkrf3-6x9WDbvTptglQ60xvUED2BJT8cvo_rQbbdPOqHRNw
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT9swFH9ibNLYARgMrYwNHzhNMyS2E8e7VVUR07pqEmXqLXKclwFizZR-SP3vsR23Ag0h7ZYotmLl5-f3e3lfACcSkzIrWUoLpTkVTGhapDKmspKsiNME48gnCg_kcJiNx-rnBnxZ58Igog8-w1N36X35ZW3m7lfZWeb4geQv4GUiBIvbbK21z8AVSmnD6ZXljNk4-DDjSJ2N-r96LoxLnjKZyojxR1rIt1X55yz2CuZ85_-WtgvbgUiSbov8W9jAyR7srJo0kCCze_DmQcXBfbjq1bgIu003S-Lzb-vitj32SP_hs-7d77q5mV3_mX4ll_NmgUtSV8QSRuIZKq0ram-oXcE7uDrvj3oXNHRWoIYnakaV0Vwl1ngyIjEJQ8vzdIlxlQkTicJUCtOMi5I7ciXRiqyVe50WvFSos9QofgCbk3qC74E4Tx5DawZxIV3t9kIrw7UUVukZWSa8A9HqS-cmlB133S_ucm9-RCp34OQOnDyA04HP6yl_25obzw3ed2isBwYgOnC0gjMPUjnNWSxcxpSleYdPzzqG1xejH4N88G34_QNs2fdkbejKEWzOmjl-hFdmMbuZNp_81rsHRffUfg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Coevolutionary+Multiobjective+Evolutionary+Algorithms%3A+Survey+of+the+State-of-the-Art&rft.jtitle=IEEE+transactions+on+evolutionary+computation&rft.au=Miguel+Antonio%2C+Luis&rft.au=Coello+Coello%2C+Carlos+A.&rft.date=2018-12-01&rft.issn=1089-778X&rft.eissn=1941-0026&rft.volume=22&rft.issue=6&rft.spage=851&rft.epage=865&rft_id=info:doi/10.1109%2FTEVC.2017.2767023&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TEVC_2017_2767023
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-778X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-778X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-778X&client=summon