A New Two-Stage Evolutionary Algorithm for Many-Objective Optimization
Convergence and diversity are interdependently handled during the evolutionary process by most existing many-objective evolutionary algorithms (MaOEAs). In such a design, the degraded performance of one would deteriorate the other, and only solutions with both are able to improve the performance of...
Gespeichert in:
| Veröffentlicht in: | IEEE transactions on evolutionary computation Jg. 23; H. 5; S. 748 - 761 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
IEEE
01.10.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 1089-778X, 1941-0026 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Convergence and diversity are interdependently handled during the evolutionary process by most existing many-objective evolutionary algorithms (MaOEAs). In such a design, the degraded performance of one would deteriorate the other, and only solutions with both are able to improve the performance of MaOEAs. Unfortunately, it is not easy to constantly maintain a population of solutions with both convergence and diversity. In this paper, an MaOEA based on two independent stages is proposed for effectively solving many-objective optimization problems (MaOPs), where the convergence and diversity are addressed in two independent and sequential stages. To achieve this, we first propose a nondominated dynamic weight aggregation method by using a genetic algorithm, which is capable of finding the Pareto-optimal solutions for MaOPs with concave, convex, linear and even mixed Pareto front shapes, and then these solutions are employed to learn the Pareto-optimal subspace for the convergence. Afterward, the diversity is addressed by solving a set of single-objective optimization problems with reference lines within the learned Pareto-optimal subspace. To evaluate the performance of the proposed algorithm, a series of experiments are conducted against six state-of-the-art MaOEAs on benchmark test problems. The results show the significantly improved performance of the proposed algorithm over the peer competitors. In addition, the proposed algorithm can focus directly on a chosen part of the objective space if the preference area is known beforehand. Furthermore, the proposed algorithm can also be used to effectively find the nadir points. |
|---|---|
| AbstractList | Convergence and diversity are interdependently handled during the evolutionary process by most existing many-objective evolutionary algorithms (MaOEAs). In such a design, the degraded performance of one would deteriorate the other, and only solutions with both are able to improve the performance of MaOEAs. Unfortunately, it is not easy to constantly maintain a population of solutions with both convergence and diversity. In this paper, an MaOEA based on two independent stages is proposed for effectively solving many-objective optimization problems (MaOPs), where the convergence and diversity are addressed in two independent and sequential stages. To achieve this, we first propose a nondominated dynamic weight aggregation method by using a genetic algorithm, which is capable of finding the Pareto-optimal solutions for MaOPs with concave, convex, linear and even mixed Pareto front shapes, and then these solutions are employed to learn the Pareto-optimal subspace for the convergence. Afterward, the diversity is addressed by solving a set of single-objective optimization problems with reference lines within the learned Pareto-optimal subspace. To evaluate the performance of the proposed algorithm, a series of experiments are conducted against six state-of-the-art MaOEAs on benchmark test problems. The results show the significantly improved performance of the proposed algorithm over the peer competitors. In addition, the proposed algorithm can focus directly on a chosen part of the objective space if the preference area is known beforehand. Furthermore, the proposed algorithm can also be used to effectively find the nadir points. |
| Author | Xue, Bing Zhang, Mengjie Yen, Gary G. Sun, Yanan |
| Author_xml | – sequence: 1 givenname: Yanan orcidid: 0000-0001-6374-1429 surname: Sun fullname: Sun, Yanan email: yanan.sun@ecs.vuw.ac.nz organization: School of Engineering and Computer Science, Victoria University of Wellington, Wellington, New Zealand – sequence: 2 givenname: Bing orcidid: 0000-0002-4865-8026 surname: Xue fullname: Xue, Bing email: bing.xue@ecs.vuw.ac.nz organization: School of Engineering and Computer Science, Victoria University of Wellington, Wellington, New Zealand – sequence: 3 givenname: Mengjie orcidid: 0000-0003-4463-9538 surname: Zhang fullname: Zhang, Mengjie email: mengjie.zhang@ecs.vuw.ac.nz organization: School of Engineering and Computer Science, Victoria University of Wellington, Wellington, New Zealand – sequence: 4 givenname: Gary G. orcidid: 0000-0001-8851-5348 surname: Yen fullname: Yen, Gary G. email: gyen@okstate.edu organization: School of Electrical and Computer Engineering, Oklahoma State University, Stillwater, OK, USA |
| BookMark | eNp9kMFPwjAYxRuDiYD-AcbLEs_Dfm23tUdCQE1QDqLx1rRbhyWwYlcg-Ne7CfHgwdP3Hd7vvbzXQ53KVQaha8ADACzu5uO30YBg4APCOYE0PUNdEAxijEnaaX7MRZxl_P0C9ep6iTGwBEQXTYbRs9lH872LX4JamGi8c6ttsK5S_hANVwvnbfhYR6Xz0ZOqDvFML00e7M5Es02wa_ulWvElOi_VqjZXp9tHr5PxfPQQT2f3j6PhNM5pIkIstOZa6YITKggrhClowinGnJqCqCQTUOhEEM5YwkuSlhxyYLrIIDeKpBpoH90efTfefW5NHeTSbX3VRErS-FCKs8awj-Coyr2ra29KufF23RSSgGU7l2znku1c8jRXw2R_mNyGn27BK7v6l7w5ktYY85vEE4YxA_oNVIp5BQ |
| CODEN | ITEVF5 |
| CitedBy_id | crossref_primary_10_1016_j_ins_2024_121608 crossref_primary_10_1109_ACCESS_2020_3038497 crossref_primary_10_1016_j_knosys_2022_108738 crossref_primary_10_1109_TCBB_2023_3247025 crossref_primary_10_1007_s11227_024_06821_3 crossref_primary_10_1016_j_engappai_2024_108153 crossref_primary_10_1016_j_asoc_2024_111369 crossref_primary_10_1016_j_asoc_2025_113788 crossref_primary_10_1109_TSMC_2019_2930737 crossref_primary_10_1016_j_asoc_2022_109333 crossref_primary_10_1016_j_swevo_2024_101752 crossref_primary_10_1109_TCYB_2020_3043509 crossref_primary_10_1145_3470971 crossref_primary_10_1016_j_ins_2021_05_080 crossref_primary_10_1109_ACCESS_2024_3383916 crossref_primary_10_1109_TSMC_2023_3298690 crossref_primary_10_1007_s13042_022_01578_8 crossref_primary_10_1016_j_isatra_2020_10_065 crossref_primary_10_1016_j_eswa_2021_115654 crossref_primary_10_1109_TETCI_2024_3369710 crossref_primary_10_1109_TCYB_2021_3062949 crossref_primary_10_1016_j_asoc_2023_110295 crossref_primary_10_1111_exsy_12690 crossref_primary_10_1109_TEVC_2021_3095481 crossref_primary_10_1080_00207721_2019_1645914 crossref_primary_10_1007_s40747_022_00747_0 crossref_primary_10_1109_TCYB_2020_2979930 crossref_primary_10_1016_j_swevo_2022_101225 crossref_primary_10_1016_j_eswa_2023_120198 crossref_primary_10_1007_s10489_020_02053_z crossref_primary_10_1007_s11227_023_05624_2 crossref_primary_10_1016_j_asoc_2022_108938 crossref_primary_10_1007_s10489_022_03982_7 crossref_primary_10_1016_j_jocs_2022_101746 crossref_primary_10_1016_j_knosys_2021_107263 crossref_primary_10_1109_TEVC_2020_3044711 crossref_primary_10_1007_s10489_024_05270_y crossref_primary_10_1016_j_ins_2024_121032 crossref_primary_10_1007_s00521_023_08950_x crossref_primary_10_1109_TEVC_2021_3055076 crossref_primary_10_1007_s10489_021_03135_2 crossref_primary_10_1109_ACCESS_2020_3034754 crossref_primary_10_3390_en16134896 crossref_primary_10_1016_j_engappai_2022_105249 crossref_primary_10_1016_j_asoc_2020_106947 crossref_primary_10_1109_ACCESS_2022_3210135 crossref_primary_10_1016_j_asoc_2024_112306 crossref_primary_10_1007_s11227_024_06377_2 crossref_primary_10_1016_j_asoc_2022_108532 crossref_primary_10_7717_peerj_cs_2453 crossref_primary_10_1007_s10489_022_04296_4 crossref_primary_10_1016_j_eswa_2022_118915 crossref_primary_10_1016_j_swevo_2024_101601 crossref_primary_10_1016_j_undsp_2022_06_002 crossref_primary_10_1007_s10489_022_03964_9 crossref_primary_10_1109_TEVC_2022_3192100 crossref_primary_10_1007_s10586_025_05444_4 crossref_primary_10_1007_s40747_022_00889_1 crossref_primary_10_1016_j_ins_2022_07_180 crossref_primary_10_1109_TETCI_2024_3451309 crossref_primary_10_1016_j_comcom_2023_10_020 crossref_primary_10_1109_TEVC_2021_3076514 crossref_primary_10_1016_j_eswa_2023_122164 crossref_primary_10_1016_j_jpdc_2022_06_016 crossref_primary_10_1109_TEVC_2019_2924461 crossref_primary_10_1109_TCYB_2020_3015998 crossref_primary_10_1109_ACCESS_2024_3398415 crossref_primary_10_1109_TCYB_2021_3051078 crossref_primary_10_1109_ACCESS_2021_3093381 crossref_primary_10_1016_j_asoc_2025_113639 crossref_primary_10_1007_s10462_021_10042_y crossref_primary_10_1109_TITS_2021_3071786 crossref_primary_10_1002_tee_23796 crossref_primary_10_1007_s11227_024_06258_8 crossref_primary_10_1016_j_swevo_2022_101185 crossref_primary_10_1109_TSMC_2022_3143657 crossref_primary_10_1109_TEVC_2023_3243109 crossref_primary_10_1145_3300148 crossref_primary_10_1016_j_ins_2024_120940 crossref_primary_10_1049_cth2_12399 crossref_primary_10_12677_AAM_2022_1112915 crossref_primary_10_1109_TSMC_2019_2956288 crossref_primary_10_1109_JAS_2023_123495 crossref_primary_10_3390_math13111757 crossref_primary_10_1360_SSI_2024_0025 crossref_primary_10_1016_j_ins_2021_07_051 crossref_primary_10_1016_j_autcon_2022_104486 crossref_primary_10_1016_j_swevo_2020_100795 crossref_primary_10_1007_s40747_023_01161_w crossref_primary_10_1016_j_ins_2021_12_096 crossref_primary_10_1109_TCYB_2019_2960302 crossref_primary_10_1109_TEVC_2021_3110780 crossref_primary_10_1016_j_engappai_2024_109850 crossref_primary_10_3233_JIFS_191072 crossref_primary_10_1016_j_swevo_2021_101020 crossref_primary_10_1016_j_swevo_2024_101644 crossref_primary_10_1007_s40747_024_01505_0 crossref_primary_10_1016_j_swevo_2022_101168 crossref_primary_10_1038_s41598_024_70145_8 crossref_primary_10_1093_jcde_qwae022 crossref_primary_10_1007_s00521_019_04660_5 crossref_primary_10_1016_j_swevo_2021_101026 |
| Cites_doi | 10.1007/978-3-319-15892-1_8 10.1109/TEVC.2015.2433266 10.1109/TEVC.2015.2420112 10.1162/EVCO_a_00009 10.1007/s00500-015-1940-x 10.1007/BF01197559 10.1007/978-3-319-45823-6_92 10.1109/CEC.2016.7743898 10.1109/TEVC.2016.2519378 10.1109/TEVC.2013.2293776 10.1007/3-540-36970-8_27 10.1016/j.knosys.2017.06.021 10.1109/CEC.2014.6900319 10.1007/BF01759923 10.1109/TEVC.2007.892759 10.1109/3468.650319 10.1007/1-84628-137-7_6 10.1162/106365602760234108 10.1023/A:1010035730904 10.1109/4235.797969 10.1109/TEVC.2015.2443001 10.1109/TEVC.2012.2227145 10.1007/3-540-32494-1_4 10.1109/TEVC.2014.2378512 10.1137/S1052623496307510 10.1109/4235.996017 10.1109/TEVC.2013.2258025 10.1007/978-3-642-87563-2_5 10.1109/CEC.2016.7744055 10.1109/TCYB.2016.2638902 10.1109/TCYB.2016.2548239 10.1109/TEVC.2006.876362 10.1007/3-540-44719-9_7 10.1145/2792984 10.1109/TEVC.2018.2791283 10.1109/TEVC.2010.2077298 10.1109/TEVC.2018.2794319 10.1109/TEVC.2013.2281535 10.1007/978-3-540-70928-2_56 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/TEVC.2018.2882166 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library (IEL) (UW System Shared) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Statistics Computer Science |
| EISSN | 1941-0026 |
| EndPage | 761 |
| ExternalDocumentID | 10_1109_TEVC_2018_2882166 8540041 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Marsden Fund grantid: VUW1209; VUW1509; VUW1615 funderid: 10.13039/501100009193 – fundername: National Natural Science Foundation of China grantid: 61803277 funderid: 10.13039/501100001809 – fundername: Huawei Industry Fund grantid: E2880/3663 – fundername: National Natural Science Fund of China for Distinguished Young Scholar grantid: 61625204 – fundername: Victoria University of Wellington grantid: 209862/3580; 213150/3662 funderid: 10.13039/501100001538 |
| GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 5VS 6IF 6IK 6IL 6IN 97E AAJGR AARMG AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG ACGFO ACGFS ACIWK ADZIZ AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CHZPO CS3 EBS EJD HZ~ H~9 IEGSK IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIE RIL RNS TN5 VH1 AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c359t-9bb8babd823924d9ed35830083ed2a5791db59284458f26f81c14bd71cea26b13 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 110 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000489784100002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1089-778X |
| IngestDate | Sun Nov 30 04:27:01 EST 2025 Sat Nov 29 03:13:48 EST 2025 Tue Nov 18 22:22:13 EST 2025 Wed Aug 27 08:29:17 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c359t-9bb8babd823924d9ed35830083ed2a5791db59284458f26f81c14bd71cea26b13 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-4865-8026 0000-0003-4463-9538 0000-0001-8851-5348 0000-0001-6374-1429 |
| PQID | 2300330758 |
| PQPubID | 85418 |
| PageCount | 14 |
| ParticipantIDs | proquest_journals_2300330758 crossref_primary_10_1109_TEVC_2018_2882166 ieee_primary_8540041 crossref_citationtrail_10_1109_TEVC_2018_2882166 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-10-01 |
| PublicationDateYYYYMMDD | 2019-10-01 |
| PublicationDate_xml | – month: 10 year: 2019 text: 2019-10-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on evolutionary computation |
| PublicationTitleAbbrev | TEVC |
| PublicationYear | 2019 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref34 ref12 ref37 ref15 ref36 ref14 storn (ref22) 1995; 3 ref31 ref30 li (ref16) 2014; 18 ref33 ref11 ref32 ref10 ref2 ref1 ref39 ref17 zitzler (ref27) 2004 deb (ref42) 1994; 9 ref38 ref19 ref18 deb (ref28) 2001; 16 veldhuizen (ref47) 1999 jin (ref35) 2001 zitzler (ref3) 2001 ref24 ref45 ref23 ref48 ref26 ref25 ref20 ref41 ref44 ref21 ref43 ref29 ref8 ref7 ref9 ref4 jin (ref40) 2018 ref6 ref5 steel (ref46) 1997 |
| References_xml | – ident: ref23 doi: 10.1007/978-3-319-15892-1_8 – ident: ref29 doi: 10.1109/TEVC.2015.2433266 – ident: ref9 doi: 10.1109/TEVC.2015.2420112 – ident: ref44 doi: 10.1162/EVCO_a_00009 – ident: ref32 doi: 10.1007/s00500-015-1940-x – ident: ref36 doi: 10.1007/BF01197559 – start-page: 832 year: 2004 ident: ref27 article-title: Indicator-based selection in multiobjective search publication-title: Proc Int Conf Parallel Problem Solving Nat – ident: ref26 doi: 10.1007/978-3-319-45823-6_92 – ident: ref24 doi: 10.1109/CEC.2016.7743898 – ident: ref12 doi: 10.1109/TEVC.2016.2519378 – volume: 18 start-page: 909 year: 2014 ident: ref16 article-title: Stable matching-based selection in evolutionary multiobjective optimization publication-title: IEEE Trans Evol Comput doi: 10.1109/TEVC.2013.2293776 – ident: ref1 doi: 10.1007/3-540-36970-8_27 – ident: ref10 doi: 10.1016/j.knosys.2017.06.021 – ident: ref15 doi: 10.1109/CEC.2014.6900319 – ident: ref34 doi: 10.1007/BF01759923 – ident: ref13 doi: 10.1109/TEVC.2007.892759 – ident: ref5 doi: 10.1109/3468.650319 – ident: ref33 doi: 10.1007/1-84628-137-7_6 – ident: ref17 doi: 10.1162/106365602760234108 – year: 2001 ident: ref3 article-title: SPEA2: Improving the strength Pareto evolutionary algorithm – ident: ref37 doi: 10.1023/A:1010035730904 – year: 1997 ident: ref46 publication-title: Principles and Procedures of Statistics A Biometrical Approach – ident: ref43 doi: 10.1109/4235.797969 – volume: 3 year: 1995 ident: ref22 publication-title: Differential evolution A simple and efficient adaptive scheme for global optimization over continuous spaces – ident: ref14 doi: 10.1109/TEVC.2015.2443001 – ident: ref20 doi: 10.1109/TEVC.2012.2227145 – ident: ref48 doi: 10.1007/3-540-32494-1_4 – year: 1999 ident: ref47 article-title: Multiobjective evolutionary algorithms: Classifications, analyses, and new innovations – ident: ref21 doi: 10.1109/TEVC.2014.2378512 – ident: ref41 doi: 10.1137/S1052623496307510 – ident: ref2 doi: 10.1109/4235.996017 – ident: ref19 doi: 10.1109/TEVC.2013.2258025 – volume: 9 start-page: 1 year: 1994 ident: ref42 article-title: Simulated binary crossover for continuous search space publication-title: Complex Syst – ident: ref38 doi: 10.1007/978-3-642-87563-2_5 – ident: ref31 doi: 10.1109/CEC.2016.7744055 – ident: ref6 doi: 10.1109/TCYB.2016.2638902 – ident: ref30 doi: 10.1109/TCYB.2016.2548239 – year: 2018 ident: ref40 publication-title: Effectiveness of weighted sum of the objectives for evolutionary multiobjective optimization Methods analysis and applications – ident: ref18 doi: 10.1109/TEVC.2006.876362 – start-page: 1042 year: 2001 ident: ref35 article-title: Dynamic weighted aggregation for evolutionary multi-objective optimization: Why does it work and how? publication-title: Proc 3rd Annu Conf Genet Evol Comput – volume: 16 year: 2001 ident: ref28 publication-title: Multi-Objective Optimization Using Evolutionary Algorithms – ident: ref39 doi: 10.1007/3-540-44719-9_7 – ident: ref4 doi: 10.1145/2792984 – ident: ref25 doi: 10.1109/TEVC.2018.2791283 – ident: ref45 doi: 10.1109/TEVC.2010.2077298 – ident: ref11 doi: 10.1109/TEVC.2018.2794319 – ident: ref8 doi: 10.1109/TEVC.2013.2281535 – ident: ref7 doi: 10.1007/978-3-540-70928-2_56 |
| SSID | ssj0014519 |
| Score | 2.6035187 |
| Snippet | Convergence and diversity are interdependently handled during the evolutionary process by most existing many-objective evolutionary algorithms (MaOEAs). In... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 748 |
| SubjectTerms | Convergence Evolutionary algorithms Evolutionary computation Genetic algorithms Heuristic algorithms Many-objective evolutionary optimization algorithm Multiple objective analysis nadir point Optimization Pareto optimization Pareto optimum Pareto-optimal subspace Performance degradation Performance enhancement Performance evaluation Sociology Statistics Sun two-stage method |
| Title | A New Two-Stage Evolutionary Algorithm for Many-Objective Optimization |
| URI | https://ieeexplore.ieee.org/document/8540041 https://www.proquest.com/docview/2300330758 |
| Volume | 23 |
| WOSCitedRecordID | wos000489784100002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE/IET Electronic Library (IEL) (UW System Shared) customDbUrl: eissn: 1941-0026 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014519 issn: 1089-778X databaseCode: RIE dateStart: 19970101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB0B4gAHlgKibPKBEyKQxHViHyvUigPboaDeIi8TFkGLSgHx94wTtyCBkLhFkR1Fefab58wGsO-49v4kFXHh3YyoMdJoWhFpcVtiYstMVYnCZ_nFhez31dUMHE5zYRCxCj7DI39Z-fLd0L76X2XHUvgVR2ed2TzP61ytqcfAl0mpg-kVKUbZDx7MJFbHvc7NiQ_ikkcp6cmkKoj4ZYOqpio_mLgyL93l_73YCiwFGcnaNe6rMIODBixPWjSwsGMbsPit3mADFry0rCszr0G3zYjhWO99GNHtW2Sdt7AM9eiDtR9vh6P78d0TI1XLzokyokvzULMjuySeeQoJnOtw3e30Tk6j0FUhslyocaSMkUYbJ1OSRi2n0HEhuZdi6FItcpU4IxRZrZaQZZqVMrFJy7g8sajTzCR8A-YGwwFuAuPCZty5UopMEhFwKTWSPiSbqGOHKTYhnnznwoaS477zxWNRHT1iVXhoCg9NEaBpwsF0ynNdb-OvwWsei-nAAEMTdiZgFmFHvhR01Io5EZqQW7_P2oYFeraqA_V2YG48esVdmLdvhMtor1psn0ch0Hc |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT9swFH5CbBLsMKAwrRsDHzghAnEcp_axQq2YVgqHgnqL_OMFNkE7dYVp__2eE7cggSbtFkW2EuWzv_c57xfAgRcm-JN0ImRwM6LBxKDNE9LirkLuqkLXicKDznCoxmN9uQJHy1wYRKyDz_A4XNa-fD91D-FX2YmSYcXRWeeNzPOMN9laS59BKJTShNNr0oxqHH2YPNUno971aQjjUscZKUpel0R8skJ1W5UXXFwbmP7G_73aJryPQpJ1G-S3YAUnLdhYNGlgcc-24N2zioMtWA_isqnNvA39LiOOY6Pf04Ru3yDrPcaFaGZ_WPfuZjr7Pr-9Z6Rr2TmRRnJhfzT8yC6Iae5jCucOXPV7o9OzJPZVSJyQep5oa5U11quMxFHuNXohlQhiDH1mZEdzb6Umu5VLVWVFpbjjufUd7tBkheXiA6xOphP8CExIVwjvKyULRVQglDJICpGsokk9ZtiGdPGdSxeLjofeF3dlffhIdRmgKQM0ZYSmDYfLKT-bihv_GrwdsFgOjDC0YXcBZhn35K-SDlupIEqT6tPrs_Zh7Wx0PigHX4ffPsM6PUc3YXu7sDqfPeAXeOseCaPZXr3w_gJJ59O- |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+New+Two-Stage+Evolutionary+Algorithm+for+Many-Objective+Optimization&rft.jtitle=IEEE+transactions+on+evolutionary+computation&rft.au=Sun%2C+Yanan&rft.au=Xue%2C+Bing&rft.au=Zhang%2C+Mengjie&rft.au=Yen%2C+Gary+G&rft.date=2019-10-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1089-778X&rft.eissn=1941-0026&rft.volume=23&rft.issue=5&rft.spage=748&rft_id=info:doi/10.1109%2FTEVC.2018.2882166&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-778X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-778X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-778X&client=summon |