A New Two-Stage Evolutionary Algorithm for Many-Objective Optimization

Convergence and diversity are interdependently handled during the evolutionary process by most existing many-objective evolutionary algorithms (MaOEAs). In such a design, the degraded performance of one would deteriorate the other, and only solutions with both are able to improve the performance of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on evolutionary computation Jg. 23; H. 5; S. 748 - 761
Hauptverfasser: Sun, Yanan, Xue, Bing, Zhang, Mengjie, Yen, Gary G.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York IEEE 01.10.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:1089-778X, 1941-0026
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Convergence and diversity are interdependently handled during the evolutionary process by most existing many-objective evolutionary algorithms (MaOEAs). In such a design, the degraded performance of one would deteriorate the other, and only solutions with both are able to improve the performance of MaOEAs. Unfortunately, it is not easy to constantly maintain a population of solutions with both convergence and diversity. In this paper, an MaOEA based on two independent stages is proposed for effectively solving many-objective optimization problems (MaOPs), where the convergence and diversity are addressed in two independent and sequential stages. To achieve this, we first propose a nondominated dynamic weight aggregation method by using a genetic algorithm, which is capable of finding the Pareto-optimal solutions for MaOPs with concave, convex, linear and even mixed Pareto front shapes, and then these solutions are employed to learn the Pareto-optimal subspace for the convergence. Afterward, the diversity is addressed by solving a set of single-objective optimization problems with reference lines within the learned Pareto-optimal subspace. To evaluate the performance of the proposed algorithm, a series of experiments are conducted against six state-of-the-art MaOEAs on benchmark test problems. The results show the significantly improved performance of the proposed algorithm over the peer competitors. In addition, the proposed algorithm can focus directly on a chosen part of the objective space if the preference area is known beforehand. Furthermore, the proposed algorithm can also be used to effectively find the nadir points.
AbstractList Convergence and diversity are interdependently handled during the evolutionary process by most existing many-objective evolutionary algorithms (MaOEAs). In such a design, the degraded performance of one would deteriorate the other, and only solutions with both are able to improve the performance of MaOEAs. Unfortunately, it is not easy to constantly maintain a population of solutions with both convergence and diversity. In this paper, an MaOEA based on two independent stages is proposed for effectively solving many-objective optimization problems (MaOPs), where the convergence and diversity are addressed in two independent and sequential stages. To achieve this, we first propose a nondominated dynamic weight aggregation method by using a genetic algorithm, which is capable of finding the Pareto-optimal solutions for MaOPs with concave, convex, linear and even mixed Pareto front shapes, and then these solutions are employed to learn the Pareto-optimal subspace for the convergence. Afterward, the diversity is addressed by solving a set of single-objective optimization problems with reference lines within the learned Pareto-optimal subspace. To evaluate the performance of the proposed algorithm, a series of experiments are conducted against six state-of-the-art MaOEAs on benchmark test problems. The results show the significantly improved performance of the proposed algorithm over the peer competitors. In addition, the proposed algorithm can focus directly on a chosen part of the objective space if the preference area is known beforehand. Furthermore, the proposed algorithm can also be used to effectively find the nadir points.
Author Xue, Bing
Zhang, Mengjie
Yen, Gary G.
Sun, Yanan
Author_xml – sequence: 1
  givenname: Yanan
  orcidid: 0000-0001-6374-1429
  surname: Sun
  fullname: Sun, Yanan
  email: yanan.sun@ecs.vuw.ac.nz
  organization: School of Engineering and Computer Science, Victoria University of Wellington, Wellington, New Zealand
– sequence: 2
  givenname: Bing
  orcidid: 0000-0002-4865-8026
  surname: Xue
  fullname: Xue, Bing
  email: bing.xue@ecs.vuw.ac.nz
  organization: School of Engineering and Computer Science, Victoria University of Wellington, Wellington, New Zealand
– sequence: 3
  givenname: Mengjie
  orcidid: 0000-0003-4463-9538
  surname: Zhang
  fullname: Zhang, Mengjie
  email: mengjie.zhang@ecs.vuw.ac.nz
  organization: School of Engineering and Computer Science, Victoria University of Wellington, Wellington, New Zealand
– sequence: 4
  givenname: Gary G.
  orcidid: 0000-0001-8851-5348
  surname: Yen
  fullname: Yen, Gary G.
  email: gyen@okstate.edu
  organization: School of Electrical and Computer Engineering, Oklahoma State University, Stillwater, OK, USA
BookMark eNp9kMFPwjAYxRuDiYD-AcbLEs_Dfm23tUdCQE1QDqLx1rRbhyWwYlcg-Ne7CfHgwdP3Hd7vvbzXQ53KVQaha8ADACzu5uO30YBg4APCOYE0PUNdEAxijEnaaX7MRZxl_P0C9ep6iTGwBEQXTYbRs9lH872LX4JamGi8c6ttsK5S_hANVwvnbfhYR6Xz0ZOqDvFML00e7M5Es02wa_ulWvElOi_VqjZXp9tHr5PxfPQQT2f3j6PhNM5pIkIstOZa6YITKggrhClowinGnJqCqCQTUOhEEM5YwkuSlhxyYLrIIDeKpBpoH90efTfefW5NHeTSbX3VRErS-FCKs8awj-Coyr2ra29KufF23RSSgGU7l2znku1c8jRXw2R_mNyGn27BK7v6l7w5ktYY85vEE4YxA_oNVIp5BQ
CODEN ITEVF5
CitedBy_id crossref_primary_10_1016_j_ins_2024_121608
crossref_primary_10_1109_ACCESS_2020_3038497
crossref_primary_10_1016_j_knosys_2022_108738
crossref_primary_10_1109_TCBB_2023_3247025
crossref_primary_10_1007_s11227_024_06821_3
crossref_primary_10_1016_j_engappai_2024_108153
crossref_primary_10_1016_j_asoc_2024_111369
crossref_primary_10_1016_j_asoc_2025_113788
crossref_primary_10_1109_TSMC_2019_2930737
crossref_primary_10_1016_j_asoc_2022_109333
crossref_primary_10_1016_j_swevo_2024_101752
crossref_primary_10_1109_TCYB_2020_3043509
crossref_primary_10_1145_3470971
crossref_primary_10_1016_j_ins_2021_05_080
crossref_primary_10_1109_ACCESS_2024_3383916
crossref_primary_10_1109_TSMC_2023_3298690
crossref_primary_10_1007_s13042_022_01578_8
crossref_primary_10_1016_j_isatra_2020_10_065
crossref_primary_10_1016_j_eswa_2021_115654
crossref_primary_10_1109_TETCI_2024_3369710
crossref_primary_10_1109_TCYB_2021_3062949
crossref_primary_10_1016_j_asoc_2023_110295
crossref_primary_10_1111_exsy_12690
crossref_primary_10_1109_TEVC_2021_3095481
crossref_primary_10_1080_00207721_2019_1645914
crossref_primary_10_1007_s40747_022_00747_0
crossref_primary_10_1109_TCYB_2020_2979930
crossref_primary_10_1016_j_swevo_2022_101225
crossref_primary_10_1016_j_eswa_2023_120198
crossref_primary_10_1007_s10489_020_02053_z
crossref_primary_10_1007_s11227_023_05624_2
crossref_primary_10_1016_j_asoc_2022_108938
crossref_primary_10_1007_s10489_022_03982_7
crossref_primary_10_1016_j_jocs_2022_101746
crossref_primary_10_1016_j_knosys_2021_107263
crossref_primary_10_1109_TEVC_2020_3044711
crossref_primary_10_1007_s10489_024_05270_y
crossref_primary_10_1016_j_ins_2024_121032
crossref_primary_10_1007_s00521_023_08950_x
crossref_primary_10_1109_TEVC_2021_3055076
crossref_primary_10_1007_s10489_021_03135_2
crossref_primary_10_1109_ACCESS_2020_3034754
crossref_primary_10_3390_en16134896
crossref_primary_10_1016_j_engappai_2022_105249
crossref_primary_10_1016_j_asoc_2020_106947
crossref_primary_10_1109_ACCESS_2022_3210135
crossref_primary_10_1016_j_asoc_2024_112306
crossref_primary_10_1007_s11227_024_06377_2
crossref_primary_10_1016_j_asoc_2022_108532
crossref_primary_10_7717_peerj_cs_2453
crossref_primary_10_1007_s10489_022_04296_4
crossref_primary_10_1016_j_eswa_2022_118915
crossref_primary_10_1016_j_swevo_2024_101601
crossref_primary_10_1016_j_undsp_2022_06_002
crossref_primary_10_1007_s10489_022_03964_9
crossref_primary_10_1109_TEVC_2022_3192100
crossref_primary_10_1007_s10586_025_05444_4
crossref_primary_10_1007_s40747_022_00889_1
crossref_primary_10_1016_j_ins_2022_07_180
crossref_primary_10_1109_TETCI_2024_3451309
crossref_primary_10_1016_j_comcom_2023_10_020
crossref_primary_10_1109_TEVC_2021_3076514
crossref_primary_10_1016_j_eswa_2023_122164
crossref_primary_10_1016_j_jpdc_2022_06_016
crossref_primary_10_1109_TEVC_2019_2924461
crossref_primary_10_1109_TCYB_2020_3015998
crossref_primary_10_1109_ACCESS_2024_3398415
crossref_primary_10_1109_TCYB_2021_3051078
crossref_primary_10_1109_ACCESS_2021_3093381
crossref_primary_10_1016_j_asoc_2025_113639
crossref_primary_10_1007_s10462_021_10042_y
crossref_primary_10_1109_TITS_2021_3071786
crossref_primary_10_1002_tee_23796
crossref_primary_10_1007_s11227_024_06258_8
crossref_primary_10_1016_j_swevo_2022_101185
crossref_primary_10_1109_TSMC_2022_3143657
crossref_primary_10_1109_TEVC_2023_3243109
crossref_primary_10_1145_3300148
crossref_primary_10_1016_j_ins_2024_120940
crossref_primary_10_1049_cth2_12399
crossref_primary_10_12677_AAM_2022_1112915
crossref_primary_10_1109_TSMC_2019_2956288
crossref_primary_10_1109_JAS_2023_123495
crossref_primary_10_3390_math13111757
crossref_primary_10_1360_SSI_2024_0025
crossref_primary_10_1016_j_ins_2021_07_051
crossref_primary_10_1016_j_autcon_2022_104486
crossref_primary_10_1016_j_swevo_2020_100795
crossref_primary_10_1007_s40747_023_01161_w
crossref_primary_10_1016_j_ins_2021_12_096
crossref_primary_10_1109_TCYB_2019_2960302
crossref_primary_10_1109_TEVC_2021_3110780
crossref_primary_10_1016_j_engappai_2024_109850
crossref_primary_10_3233_JIFS_191072
crossref_primary_10_1016_j_swevo_2021_101020
crossref_primary_10_1016_j_swevo_2024_101644
crossref_primary_10_1007_s40747_024_01505_0
crossref_primary_10_1016_j_swevo_2022_101168
crossref_primary_10_1038_s41598_024_70145_8
crossref_primary_10_1093_jcde_qwae022
crossref_primary_10_1007_s00521_019_04660_5
crossref_primary_10_1016_j_swevo_2021_101026
Cites_doi 10.1007/978-3-319-15892-1_8
10.1109/TEVC.2015.2433266
10.1109/TEVC.2015.2420112
10.1162/EVCO_a_00009
10.1007/s00500-015-1940-x
10.1007/BF01197559
10.1007/978-3-319-45823-6_92
10.1109/CEC.2016.7743898
10.1109/TEVC.2016.2519378
10.1109/TEVC.2013.2293776
10.1007/3-540-36970-8_27
10.1016/j.knosys.2017.06.021
10.1109/CEC.2014.6900319
10.1007/BF01759923
10.1109/TEVC.2007.892759
10.1109/3468.650319
10.1007/1-84628-137-7_6
10.1162/106365602760234108
10.1023/A:1010035730904
10.1109/4235.797969
10.1109/TEVC.2015.2443001
10.1109/TEVC.2012.2227145
10.1007/3-540-32494-1_4
10.1109/TEVC.2014.2378512
10.1137/S1052623496307510
10.1109/4235.996017
10.1109/TEVC.2013.2258025
10.1007/978-3-642-87563-2_5
10.1109/CEC.2016.7744055
10.1109/TCYB.2016.2638902
10.1109/TCYB.2016.2548239
10.1109/TEVC.2006.876362
10.1007/3-540-44719-9_7
10.1145/2792984
10.1109/TEVC.2018.2791283
10.1109/TEVC.2010.2077298
10.1109/TEVC.2018.2794319
10.1109/TEVC.2013.2281535
10.1007/978-3-540-70928-2_56
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TEVC.2018.2882166
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Statistics
Computer Science
EISSN 1941-0026
EndPage 761
ExternalDocumentID 10_1109_TEVC_2018_2882166
8540041
Genre orig-research
GrantInformation_xml – fundername: Marsden Fund
  grantid: VUW1209; VUW1509; VUW1615
  funderid: 10.13039/501100009193
– fundername: National Natural Science Foundation of China
  grantid: 61803277
  funderid: 10.13039/501100001809
– fundername: Huawei Industry Fund
  grantid: E2880/3663
– fundername: National Natural Science Fund of China for Distinguished Young Scholar
  grantid: 61625204
– fundername: Victoria University of Wellington
  grantid: 209862/3580; 213150/3662
  funderid: 10.13039/501100001538
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
5VS
6IF
6IK
6IL
6IN
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ADZIZ
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CHZPO
CS3
EBS
EJD
HZ~
H~9
IEGSK
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RIL
RNS
TN5
VH1
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c359t-9bb8babd823924d9ed35830083ed2a5791db59284458f26f81c14bd71cea26b13
IEDL.DBID RIE
ISICitedReferencesCount 110
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000489784100002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1089-778X
IngestDate Sun Nov 30 04:27:01 EST 2025
Sat Nov 29 03:13:48 EST 2025
Tue Nov 18 22:22:13 EST 2025
Wed Aug 27 08:29:17 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c359t-9bb8babd823924d9ed35830083ed2a5791db59284458f26f81c14bd71cea26b13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4865-8026
0000-0003-4463-9538
0000-0001-8851-5348
0000-0001-6374-1429
PQID 2300330758
PQPubID 85418
PageCount 14
ParticipantIDs proquest_journals_2300330758
crossref_primary_10_1109_TEVC_2018_2882166
ieee_primary_8540041
crossref_citationtrail_10_1109_TEVC_2018_2882166
PublicationCentury 2000
PublicationDate 2019-10-01
PublicationDateYYYYMMDD 2019-10-01
PublicationDate_xml – month: 10
  year: 2019
  text: 2019-10-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on evolutionary computation
PublicationTitleAbbrev TEVC
PublicationYear 2019
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref34
ref12
ref37
ref15
ref36
ref14
storn (ref22) 1995; 3
ref31
ref30
li (ref16) 2014; 18
ref33
ref11
ref32
ref10
ref2
ref1
ref39
ref17
zitzler (ref27) 2004
deb (ref42) 1994; 9
ref38
ref19
ref18
deb (ref28) 2001; 16
veldhuizen (ref47) 1999
jin (ref35) 2001
zitzler (ref3) 2001
ref24
ref45
ref23
ref48
ref26
ref25
ref20
ref41
ref44
ref21
ref43
ref29
ref8
ref7
ref9
ref4
jin (ref40) 2018
ref6
ref5
steel (ref46) 1997
References_xml – ident: ref23
  doi: 10.1007/978-3-319-15892-1_8
– ident: ref29
  doi: 10.1109/TEVC.2015.2433266
– ident: ref9
  doi: 10.1109/TEVC.2015.2420112
– ident: ref44
  doi: 10.1162/EVCO_a_00009
– ident: ref32
  doi: 10.1007/s00500-015-1940-x
– ident: ref36
  doi: 10.1007/BF01197559
– start-page: 832
  year: 2004
  ident: ref27
  article-title: Indicator-based selection in multiobjective search
  publication-title: Proc Int Conf Parallel Problem Solving Nat
– ident: ref26
  doi: 10.1007/978-3-319-45823-6_92
– ident: ref24
  doi: 10.1109/CEC.2016.7743898
– ident: ref12
  doi: 10.1109/TEVC.2016.2519378
– volume: 18
  start-page: 909
  year: 2014
  ident: ref16
  article-title: Stable matching-based selection in evolutionary multiobjective optimization
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/TEVC.2013.2293776
– ident: ref1
  doi: 10.1007/3-540-36970-8_27
– ident: ref10
  doi: 10.1016/j.knosys.2017.06.021
– ident: ref15
  doi: 10.1109/CEC.2014.6900319
– ident: ref34
  doi: 10.1007/BF01759923
– ident: ref13
  doi: 10.1109/TEVC.2007.892759
– ident: ref5
  doi: 10.1109/3468.650319
– ident: ref33
  doi: 10.1007/1-84628-137-7_6
– ident: ref17
  doi: 10.1162/106365602760234108
– year: 2001
  ident: ref3
  article-title: SPEA2: Improving the strength Pareto evolutionary algorithm
– ident: ref37
  doi: 10.1023/A:1010035730904
– year: 1997
  ident: ref46
  publication-title: Principles and Procedures of Statistics A Biometrical Approach
– ident: ref43
  doi: 10.1109/4235.797969
– volume: 3
  year: 1995
  ident: ref22
  publication-title: Differential evolution A simple and efficient adaptive scheme for global optimization over continuous spaces
– ident: ref14
  doi: 10.1109/TEVC.2015.2443001
– ident: ref20
  doi: 10.1109/TEVC.2012.2227145
– ident: ref48
  doi: 10.1007/3-540-32494-1_4
– year: 1999
  ident: ref47
  article-title: Multiobjective evolutionary algorithms: Classifications, analyses, and new innovations
– ident: ref21
  doi: 10.1109/TEVC.2014.2378512
– ident: ref41
  doi: 10.1137/S1052623496307510
– ident: ref2
  doi: 10.1109/4235.996017
– ident: ref19
  doi: 10.1109/TEVC.2013.2258025
– volume: 9
  start-page: 1
  year: 1994
  ident: ref42
  article-title: Simulated binary crossover for continuous search space
  publication-title: Complex Syst
– ident: ref38
  doi: 10.1007/978-3-642-87563-2_5
– ident: ref31
  doi: 10.1109/CEC.2016.7744055
– ident: ref6
  doi: 10.1109/TCYB.2016.2638902
– ident: ref30
  doi: 10.1109/TCYB.2016.2548239
– year: 2018
  ident: ref40
  publication-title: Effectiveness of weighted sum of the objectives for evolutionary multiobjective optimization Methods analysis and applications
– ident: ref18
  doi: 10.1109/TEVC.2006.876362
– start-page: 1042
  year: 2001
  ident: ref35
  article-title: Dynamic weighted aggregation for evolutionary multi-objective optimization: Why does it work and how?
  publication-title: Proc 3rd Annu Conf Genet Evol Comput
– volume: 16
  year: 2001
  ident: ref28
  publication-title: Multi-Objective Optimization Using Evolutionary Algorithms
– ident: ref39
  doi: 10.1007/3-540-44719-9_7
– ident: ref4
  doi: 10.1145/2792984
– ident: ref25
  doi: 10.1109/TEVC.2018.2791283
– ident: ref45
  doi: 10.1109/TEVC.2010.2077298
– ident: ref11
  doi: 10.1109/TEVC.2018.2794319
– ident: ref8
  doi: 10.1109/TEVC.2013.2281535
– ident: ref7
  doi: 10.1007/978-3-540-70928-2_56
SSID ssj0014519
Score 2.6035187
Snippet Convergence and diversity are interdependently handled during the evolutionary process by most existing many-objective evolutionary algorithms (MaOEAs). In...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 748
SubjectTerms Convergence
Evolutionary algorithms
Evolutionary computation
Genetic algorithms
Heuristic algorithms
Many-objective evolutionary optimization algorithm
Multiple objective analysis
nadir point
Optimization
Pareto optimization
Pareto optimum
Pareto-optimal subspace
Performance degradation
Performance enhancement
Performance evaluation
Sociology
Statistics
Sun
two-stage method
Title A New Two-Stage Evolutionary Algorithm for Many-Objective Optimization
URI https://ieeexplore.ieee.org/document/8540041
https://www.proquest.com/docview/2300330758
Volume 23
WOSCitedRecordID wos000489784100002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library (IEL) (UW System Shared)
  customDbUrl:
  eissn: 1941-0026
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014519
  issn: 1089-778X
  databaseCode: RIE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB0B4gAHlgKibPKBEyKQxHViHyvUigPboaDeIi8TFkGLSgHx94wTtyCBkLhFkR1Fefab58wGsO-49v4kFXHh3YyoMdJoWhFpcVtiYstMVYnCZ_nFhez31dUMHE5zYRCxCj7DI39Z-fLd0L76X2XHUvgVR2ed2TzP61ytqcfAl0mpg-kVKUbZDx7MJFbHvc7NiQ_ikkcp6cmkKoj4ZYOqpio_mLgyL93l_73YCiwFGcnaNe6rMIODBixPWjSwsGMbsPit3mADFry0rCszr0G3zYjhWO99GNHtW2Sdt7AM9eiDtR9vh6P78d0TI1XLzokyokvzULMjuySeeQoJnOtw3e30Tk6j0FUhslyocaSMkUYbJ1OSRi2n0HEhuZdi6FItcpU4IxRZrZaQZZqVMrFJy7g8sajTzCR8A-YGwwFuAuPCZty5UopMEhFwKTWSPiSbqGOHKTYhnnznwoaS477zxWNRHT1iVXhoCg9NEaBpwsF0ynNdb-OvwWsei-nAAEMTdiZgFmFHvhR01Io5EZqQW7_P2oYFeraqA_V2YG48esVdmLdvhMtor1psn0ch0Hc
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT9swFH5CbBLsMKAwrRsDHzghAnEcp_axQq2YVgqHgnqL_OMFNkE7dYVp__2eE7cggSbtFkW2EuWzv_c57xfAgRcm-JN0ImRwM6LBxKDNE9LirkLuqkLXicKDznCoxmN9uQJHy1wYRKyDz_A4XNa-fD91D-FX2YmSYcXRWeeNzPOMN9laS59BKJTShNNr0oxqHH2YPNUno971aQjjUscZKUpel0R8skJ1W5UXXFwbmP7G_73aJryPQpJ1G-S3YAUnLdhYNGlgcc-24N2zioMtWA_isqnNvA39LiOOY6Pf04Ru3yDrPcaFaGZ_WPfuZjr7Pr-9Z6Rr2TmRRnJhfzT8yC6Iae5jCucOXPV7o9OzJPZVSJyQep5oa5U11quMxFHuNXohlQhiDH1mZEdzb6Umu5VLVWVFpbjjufUd7tBkheXiA6xOphP8CExIVwjvKyULRVQglDJICpGsokk9ZtiGdPGdSxeLjofeF3dlffhIdRmgKQM0ZYSmDYfLKT-bihv_GrwdsFgOjDC0YXcBZhn35K-SDlupIEqT6tPrs_Zh7Wx0PigHX4ffPsM6PUc3YXu7sDqfPeAXeOseCaPZXr3w_gJJ59O-
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+New+Two-Stage+Evolutionary+Algorithm+for+Many-Objective+Optimization&rft.jtitle=IEEE+transactions+on+evolutionary+computation&rft.au=Sun%2C+Yanan&rft.au=Xue%2C+Bing&rft.au=Zhang%2C+Mengjie&rft.au=Yen%2C+Gary+G&rft.date=2019-10-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1089-778X&rft.eissn=1941-0026&rft.volume=23&rft.issue=5&rft.spage=748&rft_id=info:doi/10.1109%2FTEVC.2018.2882166&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-778X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-778X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-778X&client=summon