Eigenvalue-based algorithm and analysis for nonconvex QCQP with one constraint

A nonconvex quadratically constrained quadratic programming (QCQP) with one constraint is usually solved via a dual SDP problem, or Moré’s algorithm based on iteratively solving linear systems. In this work we introduce an algorithm for QCQP that requires finding just one eigenpair of a generalized...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Mathematical programming Ročník 173; číslo 1-2; s. 79 - 116
Hlavní autoři: Adachi, Satoru, Nakatsukasa, Yuji
Médium: Journal Article
Jazyk:angličtina
Vydáno: Berlin/Heidelberg Springer Berlin Heidelberg 01.01.2019
Springer Nature B.V
Témata:
ISSN:0025-5610, 1436-4646
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:A nonconvex quadratically constrained quadratic programming (QCQP) with one constraint is usually solved via a dual SDP problem, or Moré’s algorithm based on iteratively solving linear systems. In this work we introduce an algorithm for QCQP that requires finding just one eigenpair of a generalized eigenvalue problem, and involves no outer iterations other than the (usually black-box) iterations for computing the eigenpair. Numerical experiments illustrate the efficiency and accuracy of our algorithm. We also analyze the QCQP solution extensively, including difficult cases, and show that the canonical form of a matrix pair gives a complete classification of the QCQP in terms of boundedness and attainability, and explain how to obtain a global solution whenever it exists.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0025-5610
1436-4646
DOI:10.1007/s10107-017-1206-8