Intra- and inter-rater reliability in log volume estimation based on LiDAR data and shape reconstruction algorithms: a case study on poplar logs
Producing reliable log volume data is an essential feature in an effective wood supply chain, and LiDAR sensing, supported by portable platforms, is a promising technology for volume measurements. Computer-based algorithms like Poisson interpolation and Random Sampling and Consensus (RANSAC) are com...
Uloženo v:
| Vydáno v: | Frontiers in remote sensing Ročník 6 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Frontiers Media S.A
12.09.2025
|
| Témata: | |
| ISSN: | 2673-6187, 2673-6187 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Producing reliable log volume data is an essential feature in an effective wood supply chain, and LiDAR sensing, supported by portable platforms, is a promising technology for volume measurements. Computer-based algorithms like Poisson interpolation and Random Sampling and Consensus (RANSAC) are commonly used to extract volume data from LiDAR point clouds, and comparative studies have tested these algorithms for accuracy. To extract volume data, point clouds require several post-processing steps, while their outcome may depend largely on human input and operator decision. Despite the increasingly number of studies on accuracy limits, no paper has addressed the reliability of these procedures. This raises at least two questions: (i) Would the same person, working with the same data and using the same procedures get the same results? And (ii) How much would the results deviate when different people process the same data using the same procedures? A set of 432 poplar logs placed on the ground and spaced about 1 m apart, was scanned by a professional mobile LiDAR scanner in groups; the first 418 logs were then individually scanned using an iPhone-compatible app, with the remainder being excluded from this part of the study due to field time constraints and all the logs were manually measured to get the reference biometric data. Three researchers with different experiences processed the datasets produced by scanning twice, following a protocol that included shape reconstruction and volume calculation using Poisson interpolation and RANSAC algorithm for cylinders and cones. The intra- and inter-rater reliability were evaluated using a comprehensive array of statistical metrics. The results show that the most reliable estimates correlate with a greater experience. The Cronbach’s alpha metric at the subject level was high, with values of 0.902–0.965 for the most experienced subject, and generally indicated moderate to excellent intra-rater reliabilities. Moreover, working with Poisson interpolation and RANSAC cylinder shape reconstruction, respectively, indicated a moderate to excellent reliability. For the Poisson interpolation algorithm, the Intraclass Correlation Coefficient (ICC) ranged from 0.770 to 0.980 for multi-log datasets, and from 0.924 to 0.972 for single log datasets. For the same type of input datasets, the ICC varied between 0.761 and 0.855 and from 0.839 to 0.908 for the RANSAC cylinder, and from 0.784 to 0.869 and 0.843 to 0.893 for the RANSAC cone shape reconstruction algorithms, respectively. These values indicate a moderate to excellent inter-rater reliability. Similar to Cronbach’s alpha, the Root Mean Square Error (RMSE) was related in magnitude to the ICC. The results of this study indicate that, for improved reliability and efficiency, it is essential to automate point cloud segmentation using advanced machine learning and computer vision algorithms. This approach would eliminate the subjectivity in segmentation decisions and significantly reduce the time required for the process. |
|---|---|
| AbstractList | Producing reliable log volume data is an essential feature in an effective wood supply chain, and LiDAR sensing, supported by portable platforms, is a promising technology for volume measurements. Computer-based algorithms like Poisson interpolation and Random Sampling and Consensus (RANSAC) are commonly used to extract volume data from LiDAR point clouds, and comparative studies have tested these algorithms for accuracy. To extract volume data, point clouds require several post-processing steps, while their outcome may depend largely on human input and operator decision. Despite the increasingly number of studies on accuracy limits, no paper has addressed the reliability of these procedures. This raises at least two questions: (i) Would the same person, working with the same data and using the same procedures get the same results? And (ii) How much would the results deviate when different people process the same data using the same procedures? A set of 432 poplar logs placed on the ground and spaced about 1 m apart, was scanned by a professional mobile LiDAR scanner in groups; the first 418 logs were then individually scanned using an iPhone-compatible app, with the remainder being excluded from this part of the study due to field time constraints and all the logs were manually measured to get the reference biometric data. Three researchers with different experiences processed the datasets produced by scanning twice, following a protocol that included shape reconstruction and volume calculation using Poisson interpolation and RANSAC algorithm for cylinders and cones. The intra- and inter-rater reliability were evaluated using a comprehensive array of statistical metrics. The results show that the most reliable estimates correlate with a greater experience. The Cronbach’s alpha metric at the subject level was high, with values of 0.902–0.965 for the most experienced subject, and generally indicated moderate to excellent intra-rater reliabilities. Moreover, working with Poisson interpolation and RANSAC cylinder shape reconstruction, respectively, indicated a moderate to excellent reliability. For the Poisson interpolation algorithm, the Intraclass Correlation Coefficient (ICC) ranged from 0.770 to 0.980 for multi-log datasets, and from 0.924 to 0.972 for single log datasets. For the same type of input datasets, the ICC varied between 0.761 and 0.855 and from 0.839 to 0.908 for the RANSAC cylinder, and from 0.784 to 0.869 and 0.843 to 0.893 for the RANSAC cone shape reconstruction algorithms, respectively. These values indicate a moderate to excellent inter-rater reliability. Similar to Cronbach’s alpha, the Root Mean Square Error (RMSE) was related in magnitude to the ICC. The results of this study indicate that, for improved reliability and efficiency, it is essential to automate point cloud segmentation using advanced machine learning and computer vision algorithms. This approach would eliminate the subjectivity in segmentation decisions and significantly reduce the time required for the process. |
| Author | Forkuo, Gabriel Osei Borz, Stelian Alexandru |
| Author_xml | – sequence: 1 givenname: Gabriel Osei surname: Forkuo fullname: Forkuo, Gabriel Osei – sequence: 2 givenname: Stelian Alexandru surname: Borz fullname: Borz, Stelian Alexandru |
| BookMark | eNp9kd9qHCEUhyWkkL8v0CtfYDaOzjjau5A27cJCoDTXclbPbAzuuKhb2LfoI9edhBBykRs9HPy-w_F3QU6nOCEhX1u2EELpmzFlnBac8X7R9kwqoU7IOZeDaGSrhtN39Rm5zvmZMcZVp4VW5-TfcioJGgqTo34qmJoE9aQJg4e1D74cap-GuKF_Y9hvkWIufgvFx4muIaOjtVj577e_qYMCsyg_wQ6rwsYpl7S382MIm5h8edrmbxSorSjNZe8OR34XdwHScUq-Il9GCBmvX-9L8nj_48_dr2b18HN5d7tqrOh1abTUIEcuOmllL9igQbUa0XZ2YNxxgVq7rne95GshrHPY8VG3YPnYjy06LS7J8sXrIjybXao7pYOJ4M3ciGljIBVvAxrJrOTAoUXOOmURlGBiqON7NoJby-riLy6bYs4Jxzdfy8wxIjNHZI4RmdeIKqQ-QNaX-V9rID58hv4Hg1KcgQ |
| CitedBy_id | crossref_primary_10_3390_s25185847 |
| Cites_doi | 10.5552/crojfe.2024.2345 10.1037/1082-989X.1.1.30 10.1016/j.ijpe.2019.09.029 10.1093/forestry/cpn018 10.3390/f7060127 10.1007/BF02310555 10.1007/978-3-319-91280-6_307 10.3390/rs14184466 10.1037/0021-9010.78.1.98 10.1007/s12518-018-0221-7 10.3390/f13071028 10.1016/j.landusepol.2018.02.028 10.5772/37519 10.1007/978-0-306-47630-3_16 10.3390/f12020238 10.1016/j.sapharm.2012.04.004 10.4067/S0717-92002013000300007 10.1191/026921598672178340 10.3390/rs13183610 10.1037/0033-2909.86.2.420 10.1111/phor.12223 10.48550/arXiv.2307.14030 10.1007/s00138-024-01543-1 10.1016/j.isprsjprs.2018.11.008 10.1186/s12874-018-0550-6 10.1371/journal.pone.0183250 10.1080/01431160701736489 10.1007/978-3-540-88688-4_37 10.1007/978-3-031-17299-1_1494 10.37134/ejsmt.vol7.1.3.2020 10.1207/S15327752JPA8001_18 10.1016/j.isprsjprs.2015.05.007 10.1590/0104-530X5677-20 10.1111/j.1467-8659.2007.01016.x 10.3832/ifor0547-003 10.3390/rs14030649 10.1016/j.apergo.2023.104218 10.1109/ACCESS.2017.2698164 10.3389/ffgc.2023.1224575 10.3354/cr030079 10.1016/j.compag.2022.106990 10.1348/000711006x126600 10.1037/met0000516 10.3390/f13122007 10.1016/j.compag.2005.02.001 10.5194/gmd-7-1247-2014 10.1007/s11165-016-9602-2 10.1016/j.compag.2023.107653 10.12968/indn.2024.6.28 10.3390/s24010112 10.1080/07038992.2016.1207484 10.1109/tpami.2020.3005434 10.3390/s22166028 10.5194/gmd-15-5481-2022 10.5116/ijme.4dfb.8dfd 10.3390/rs12040634 10.5194/isprs-archives-XLVIII-1-W3-2023-205-2023 10.3832/ifor4153-016 10.1007/s10531-009-9649-8 10.3390/logistics5040088 10.15177/seefor.11-06 10.1007/s11842-011-9164-0 10.1002/nur.4770130612 10.5194/isprsarchives-XL-3-157-2014 10.1145/3326362 10.14214/sf.10555 10.1078/1104-6899-00028 10.1136/thx.46.6.454 10.1016/j.jag.2022.102779 10.1111/cgf.14077 10.1016/j.cag.2022.01.008 10.3758/s13428-015-0623-y 10.1145/358669.358692 10.1007/978-3-030-19816-9_5 10.1016/j.compag.2019.04.002 10.1038/s41598-022-19212-6 10.1016/s0031-9406(05)61211-4 10.13073/FPJ-D-16-00039 10.1016/j.ijforecast.2006.03.001 10.3390/rs15123076 10.1016/j.foreco.2019.117484 10.1016/j.jcm.2016.02.012 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION DOA |
| DOI | 10.3389/frsen.2025.1506838 |
| DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography |
| EISSN | 2673-6187 |
| ExternalDocumentID | oai_doaj_org_article_60c62a2a1e2048cea83037a6f50fadb6 10_3389_frsen_2025_1506838 |
| GroupedDBID | 9T4 AAFWJ AAYXX AFPKN ALMA_UNASSIGNED_HOLDINGS ARCSS CITATION GROUPED_DOAJ M~E OK1 |
| ID | FETCH-LOGICAL-c359t-969a6f2346c653079a819eec4c702d23e99d45d562b33cdde42f91ac2f5f1ed93 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001579705400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2673-6187 |
| IngestDate | Fri Oct 03 12:45:09 EDT 2025 Sat Nov 29 07:28:04 EST 2025 Tue Nov 18 21:18:16 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c359t-969a6f2346c653079a819eec4c702d23e99d45d562b33cdde42f91ac2f5f1ed93 |
| OpenAccessLink | https://doaj.org/article/60c62a2a1e2048cea83037a6f50fadb6 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_60c62a2a1e2048cea83037a6f50fadb6 crossref_primary_10_3389_frsen_2025_1506838 crossref_citationtrail_10_3389_frsen_2025_1506838 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-09-12 |
| PublicationDateYYYYMMDD | 2025-09-12 |
| PublicationDate_xml | – month: 09 year: 2025 text: 2025-09-12 day: 12 |
| PublicationDecade | 2020 |
| PublicationTitle | Frontiers in remote sensing |
| PublicationYear | 2025 |
| Publisher | Frontiers Media S.A |
| Publisher_xml | – name: Frontiers Media S.A |
| References | Girardeau-Montaut (B39) 2016; 11 Koo (B62) 2016; 15 Wang (B110); 147 Tsioras (B107) 2010; 3 Ferketich (B31) 1990; 13 Tavakol (B102) 2011; 2 Chinn (B18) 1991; 46 Kazhdan (B59) 2006; 7 McGraw (B73) 1996; 1 Cavalli (B14) 2023 Niţă (B80) 2023; 205 Janák (B55) 2007; 58 Gwet (B45) 2001 B34 B35 Kazhdan (B60) 2020; 39 B36 Sammartano (B91) 2018; 10 Shrout (B96) 1979; 86 Ten Hove (B103) 2022; 29 B9 Proteau (B83) 2008; 9 Wasson (B114) 2006 Laan (B65) Rankin (B87) 1998; 12 Girardeau-Montaut (B38) 2015 Müller (B77) 2019; 162 Armstrong (B3) 2001; 30 B41 de Miguel-Díez (B25) 2021; 12 Pasztory (B82) 2019; 3 Morin (B75) 2020; 222 Hyndman (B51) 2006; 22 Moskalik (B76) 2022; 22 Lin (B70) 2022; 14 Cronbach (B22) 1951; 16 Taber (B101) 2018; 48 Ioras (B54) 2009; 18 Gingras (B37) 2017 Guo (B44) 2020; 43 Ahmad (B1) 2020; 7 Hyyppä (B53) 2008; 29 Zhou (B119) 2022; 103 Laan (B64) Goforth (B42) 2024 Revicki (B89) 2023 Bauwens (B4) 2016; 7 B52 Wang (B109) 2018 Chatzopoulos (B16) 2017; 5 Borz (B11); 13 Wang (B112) 2020; 12 de León (B24) 2013; 34 Dewez (B27) 2017; 32 Ljubojević (B71) 2011; 2 B106 Kruglov (B63) 2016 Sarker (B92) 2024; 35 Beland (B5) 2019; 450 Bobak (B7) 2018; 18 Li (B69) 2015 Lee (B67) 2022; 12 Alvites (B2) 2022; 14 Hohmann (B50) 2017; 10 Qi (B85) 2017 Panagiotidis (B81) 2021; 13 Warchoł (B113) 2023; 48 Cown (B21) 2005; 35 Chen (B17) 2015; 106 Toader (B105) 2005 B118 Mehrentsev (B74) 2019; 842 Janák (B56) 2012; 9 Niebles (B79) 2017 He (B47) 2021; 5 Tsioras (B108) 2012; 11 Bruton (B13) 2000; 86 Chai (B15) 2014; 7 Feng (B30) 2020; 27 Knyaz (B61) 2014; 40 Raguram (B86) 2008; 10 Šporčić (B98) 2024; 45 Borz (B10) 2022; 197 Bolles (B8) 1981; 1981 Purfürst (B84) 2023; 16 Singh (B97) 2022 Thomas (B104) 2017; 67 Berendt (B6) 2021; 55 Schnabel (B94) 2007; 26 Forkuo (B33) 2023; 6 Li (B68) 2017; 12 Hobbs-Murphy (B48) 2024; 116 de Miguel-Díez (B26) 2022; 109 Davis (B23) 2001 Gregory (B43) 2003; 9 Borz (B12); 13 Rauscher (B88) 2005; 49 Rusu (B90) 2009 Gwet (B46) 2008; 61 Cortina (B20) 1993; 78 Hodson (B49) 2022; 2022 Stăncioiu (B99) 2018; 76 Fischler (B32) 1981; 24 Lauri (B66) 2008; 81 Dong (B28) 2023; 15 Wang (B111); 38 White (B115) 2016; 42 Johnson (B58) 2021 B19 Yuan (B117) 2018 Malinen (B72) 2006; 45 Fang (B29) 2023; 24 Willmott (B116) 2005; 30 Nicolescu (B78) 2022 Jodłowski (B57) 2016 Sarode (B93) 2020 Streiner (B100) 2003; 80 Gisev (B40) 2013; 9 Shieh (B95) 2016; 48 |
| References_xml | – ident: B35 – volume: 45 start-page: 183 year: 2024 ident: B98 article-title: Shortage of labour force in forestry of Bosnia and Herzegovina–forestry experts' opinions on recruiting and retaining forestry workers publication-title: Croat. J. For. Eng. doi: 10.5552/crojfe.2024.2345 – volume: 1 start-page: 30 year: 1996 ident: B73 article-title: Forming inferences about some intraclass correlation coefficients publication-title: Psychol. Methods doi: 10.1037/1082-989X.1.1.30 – volume: 35 start-page: 205 year: 2005 ident: B21 article-title: Understanding and managing wood quality for improving product value in New Zealand publication-title: N. Z. J. For. Sci. – ident: B41 – volume: 222 start-page: 107508 year: 2020 ident: B75 article-title: Machine learning-based models of sawmills for better wood allocation planning publication-title: Int. J. Prod. Econ. doi: 10.1016/j.ijpe.2019.09.029 – volume: 81 start-page: 499 year: 2008 ident: B66 article-title: The use of airborne laser scanning to estimate sawlog volumes publication-title: Forestry doi: 10.1093/forestry/cpn018 – volume: 7 start-page: 127 year: 2016 ident: B4 article-title: Forest inventory with terrestrial LiDAR: a comparison of static and hand-held mobile laser scanning publication-title: Forests doi: 10.3390/f7060127 – volume: 16 start-page: 297 year: 1951 ident: B22 article-title: Coefficient alpha and the internal structure of tests publication-title: Psychometrika doi: 10.1007/BF02310555 – start-page: 197 year: 2015 ident: B38 article-title: CloudCompare: 3D point cloud and mesh processing software publication-title: Open Source Proj. – start-page: 1248 volume-title: Encycl. Autism spectr. Disord year: 2021 ident: B58 article-title: Cronbach’s alpha doi: 10.1007/978-3-319-91280-6_307 – volume: 14 start-page: 4466 year: 2022 ident: B2 article-title: LiDAR as a tool for assessing timber assortments: a systematic literature review publication-title: Remote Sens. doi: 10.3390/rs14184466 – volume-title: Stanford vision and learning lab year: 2017 ident: B79 article-title: Lecture: RANSAC and feature detectors – volume: 78 start-page: 98 year: 1993 ident: B20 article-title: What is coefficient alpha? An examination of theory and applications publication-title: J. Appl. Psychol. doi: 10.1037/0021-9010.78.1.98 – volume: 11 year: 2016 ident: B39 article-title: CloudCompare publication-title: Fr. EDF R&D Telecom ParisTech – start-page: 306 volume-title: Proceedings of the from theory to practice: challenges for forest engineering, Warsaw, Poland, 4–7 september 2016; department of forest utilization year: 2016 ident: B57 article-title: The use of photo-optical systems for measurement of stacked wood – volume: 10 start-page: 317 year: 2018 ident: B91 article-title: Point clouds by SLAM-based mobile mapping systems: accuracy and geometric content validation in multisensor survey and stand-alone acquisition publication-title: Appl. Geomat. doi: 10.1007/s12518-018-0221-7 – volume: 13 start-page: 1028 ident: B11 article-title: Potential of Measure app in estimating log biometrics: a comparison with conventional log measurement publication-title: Forests doi: 10.3390/f13071028 – volume: 76 start-page: 487 year: 2018 ident: B99 article-title: Forestland connectivity in Romania—implications for policy and management publication-title: Land Use Policy doi: 10.1016/j.landusepol.2018.02.028 – volume: 9 start-page: 103 year: 2012 ident: B56 article-title: Round wood measurement system publication-title: InTech Janeza Trdine doi: 10.5772/37519 – volume: 30 start-page: 365 year: 2001 ident: B3 article-title: Selecting forecasting methods publication-title: Princ. Forecast. Int. Ser. Oper. Res. Manag. Sci. doi: 10.1007/978-0-306-47630-3_16 – volume: 12 start-page: 238 year: 2021 ident: B25 article-title: Analysis of the influence that parameters crookedness and taper have on stack volume by using a 3D-simulation model of wood stacks publication-title: Forests doi: 10.3390/f12020238 – volume: 9 start-page: 330 year: 2013 ident: B40 article-title: Interrater agreement and interrater reliability: key concepts, approaches, and applications publication-title: Res. Soc. Adm. Pharm. doi: 10.1016/j.sapharm.2012.04.004 – volume: 34 start-page: 311 year: 2013 ident: B24 article-title: Theoretical evaluation of Huber and Smalian methods applied to tree stem classical geometries publication-title: Bosque doi: 10.4067/S0717-92002013000300007 – volume: 12 start-page: 187 year: 1998 ident: B87 article-title: Reliability of assessment tools in rehabilitation: an illustration of appropriate statistical analyses publication-title: Clin. Rehabil. doi: 10.1191/026921598672178340 – volume-title: UVA library StatLab year: 2024 ident: B42 article-title: Using and interpreting Cronbach's alpha – volume: 13 start-page: 3610 year: 2021 ident: B81 article-title: Reliable estimates of merchantable timber volume from terrestrial laser scanning publication-title: Remote Sens. doi: 10.3390/rs13183610 – volume: 86 start-page: 420 year: 1979 ident: B96 article-title: Intraclass correlations: uses in assessing rater reliability publication-title: Psychol. Bull. doi: 10.1037/0033-2909.86.2.420 – ident: B9 – volume: 32 start-page: 354 year: 2017 ident: B27 article-title: Towards cavity‐collapse hazard maps with Zeb‐Revo handheld laser scanner point clouds publication-title: Photogramm. Rec. doi: 10.1111/phor.12223 – year: 2023 ident: B14 article-title: Consensus-adaptive RANSAC publication-title: arXiv Prepr. arXiv:2307.14030 doi: 10.48550/arXiv.2307.14030 – volume: 35 start-page: 67 year: 2024 ident: B92 article-title: A comprehensive overview of deep learning techniques for 3D point cloud classification and semantic segmentation publication-title: Mach. Vis. Appl. doi: 10.1007/s00138-024-01543-1 – volume: 147 start-page: 132 ident: B110 article-title: Is field-measured tree height as reliable as believed–A comparison study of tree height estimates from field measurement, airborne laser scanning and terrestrial laser scanning in a boreal forest publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2018.11.008 – ident: B118 – volume: 18 start-page: 93 year: 2018 ident: B7 article-title: Estimation of an inter-rater intra-class correlation coefficient that overcomes common assumption violations in the assessment of health measurement scales publication-title: BMC Med. Res. Methodol. doi: 10.1186/s12874-018-0550-6 – volume: 12 start-page: e0183250 year: 2017 ident: B68 article-title: Assessing the accuracy of predictive models for numerical data: not r nor r2, why not? Then what? publication-title: PLoS One doi: 10.1371/journal.pone.0183250 – volume: 29 start-page: 1339 year: 2008 ident: B53 article-title: Review of methods of small‐footprint airborne laser scanning for extracting forest inventory data in boreal forests publication-title: Int. J. Remote Sens. doi: 10.1080/01431160701736489 – volume: 10 start-page: 500 year: 2008 ident: B86 article-title: A comparative analysis of RANSAC techniques leading to adaptive real-time random sample consensus publication-title: Comput. Vis.–ECCV 2008 10th Eur. Conf. Comput. Vis doi: 10.1007/978-3-540-88688-4_37 – start-page: 3212 volume-title: 2009 IEEE int. Conf. Robot. Autom. year: 2009 ident: B90 article-title: Fast point feature histograms (FPFH) for 3D registration – start-page: 3579 volume-title: Encyclopedia of quality of life and well-being research year: 2023 ident: B89 article-title: Internal consistency reliability doi: 10.1007/978-3-031-17299-1_1494 – start-page: 832p volume-title: System analysis, design and development. Concepts, principles and practices year: 2006 ident: B114 – ident: B52 – year: 2015 ident: B69 article-title: Estimation of log volumes: a comparative study (No. FI-X-11) publication-title: Nat. Resour. Can., Can. For. Serv. – start-page: 1029 volume-title: 2020 int. Conf. 3D vis. 3DV year: 2020 ident: B93 article-title: MaskNet: a fully-convolutional network to estimate inlier points – volume: 7 start-page: 22 year: 2020 ident: B1 article-title: A Comparative study of log volume estimation by using statistical method publication-title: Educ. - J. Sci. Math. Technol. doi: 10.37134/ejsmt.vol7.1.3.2020 – volume: 80 start-page: 99 year: 2003 ident: B100 article-title: Starting at the beginning: an introduction to coefficient alpha and internal consistency publication-title: J. Pers. Assess. doi: 10.1207/S15327752JPA8001_18 – volume: 106 start-page: 95 year: 2015 ident: B17 article-title: Modeling aboveground tree woody biomass using national-scale allometric methods and airborne lidar publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2015.05.007 – volume: 27 start-page: e5677 year: 2020 ident: B30 article-title: Forestry 4.0: a framework for the forest supply chain toward Industry 4.0 publication-title: Gestão and Produção doi: 10.1590/0104-530X5677-20 – volume: 26 start-page: 214 year: 2007 ident: B94 article-title: Efficient RANSAC for point‐cloud shape detection publication-title: Comput. Graph. Forum doi: 10.1111/j.1467-8659.2007.01016.x – volume: 3 start-page: 118 year: 2010 ident: B107 article-title: Perspectives of the forest workers in Greece publication-title: iForest - Biogeosc. For. doi: 10.3832/ifor0547-003 – volume: 14 start-page: 649 year: 2022 ident: B70 article-title: Comparative analysis of multi-platform, multi-resolution, multi-temporal LiDAR data for forest inventory publication-title: Remote Sens. doi: 10.3390/rs14030649 – volume: 116 start-page: 104218 year: 2024 ident: B48 article-title: Intra-rater and inter-rater reliability of 3D facial measurements publication-title: Appl. Ergon. doi: 10.1016/j.apergo.2023.104218 – volume: 5 start-page: 6917 year: 2017 ident: B16 article-title: Mobile augmented reality survey: from where we are to where we go publication-title: IEEE Access doi: 10.1109/ACCESS.2017.2698164 – volume: 6 start-page: 1224575 year: 2023 ident: B33 article-title: Accuracy and inter-cloud precision of low-cost mobile LiDAR technology in estimating soil disturbance in forest operations publication-title: Front. For. Glob. Change doi: 10.3389/ffgc.2023.1224575 – volume-title: 3d scanner app: how mobile lidar is redefining professional 3d workflows ident: B65 – volume: 30 start-page: 79 year: 2005 ident: B116 article-title: Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance publication-title: Clim. Res. doi: 10.3354/cr030079 – volume: 197 start-page: 106990 year: 2022 ident: B10 article-title: Application and accuracy of smart technologies for measurements of roundwood: evaluation of time consumption and efficiency publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2022.106990 – volume: 3 start-page: 5 year: 2019 ident: B82 article-title: Comparison of different stack measuring methods publication-title: Sib. J. For. Sci. – volume: 61 start-page: 29 year: 2008 ident: B46 article-title: Computing inter‐rater reliability and its variance in the presence of high agreement publication-title: Br. J. Math. Stat. Psychol. doi: 10.1348/000711006x126600 – volume: 29 start-page: 967 year: 2022 ident: B103 article-title: Updated guidelines on selecting an intraclass correlation coefficient for interrater reliability, with applications to incomplete observational designs publication-title: Psychol. Methods doi: 10.1037/met0000516 – volume: 10 start-page: 27 year: 2017 ident: B50 article-title: Harvester measuring system for trunk volume determination: comparison with the real trunk volume and applicability in the forest industry publication-title: Bull. Transilvania Univ. Brasov, Spec. Issue, Ser. II For. – Wood Ind. – Agric. Food Eng. – volume: 13 start-page: 2007 ident: B12 article-title: Postural assessment of three wood measurement options by the owas method: digital solutions seem to be better publication-title: Forests doi: 10.3390/f13122007 – volume-title: Forest management: to sustain ecological, economic, and social values year: 2001 ident: B23 – volume: 49 start-page: 1 year: 2005 ident: B88 article-title: Decision-support systems for forest management publication-title: Comput. Electron. Agri. doi: 10.1016/j.compag.2005.02.001 – volume: 7 start-page: 1247 year: 2014 ident: B15 article-title: Root mean square error (RMSE) or mean absolute error (MAE)? Arguments against avoiding RMSE in the literature publication-title: Geosci. Model Dev. doi: 10.5194/gmd-7-1247-2014 – volume: 48 start-page: 1273 year: 2018 ident: B101 article-title: The use of Cronbach’s alpha when developing and reporting research instruments in science education publication-title: Res. Sci. Educ. doi: 10.1007/s11165-016-9602-2 – volume: 205 start-page: 107653 year: 2023 ident: B80 article-title: Accuracy of a smartphone-based freeware solution and two shape reconstruction algorithms in log volume measurements publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2023.107653 – ident: B106 doi: 10.12968/indn.2024.6.28 – volume: 24 start-page: 112 year: 2023 ident: B29 article-title: Three-dimensional point cloud segmentation algorithm based on depth camera for large size model point cloud unsupervised class segmentation publication-title: Sensors doi: 10.3390/s24010112 – volume: 9 start-page: 1 year: 2008 ident: B83 article-title: Future shortage of forest workers drives home need for recruitment efforts publication-title: Link. Innov. Netw. Knowl. – volume: 42 start-page: 619 year: 2016 ident: B115 article-title: Remote sensing technologies for enhancing forest inventories: a review publication-title: Can. J. Remote Sens. doi: 10.1080/07038992.2016.1207484 – volume: 43 start-page: 4338 year: 2020 ident: B44 article-title: Deep learning for 3d point clouds: a survey publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/tpami.2020.3005434 – volume: 22 start-page: 6028 year: 2022 ident: B76 article-title: Methods of wood volume determining and its implications for forest transport publication-title: Sensors doi: 10.3390/s22166028 – volume-title: Laan labs ident: B64 article-title: 3d scanner app: capture anything in 3d – volume: 2022 start-page: 5481 year: 2022 ident: B49 article-title: Root mean square error (RMSE) or mean absolute error (MAE): when to use them or not publication-title: Geosci. Model Dev. Discuss. doi: 10.5194/gmd-15-5481-2022 – volume: 7 start-page: 61 year: 2006 ident: B59 article-title: Poisson surface reconstruction publication-title: Proc. Eurogr. Symp. Geom. Process – start-page: 652 volume-title: Proc. IEEE conf. Comput. Vis. Pattern recognit. year: 2017 ident: B85 article-title: Pointnet: deep learning on point sets for 3d classification and segmentation – volume: 2 start-page: 53 year: 2011 ident: B102 article-title: Making sense of Cronbach's alpha publication-title: Int. J. Med. Educ. doi: 10.5116/ijme.4dfb.8dfd – volume: 12 start-page: 634 year: 2020 ident: B112 article-title: Structure-aware convolution for 3D point cloud classification and segmentation publication-title: Remote Sens. doi: 10.3390/rs12040634 – volume: 48 start-page: 205 year: 2023 ident: B113 article-title: Selected qualitative aspects of LiDAR point clouds: GeoSLAM ZEB-REVO and faro focus 3D X130 publication-title: Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. - ISPRS Arch. doi: 10.5194/isprs-archives-XLVIII-1-W3-2023-205-2023 – volume: 16 start-page: 243 year: 2023 ident: B84 article-title: Comparison of wood stack volume determination between manual, photo-optical, iPad-LiDAR and handheld-LiDAR based measurement methods publication-title: iForest - Biogeosc. For. doi: 10.3832/ifor4153-016 – volume: 18 start-page: 3395 year: 2009 ident: B54 article-title: Conservation gains through HCVF assessments in Bosnia-Herzegovina and Romania publication-title: Biodivers. Conserv. doi: 10.1007/s10531-009-9649-8 – volume-title: First int. Workshop pattern recognit year: 2016 ident: B63 article-title: Development of the rounded objects automatic detection method for the log deck volume measurement – start-page: 728 volume-title: 2018 int. Conf. 3D vis. (3DV) year: 2018 ident: B117 article-title: PCN: point completion network – start-page: 223 volume-title: Handbook of inter-rater reliability year: 2001 ident: B45 – ident: B34 – volume-title: Bangor: 2017 COFE annu. Meet year: 2017 ident: B37 article-title: FP innovations forestry 4.0 initiative – volume: 5 start-page: 88 year: 2021 ident: B47 article-title: A systematic review on technologies and Industry 4.0 in the forest supply chain: a framework identifying challenges and opportunities publication-title: Logist doi: 10.3390/logistics5040088 – volume: 2 start-page: 51 year: 2011 ident: B71 article-title: Conversion coefficients for distilling wood in running standards and everyday practice publication-title: South-East Eur. For. doi: 10.15177/seefor.11-06 – year: 2022 ident: B97 article-title: 3 regression metrics you must know: MAE, MSE, and RMSE publication-title: Proclus Acad – volume: 11 start-page: 1 year: 2012 ident: B108 article-title: Status and job satisfaction of Greek forest workers publication-title: Small-Scale For doi: 10.1007/s11842-011-9164-0 – volume: 1981 start-page: 637 year: 1981 ident: B8 article-title: A RANSAC-based approach to model fitting and its application to finding cylinders in range data publication-title: IJCAI – volume: 45 start-page: 89 year: 2006 ident: B72 article-title: Variation in the value recovery when bucking to alternative timber assortments and log dimensions publication-title: For. Stud – volume: 13 start-page: 437 year: 1990 ident: B31 article-title: Internal consistency estimates of reliability publication-title: Res. Nurs. Health doi: 10.1002/nur.4770130612 – volume: 40 start-page: 157 year: 2014 ident: B61 article-title: Photogrammetric technique for timber stack volume contol publication-title: Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. doi: 10.5194/isprsarchives-XL-3-157-2014 – volume: 38 start-page: 1 ident: B111 article-title: Dynamic graph cnn for learning on point clouds publication-title: ACM Trans. Graph. doi: 10.1145/3326362 – volume: 55 start-page: 1 year: 2021 ident: B6 article-title: Reliability of photo-optical measurements of log stack gross volume publication-title: Silva Fenn. doi: 10.14214/sf.10555 – volume: 9 start-page: 137 year: 2003 ident: B43 article-title: Econometric analyses of nonindustrial forest landowners: is there anything left to study? publication-title: J. For. Econ. doi: 10.1078/1104-6899-00028 – volume: 46 start-page: 454 year: 1991 ident: B18 article-title: Statistics in respiratory medicine. 2. Repeatability and method comparison publication-title: Thorax doi: 10.1136/thx.46.6.454 – start-page: 269 volume-title: Romanian forests: national parks and natural parks year: 2005 ident: B105 – volume: 109 start-page: 102779 year: 2022 ident: B26 article-title: Further application of using a personal laser scanner and simultaneous localization and mapping technology to estimate the log’s volume and its comparison with traditional methods publication-title: Int. J. Appl. Earth Obs. Geoinf doi: 10.1016/j.jag.2022.102779 – volume: 39 start-page: 173 year: 2020 ident: B60 article-title: Poisson surface reconstruction with envelope constraints publication-title: Compt. Graph. Forum doi: 10.1111/cgf.14077 – volume: 103 start-page: 90 year: 2022 ident: B119 article-title: MaskNet++: inlier/outlier identification for two point clouds publication-title: Comput. Graph. doi: 10.1016/j.cag.2022.01.008 – volume: 48 start-page: 994 year: 2016 ident: B95 article-title: Choosing the best index for the average score intraclass correlation coefficient publication-title: Behav. Res. Methods doi: 10.3758/s13428-015-0623-y – volume: 24 start-page: 381 year: 1981 ident: B32 article-title: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography publication-title: Commun. ACM doi: 10.1145/358669.358692 – ident: B36 – volume: 842 start-page: 56 year: 2019 ident: B74 article-title: The algorithm and software for timber batch measurement by using image analysis publication-title: Motion Imaging Data doi: 10.1007/978-3-030-19816-9_5 – volume: 58 start-page: 127 year: 2007 ident: B55 article-title: Differences in round wood measurements using electronic 2D and 3D systems and standard manual method publication-title: Drv. Ind. – start-page: 39 volume-title: 1.1 Romanian forests and forestry: an overview. Plan B for Romania’s forests and society year: 2022 ident: B78 – start-page: 43 volume-title: Proc. 31st int. Conf. Comput. Animat. Soc. Agents year: 2018 ident: B109 article-title: Large-scale 3D point cloud classification based on feature description matrix by CNN – volume: 162 start-page: 206 year: 2019 ident: B77 article-title: Digitization in wood supply–A review on how Industry 4.0 will change the forest value chain publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2019.04.002 – volume: 12 start-page: 14864 year: 2022 ident: B67 article-title: 3D convolutional neural network for machining feature recognition with gradient-based visual explanations from 3D CAD models publication-title: Sci. Rep. doi: 10.1038/s41598-022-19212-6 – volume: 86 start-page: 94 year: 2000 ident: B13 article-title: Reliability: what is it, and how is it measured? publication-title: Physiother doi: 10.1016/s0031-9406(05)61211-4 – volume: 67 start-page: 250 year: 2017 ident: B104 article-title: An analysis of the differences among log scaling methods and actual log volume publication-title: For. Prod. J. doi: 10.13073/FPJ-D-16-00039 – volume: 22 start-page: 679 year: 2006 ident: B51 article-title: Another look at measures of forecast accuracy publication-title: Int. J. Forecast. doi: 10.1016/j.ijforecast.2006.03.001 – volume: 15 start-page: 3076 year: 2023 ident: B28 article-title: A novel filtering method of 3d reconstruction point cloud from tomographic SAR publication-title: Remote Sens. doi: 10.3390/rs15123076 – volume: 450 start-page: 117484 year: 2019 ident: B5 article-title: On promoting the use of lidar systems in forest ecosystem research publication-title: For. Ecol. Manag. doi: 10.1016/j.foreco.2019.117484 – ident: B19 – volume: 15 start-page: 155 year: 2016 ident: B62 article-title: A guideline of selecting and reporting intraclass correlation coefficients for reliability research publication-title: J. Chiropr. Med. doi: 10.1016/j.jcm.2016.02.012 |
| SSID | ssj0002849398 |
| Score | 2.3032298 |
| Snippet | Producing reliable log volume data is an essential feature in an effective wood supply chain, and LiDAR sensing, supported by portable platforms, is a... |
| SourceID | doaj crossref |
| SourceType | Open Website Enrichment Source Index Database |
| SubjectTerms | big data comparison experience lidar sensing measurement post-processing |
| Title | Intra- and inter-rater reliability in log volume estimation based on LiDAR data and shape reconstruction algorithms: a case study on poplar logs |
| URI | https://doaj.org/article/60c62a2a1e2048cea83037a6f50fadb6 |
| Volume | 6 |
| WOSCitedRecordID | wos001579705400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: Directory of Open Access Journals customDbUrl: eissn: 2673-6187 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002849398 issn: 2673-6187 databaseCode: DOA dateStart: 20200101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2673-6187 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002849398 issn: 2673-6187 databaseCode: M~E dateStart: 20200101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dSxwxEA9FhPoiapVateTBt5K6m2Q_4psfJy3Yo0gF35Zkku2dXO-O3UPwpX-Df7Iz2fW4J33xZVmWTDZkJjPzC8lvGDt2oXaFBycSACl0sLjmMFCKNAOHCYFCIR2LTRTDYXl3Z36vlPqiM2EdPXA3cSd5Arm00qaBKGYh2BKdbmHzOktq610k204KswKm7uOWkTbKlN0tGURh5qRu2kB8pzL7TqR6JV1IWYlEK4T9MbJcbbHNPiXkZ91QttmHMN1hH_vq5KPHT-zpJ-3ACo6gnxO9QyOI36HhTZiMO5rtR_zO0Yvxztlwos7o7iRyClOe48v1-PLshtOJ0NhRO7LzwCMeXnLIcjv5O2vGi9G_9pRbDijKI_8syc9nc0TB9Jd2l91eDf5c_BB9JQUBKjMLYXKDMyaVziHPcFUbi4lACKChSKSXKhjjdeYxF3JKAXo8LWuTWpB1VqfBG7XH1qazafjMeIpRzyagyiCdRvDmCgdFqWqvy9yXId1n6cusVtDTjFO1i0mFcIM0UUVNVKSJqtfEPvu2lJl3JBuvtj4nZS1bEkF2_IBmU_VmU71lNl_eo5MDtkEDE7GixCFbQ22FI7YOD4tx23yNFonPX_8HzyMp6cA |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intra-+and+inter-rater+reliability+in+log+volume+estimation+based+on+LiDAR+data+and+shape+reconstruction+algorithms%3A+a+case+study+on+poplar+logs&rft.jtitle=Frontiers+in+remote+sensing&rft.au=Forkuo%2C+Gabriel+Osei&rft.au=Borz%2C+Stelian+Alexandru&rft.date=2025-09-12&rft.issn=2673-6187&rft.eissn=2673-6187&rft.volume=6&rft_id=info:doi/10.3389%2Ffrsen.2025.1506838&rft.externalDBID=n%2Fa&rft.externalDocID=10_3389_frsen_2025_1506838 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2673-6187&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2673-6187&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2673-6187&client=summon |