Intra- and inter-rater reliability in log volume estimation based on LiDAR data and shape reconstruction algorithms: a case study on poplar logs

Producing reliable log volume data is an essential feature in an effective wood supply chain, and LiDAR sensing, supported by portable platforms, is a promising technology for volume measurements. Computer-based algorithms like Poisson interpolation and Random Sampling and Consensus (RANSAC) are com...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Frontiers in remote sensing Ročník 6
Hlavní autoři: Forkuo, Gabriel Osei, Borz, Stelian Alexandru
Médium: Journal Article
Jazyk:angličtina
Vydáno: Frontiers Media S.A 12.09.2025
Témata:
ISSN:2673-6187, 2673-6187
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Producing reliable log volume data is an essential feature in an effective wood supply chain, and LiDAR sensing, supported by portable platforms, is a promising technology for volume measurements. Computer-based algorithms like Poisson interpolation and Random Sampling and Consensus (RANSAC) are commonly used to extract volume data from LiDAR point clouds, and comparative studies have tested these algorithms for accuracy. To extract volume data, point clouds require several post-processing steps, while their outcome may depend largely on human input and operator decision. Despite the increasingly number of studies on accuracy limits, no paper has addressed the reliability of these procedures. This raises at least two questions: (i) Would the same person, working with the same data and using the same procedures get the same results? And (ii) How much would the results deviate when different people process the same data using the same procedures? A set of 432 poplar logs placed on the ground and spaced about 1 m apart, was scanned by a professional mobile LiDAR scanner in groups; the first 418 logs were then individually scanned using an iPhone-compatible app, with the remainder being excluded from this part of the study due to field time constraints and all the logs were manually measured to get the reference biometric data. Three researchers with different experiences processed the datasets produced by scanning twice, following a protocol that included shape reconstruction and volume calculation using Poisson interpolation and RANSAC algorithm for cylinders and cones. The intra- and inter-rater reliability were evaluated using a comprehensive array of statistical metrics. The results show that the most reliable estimates correlate with a greater experience. The Cronbach’s alpha metric at the subject level was high, with values of 0.902–0.965 for the most experienced subject, and generally indicated moderate to excellent intra-rater reliabilities. Moreover, working with Poisson interpolation and RANSAC cylinder shape reconstruction, respectively, indicated a moderate to excellent reliability. For the Poisson interpolation algorithm, the Intraclass Correlation Coefficient (ICC) ranged from 0.770 to 0.980 for multi-log datasets, and from 0.924 to 0.972 for single log datasets. For the same type of input datasets, the ICC varied between 0.761 and 0.855 and from 0.839 to 0.908 for the RANSAC cylinder, and from 0.784 to 0.869 and 0.843 to 0.893 for the RANSAC cone shape reconstruction algorithms, respectively. These values indicate a moderate to excellent inter-rater reliability. Similar to Cronbach’s alpha, the Root Mean Square Error (RMSE) was related in magnitude to the ICC. The results of this study indicate that, for improved reliability and efficiency, it is essential to automate point cloud segmentation using advanced machine learning and computer vision algorithms. This approach would eliminate the subjectivity in segmentation decisions and significantly reduce the time required for the process.
AbstractList Producing reliable log volume data is an essential feature in an effective wood supply chain, and LiDAR sensing, supported by portable platforms, is a promising technology for volume measurements. Computer-based algorithms like Poisson interpolation and Random Sampling and Consensus (RANSAC) are commonly used to extract volume data from LiDAR point clouds, and comparative studies have tested these algorithms for accuracy. To extract volume data, point clouds require several post-processing steps, while their outcome may depend largely on human input and operator decision. Despite the increasingly number of studies on accuracy limits, no paper has addressed the reliability of these procedures. This raises at least two questions: (i) Would the same person, working with the same data and using the same procedures get the same results? And (ii) How much would the results deviate when different people process the same data using the same procedures? A set of 432 poplar logs placed on the ground and spaced about 1 m apart, was scanned by a professional mobile LiDAR scanner in groups; the first 418 logs were then individually scanned using an iPhone-compatible app, with the remainder being excluded from this part of the study due to field time constraints and all the logs were manually measured to get the reference biometric data. Three researchers with different experiences processed the datasets produced by scanning twice, following a protocol that included shape reconstruction and volume calculation using Poisson interpolation and RANSAC algorithm for cylinders and cones. The intra- and inter-rater reliability were evaluated using a comprehensive array of statistical metrics. The results show that the most reliable estimates correlate with a greater experience. The Cronbach’s alpha metric at the subject level was high, with values of 0.902–0.965 for the most experienced subject, and generally indicated moderate to excellent intra-rater reliabilities. Moreover, working with Poisson interpolation and RANSAC cylinder shape reconstruction, respectively, indicated a moderate to excellent reliability. For the Poisson interpolation algorithm, the Intraclass Correlation Coefficient (ICC) ranged from 0.770 to 0.980 for multi-log datasets, and from 0.924 to 0.972 for single log datasets. For the same type of input datasets, the ICC varied between 0.761 and 0.855 and from 0.839 to 0.908 for the RANSAC cylinder, and from 0.784 to 0.869 and 0.843 to 0.893 for the RANSAC cone shape reconstruction algorithms, respectively. These values indicate a moderate to excellent inter-rater reliability. Similar to Cronbach’s alpha, the Root Mean Square Error (RMSE) was related in magnitude to the ICC. The results of this study indicate that, for improved reliability and efficiency, it is essential to automate point cloud segmentation using advanced machine learning and computer vision algorithms. This approach would eliminate the subjectivity in segmentation decisions and significantly reduce the time required for the process.
Author Forkuo, Gabriel Osei
Borz, Stelian Alexandru
Author_xml – sequence: 1
  givenname: Gabriel Osei
  surname: Forkuo
  fullname: Forkuo, Gabriel Osei
– sequence: 2
  givenname: Stelian Alexandru
  surname: Borz
  fullname: Borz, Stelian Alexandru
BookMark eNp9kd9qHCEUhyWkkL8v0CtfYDaOzjjau5A27cJCoDTXclbPbAzuuKhb2LfoI9edhBBykRs9HPy-w_F3QU6nOCEhX1u2EELpmzFlnBac8X7R9kwqoU7IOZeDaGSrhtN39Rm5zvmZMcZVp4VW5-TfcioJGgqTo34qmJoE9aQJg4e1D74cap-GuKF_Y9hvkWIufgvFx4muIaOjtVj577e_qYMCsyg_wQ6rwsYpl7S382MIm5h8edrmbxSorSjNZe8OR34XdwHScUq-Il9GCBmvX-9L8nj_48_dr2b18HN5d7tqrOh1abTUIEcuOmllL9igQbUa0XZ2YNxxgVq7rne95GshrHPY8VG3YPnYjy06LS7J8sXrIjybXao7pYOJ4M3ciGljIBVvAxrJrOTAoUXOOmURlGBiqON7NoJby-riLy6bYs4Jxzdfy8wxIjNHZI4RmdeIKqQ-QNaX-V9rID58hv4Hg1KcgQ
CitedBy_id crossref_primary_10_3390_s25185847
Cites_doi 10.5552/crojfe.2024.2345
10.1037/1082-989X.1.1.30
10.1016/j.ijpe.2019.09.029
10.1093/forestry/cpn018
10.3390/f7060127
10.1007/BF02310555
10.1007/978-3-319-91280-6_307
10.3390/rs14184466
10.1037/0021-9010.78.1.98
10.1007/s12518-018-0221-7
10.3390/f13071028
10.1016/j.landusepol.2018.02.028
10.5772/37519
10.1007/978-0-306-47630-3_16
10.3390/f12020238
10.1016/j.sapharm.2012.04.004
10.4067/S0717-92002013000300007
10.1191/026921598672178340
10.3390/rs13183610
10.1037/0033-2909.86.2.420
10.1111/phor.12223
10.48550/arXiv.2307.14030
10.1007/s00138-024-01543-1
10.1016/j.isprsjprs.2018.11.008
10.1186/s12874-018-0550-6
10.1371/journal.pone.0183250
10.1080/01431160701736489
10.1007/978-3-540-88688-4_37
10.1007/978-3-031-17299-1_1494
10.37134/ejsmt.vol7.1.3.2020
10.1207/S15327752JPA8001_18
10.1016/j.isprsjprs.2015.05.007
10.1590/0104-530X5677-20
10.1111/j.1467-8659.2007.01016.x
10.3832/ifor0547-003
10.3390/rs14030649
10.1016/j.apergo.2023.104218
10.1109/ACCESS.2017.2698164
10.3389/ffgc.2023.1224575
10.3354/cr030079
10.1016/j.compag.2022.106990
10.1348/000711006x126600
10.1037/met0000516
10.3390/f13122007
10.1016/j.compag.2005.02.001
10.5194/gmd-7-1247-2014
10.1007/s11165-016-9602-2
10.1016/j.compag.2023.107653
10.12968/indn.2024.6.28
10.3390/s24010112
10.1080/07038992.2016.1207484
10.1109/tpami.2020.3005434
10.3390/s22166028
10.5194/gmd-15-5481-2022
10.5116/ijme.4dfb.8dfd
10.3390/rs12040634
10.5194/isprs-archives-XLVIII-1-W3-2023-205-2023
10.3832/ifor4153-016
10.1007/s10531-009-9649-8
10.3390/logistics5040088
10.15177/seefor.11-06
10.1007/s11842-011-9164-0
10.1002/nur.4770130612
10.5194/isprsarchives-XL-3-157-2014
10.1145/3326362
10.14214/sf.10555
10.1078/1104-6899-00028
10.1136/thx.46.6.454
10.1016/j.jag.2022.102779
10.1111/cgf.14077
10.1016/j.cag.2022.01.008
10.3758/s13428-015-0623-y
10.1145/358669.358692
10.1007/978-3-030-19816-9_5
10.1016/j.compag.2019.04.002
10.1038/s41598-022-19212-6
10.1016/s0031-9406(05)61211-4
10.13073/FPJ-D-16-00039
10.1016/j.ijforecast.2006.03.001
10.3390/rs15123076
10.1016/j.foreco.2019.117484
10.1016/j.jcm.2016.02.012
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.3389/frsen.2025.1506838
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 2673-6187
ExternalDocumentID oai_doaj_org_article_60c62a2a1e2048cea83037a6f50fadb6
10_3389_frsen_2025_1506838
GroupedDBID 9T4
AAFWJ
AAYXX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
ARCSS
CITATION
GROUPED_DOAJ
M~E
OK1
ID FETCH-LOGICAL-c359t-969a6f2346c653079a819eec4c702d23e99d45d562b33cdde42f91ac2f5f1ed93
IEDL.DBID DOA
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001579705400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2673-6187
IngestDate Fri Oct 03 12:45:09 EDT 2025
Sat Nov 29 07:28:04 EST 2025
Tue Nov 18 21:18:16 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c359t-969a6f2346c653079a819eec4c702d23e99d45d562b33cdde42f91ac2f5f1ed93
OpenAccessLink https://doaj.org/article/60c62a2a1e2048cea83037a6f50fadb6
ParticipantIDs doaj_primary_oai_doaj_org_article_60c62a2a1e2048cea83037a6f50fadb6
crossref_primary_10_3389_frsen_2025_1506838
crossref_citationtrail_10_3389_frsen_2025_1506838
PublicationCentury 2000
PublicationDate 2025-09-12
PublicationDateYYYYMMDD 2025-09-12
PublicationDate_xml – month: 09
  year: 2025
  text: 2025-09-12
  day: 12
PublicationDecade 2020
PublicationTitle Frontiers in remote sensing
PublicationYear 2025
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Girardeau-Montaut (B39) 2016; 11
Koo (B62) 2016; 15
Wang (B110); 147
Tsioras (B107) 2010; 3
Ferketich (B31) 1990; 13
Tavakol (B102) 2011; 2
Chinn (B18) 1991; 46
Kazhdan (B59) 2006; 7
McGraw (B73) 1996; 1
Cavalli (B14) 2023
Niţă (B80) 2023; 205
Janák (B55) 2007; 58
Gwet (B45) 2001
B34
B35
Kazhdan (B60) 2020; 39
B36
Sammartano (B91) 2018; 10
Shrout (B96) 1979; 86
Ten Hove (B103) 2022; 29
B9
Proteau (B83) 2008; 9
Wasson (B114) 2006
Laan (B65)
Rankin (B87) 1998; 12
Girardeau-Montaut (B38) 2015
Müller (B77) 2019; 162
Armstrong (B3) 2001; 30
B41
de Miguel-Díez (B25) 2021; 12
Pasztory (B82) 2019; 3
Morin (B75) 2020; 222
Hyndman (B51) 2006; 22
Moskalik (B76) 2022; 22
Lin (B70) 2022; 14
Cronbach (B22) 1951; 16
Taber (B101) 2018; 48
Ioras (B54) 2009; 18
Gingras (B37) 2017
Guo (B44) 2020; 43
Ahmad (B1) 2020; 7
Hyyppä (B53) 2008; 29
Zhou (B119) 2022; 103
Laan (B64)
Goforth (B42) 2024
Revicki (B89) 2023
Bauwens (B4) 2016; 7
B52
Wang (B109) 2018
Chatzopoulos (B16) 2017; 5
Borz (B11); 13
Wang (B112) 2020; 12
de León (B24) 2013; 34
Dewez (B27) 2017; 32
Ljubojević (B71) 2011; 2
B106
Kruglov (B63) 2016
Sarker (B92) 2024; 35
Beland (B5) 2019; 450
Bobak (B7) 2018; 18
Li (B69) 2015
Lee (B67) 2022; 12
Alvites (B2) 2022; 14
Hohmann (B50) 2017; 10
Qi (B85) 2017
Panagiotidis (B81) 2021; 13
Warchoł (B113) 2023; 48
Cown (B21) 2005; 35
Chen (B17) 2015; 106
Toader (B105) 2005
B118
Mehrentsev (B74) 2019; 842
Janák (B56) 2012; 9
Niebles (B79) 2017
He (B47) 2021; 5
Tsioras (B108) 2012; 11
Bruton (B13) 2000; 86
Chai (B15) 2014; 7
Feng (B30) 2020; 27
Knyaz (B61) 2014; 40
Raguram (B86) 2008; 10
Šporčić (B98) 2024; 45
Borz (B10) 2022; 197
Bolles (B8) 1981; 1981
Purfürst (B84) 2023; 16
Singh (B97) 2022
Thomas (B104) 2017; 67
Berendt (B6) 2021; 55
Schnabel (B94) 2007; 26
Forkuo (B33) 2023; 6
Li (B68) 2017; 12
Hobbs-Murphy (B48) 2024; 116
de Miguel-Díez (B26) 2022; 109
Davis (B23) 2001
Gregory (B43) 2003; 9
Borz (B12); 13
Rauscher (B88) 2005; 49
Rusu (B90) 2009
Gwet (B46) 2008; 61
Cortina (B20) 1993; 78
Hodson (B49) 2022; 2022
Stăncioiu (B99) 2018; 76
Fischler (B32) 1981; 24
Lauri (B66) 2008; 81
Dong (B28) 2023; 15
Wang (B111); 38
White (B115) 2016; 42
Johnson (B58) 2021
B19
Yuan (B117) 2018
Malinen (B72) 2006; 45
Fang (B29) 2023; 24
Willmott (B116) 2005; 30
Nicolescu (B78) 2022
Jodłowski (B57) 2016
Sarode (B93) 2020
Streiner (B100) 2003; 80
Gisev (B40) 2013; 9
Shieh (B95) 2016; 48
References_xml – ident: B35
– volume: 45
  start-page: 183
  year: 2024
  ident: B98
  article-title: Shortage of labour force in forestry of Bosnia and Herzegovina–forestry experts' opinions on recruiting and retaining forestry workers
  publication-title: Croat. J. For. Eng.
  doi: 10.5552/crojfe.2024.2345
– volume: 1
  start-page: 30
  year: 1996
  ident: B73
  article-title: Forming inferences about some intraclass correlation coefficients
  publication-title: Psychol. Methods
  doi: 10.1037/1082-989X.1.1.30
– volume: 35
  start-page: 205
  year: 2005
  ident: B21
  article-title: Understanding and managing wood quality for improving product value in New Zealand
  publication-title: N. Z. J. For. Sci.
– ident: B41
– volume: 222
  start-page: 107508
  year: 2020
  ident: B75
  article-title: Machine learning-based models of sawmills for better wood allocation planning
  publication-title: Int. J. Prod. Econ.
  doi: 10.1016/j.ijpe.2019.09.029
– volume: 81
  start-page: 499
  year: 2008
  ident: B66
  article-title: The use of airborne laser scanning to estimate sawlog volumes
  publication-title: Forestry
  doi: 10.1093/forestry/cpn018
– volume: 7
  start-page: 127
  year: 2016
  ident: B4
  article-title: Forest inventory with terrestrial LiDAR: a comparison of static and hand-held mobile laser scanning
  publication-title: Forests
  doi: 10.3390/f7060127
– volume: 16
  start-page: 297
  year: 1951
  ident: B22
  article-title: Coefficient alpha and the internal structure of tests
  publication-title: Psychometrika
  doi: 10.1007/BF02310555
– start-page: 197
  year: 2015
  ident: B38
  article-title: CloudCompare: 3D point cloud and mesh processing software
  publication-title: Open Source Proj.
– start-page: 1248
  volume-title: Encycl. Autism spectr. Disord
  year: 2021
  ident: B58
  article-title: Cronbach’s alpha
  doi: 10.1007/978-3-319-91280-6_307
– volume: 14
  start-page: 4466
  year: 2022
  ident: B2
  article-title: LiDAR as a tool for assessing timber assortments: a systematic literature review
  publication-title: Remote Sens.
  doi: 10.3390/rs14184466
– volume-title: Stanford vision and learning lab
  year: 2017
  ident: B79
  article-title: Lecture: RANSAC and feature detectors
– volume: 78
  start-page: 98
  year: 1993
  ident: B20
  article-title: What is coefficient alpha? An examination of theory and applications
  publication-title: J. Appl. Psychol.
  doi: 10.1037/0021-9010.78.1.98
– volume: 11
  year: 2016
  ident: B39
  article-title: CloudCompare
  publication-title: Fr. EDF R&D Telecom ParisTech
– start-page: 306
  volume-title: Proceedings of the from theory to practice: challenges for forest engineering, Warsaw, Poland, 4–7 september 2016; department of forest utilization
  year: 2016
  ident: B57
  article-title: The use of photo-optical systems for measurement of stacked wood
– volume: 10
  start-page: 317
  year: 2018
  ident: B91
  article-title: Point clouds by SLAM-based mobile mapping systems: accuracy and geometric content validation in multisensor survey and stand-alone acquisition
  publication-title: Appl. Geomat.
  doi: 10.1007/s12518-018-0221-7
– volume: 13
  start-page: 1028
  ident: B11
  article-title: Potential of Measure app in estimating log biometrics: a comparison with conventional log measurement
  publication-title: Forests
  doi: 10.3390/f13071028
– volume: 76
  start-page: 487
  year: 2018
  ident: B99
  article-title: Forestland connectivity in Romania—implications for policy and management
  publication-title: Land Use Policy
  doi: 10.1016/j.landusepol.2018.02.028
– volume: 9
  start-page: 103
  year: 2012
  ident: B56
  article-title: Round wood measurement system
  publication-title: InTech Janeza Trdine
  doi: 10.5772/37519
– volume: 30
  start-page: 365
  year: 2001
  ident: B3
  article-title: Selecting forecasting methods
  publication-title: Princ. Forecast. Int. Ser. Oper. Res. Manag. Sci.
  doi: 10.1007/978-0-306-47630-3_16
– volume: 12
  start-page: 238
  year: 2021
  ident: B25
  article-title: Analysis of the influence that parameters crookedness and taper have on stack volume by using a 3D-simulation model of wood stacks
  publication-title: Forests
  doi: 10.3390/f12020238
– volume: 9
  start-page: 330
  year: 2013
  ident: B40
  article-title: Interrater agreement and interrater reliability: key concepts, approaches, and applications
  publication-title: Res. Soc. Adm. Pharm.
  doi: 10.1016/j.sapharm.2012.04.004
– volume: 34
  start-page: 311
  year: 2013
  ident: B24
  article-title: Theoretical evaluation of Huber and Smalian methods applied to tree stem classical geometries
  publication-title: Bosque
  doi: 10.4067/S0717-92002013000300007
– volume: 12
  start-page: 187
  year: 1998
  ident: B87
  article-title: Reliability of assessment tools in rehabilitation: an illustration of appropriate statistical analyses
  publication-title: Clin. Rehabil.
  doi: 10.1191/026921598672178340
– volume-title: UVA library StatLab
  year: 2024
  ident: B42
  article-title: Using and interpreting Cronbach's alpha
– volume: 13
  start-page: 3610
  year: 2021
  ident: B81
  article-title: Reliable estimates of merchantable timber volume from terrestrial laser scanning
  publication-title: Remote Sens.
  doi: 10.3390/rs13183610
– volume: 86
  start-page: 420
  year: 1979
  ident: B96
  article-title: Intraclass correlations: uses in assessing rater reliability
  publication-title: Psychol. Bull.
  doi: 10.1037/0033-2909.86.2.420
– ident: B9
– volume: 32
  start-page: 354
  year: 2017
  ident: B27
  article-title: Towards cavity‐collapse hazard maps with Zeb‐Revo handheld laser scanner point clouds
  publication-title: Photogramm. Rec.
  doi: 10.1111/phor.12223
– year: 2023
  ident: B14
  article-title: Consensus-adaptive RANSAC
  publication-title: arXiv Prepr. arXiv:2307.14030
  doi: 10.48550/arXiv.2307.14030
– volume: 35
  start-page: 67
  year: 2024
  ident: B92
  article-title: A comprehensive overview of deep learning techniques for 3D point cloud classification and semantic segmentation
  publication-title: Mach. Vis. Appl.
  doi: 10.1007/s00138-024-01543-1
– volume: 147
  start-page: 132
  ident: B110
  article-title: Is field-measured tree height as reliable as believed–A comparison study of tree height estimates from field measurement, airborne laser scanning and terrestrial laser scanning in a boreal forest
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2018.11.008
– ident: B118
– volume: 18
  start-page: 93
  year: 2018
  ident: B7
  article-title: Estimation of an inter-rater intra-class correlation coefficient that overcomes common assumption violations in the assessment of health measurement scales
  publication-title: BMC Med. Res. Methodol.
  doi: 10.1186/s12874-018-0550-6
– volume: 12
  start-page: e0183250
  year: 2017
  ident: B68
  article-title: Assessing the accuracy of predictive models for numerical data: not r nor r2, why not? Then what?
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0183250
– volume: 29
  start-page: 1339
  year: 2008
  ident: B53
  article-title: Review of methods of small‐footprint airborne laser scanning for extracting forest inventory data in boreal forests
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431160701736489
– volume: 10
  start-page: 500
  year: 2008
  ident: B86
  article-title: A comparative analysis of RANSAC techniques leading to adaptive real-time random sample consensus
  publication-title: Comput. Vis.–ECCV 2008 10th Eur. Conf. Comput. Vis
  doi: 10.1007/978-3-540-88688-4_37
– start-page: 3212
  volume-title: 2009 IEEE int. Conf. Robot. Autom.
  year: 2009
  ident: B90
  article-title: Fast point feature histograms (FPFH) for 3D registration
– start-page: 3579
  volume-title: Encyclopedia of quality of life and well-being research
  year: 2023
  ident: B89
  article-title: Internal consistency reliability
  doi: 10.1007/978-3-031-17299-1_1494
– start-page: 832p
  volume-title: System analysis, design and development. Concepts, principles and practices
  year: 2006
  ident: B114
– ident: B52
– year: 2015
  ident: B69
  article-title: Estimation of log volumes: a comparative study (No. FI-X-11)
  publication-title: Nat. Resour. Can., Can. For. Serv.
– start-page: 1029
  volume-title: 2020 int. Conf. 3D vis. 3DV
  year: 2020
  ident: B93
  article-title: MaskNet: a fully-convolutional network to estimate inlier points
– volume: 7
  start-page: 22
  year: 2020
  ident: B1
  article-title: A Comparative study of log volume estimation by using statistical method
  publication-title: Educ. - J. Sci. Math. Technol.
  doi: 10.37134/ejsmt.vol7.1.3.2020
– volume: 80
  start-page: 99
  year: 2003
  ident: B100
  article-title: Starting at the beginning: an introduction to coefficient alpha and internal consistency
  publication-title: J. Pers. Assess.
  doi: 10.1207/S15327752JPA8001_18
– volume: 106
  start-page: 95
  year: 2015
  ident: B17
  article-title: Modeling aboveground tree woody biomass using national-scale allometric methods and airborne lidar
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2015.05.007
– volume: 27
  start-page: e5677
  year: 2020
  ident: B30
  article-title: Forestry 4.0: a framework for the forest supply chain toward Industry 4.0
  publication-title: Gestão and Produção
  doi: 10.1590/0104-530X5677-20
– volume: 26
  start-page: 214
  year: 2007
  ident: B94
  article-title: Efficient RANSAC for point‐cloud shape detection
  publication-title: Comput. Graph. Forum
  doi: 10.1111/j.1467-8659.2007.01016.x
– volume: 3
  start-page: 118
  year: 2010
  ident: B107
  article-title: Perspectives of the forest workers in Greece
  publication-title: iForest - Biogeosc. For.
  doi: 10.3832/ifor0547-003
– volume: 14
  start-page: 649
  year: 2022
  ident: B70
  article-title: Comparative analysis of multi-platform, multi-resolution, multi-temporal LiDAR data for forest inventory
  publication-title: Remote Sens.
  doi: 10.3390/rs14030649
– volume: 116
  start-page: 104218
  year: 2024
  ident: B48
  article-title: Intra-rater and inter-rater reliability of 3D facial measurements
  publication-title: Appl. Ergon.
  doi: 10.1016/j.apergo.2023.104218
– volume: 5
  start-page: 6917
  year: 2017
  ident: B16
  article-title: Mobile augmented reality survey: from where we are to where we go
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2698164
– volume: 6
  start-page: 1224575
  year: 2023
  ident: B33
  article-title: Accuracy and inter-cloud precision of low-cost mobile LiDAR technology in estimating soil disturbance in forest operations
  publication-title: Front. For. Glob. Change
  doi: 10.3389/ffgc.2023.1224575
– volume-title: 3d scanner app: how mobile lidar is redefining professional 3d workflows
  ident: B65
– volume: 30
  start-page: 79
  year: 2005
  ident: B116
  article-title: Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance
  publication-title: Clim. Res.
  doi: 10.3354/cr030079
– volume: 197
  start-page: 106990
  year: 2022
  ident: B10
  article-title: Application and accuracy of smart technologies for measurements of roundwood: evaluation of time consumption and efficiency
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2022.106990
– volume: 3
  start-page: 5
  year: 2019
  ident: B82
  article-title: Comparison of different stack measuring methods
  publication-title: Sib. J. For. Sci.
– volume: 61
  start-page: 29
  year: 2008
  ident: B46
  article-title: Computing inter‐rater reliability and its variance in the presence of high agreement
  publication-title: Br. J. Math. Stat. Psychol.
  doi: 10.1348/000711006x126600
– volume: 29
  start-page: 967
  year: 2022
  ident: B103
  article-title: Updated guidelines on selecting an intraclass correlation coefficient for interrater reliability, with applications to incomplete observational designs
  publication-title: Psychol. Methods
  doi: 10.1037/met0000516
– volume: 10
  start-page: 27
  year: 2017
  ident: B50
  article-title: Harvester measuring system for trunk volume determination: comparison with the real trunk volume and applicability in the forest industry
  publication-title: Bull. Transilvania Univ. Brasov, Spec. Issue, Ser. II For. – Wood Ind. – Agric. Food Eng.
– volume: 13
  start-page: 2007
  ident: B12
  article-title: Postural assessment of three wood measurement options by the owas method: digital solutions seem to be better
  publication-title: Forests
  doi: 10.3390/f13122007
– volume-title: Forest management: to sustain ecological, economic, and social values
  year: 2001
  ident: B23
– volume: 49
  start-page: 1
  year: 2005
  ident: B88
  article-title: Decision-support systems for forest management
  publication-title: Comput. Electron. Agri.
  doi: 10.1016/j.compag.2005.02.001
– volume: 7
  start-page: 1247
  year: 2014
  ident: B15
  article-title: Root mean square error (RMSE) or mean absolute error (MAE)? Arguments against avoiding RMSE in the literature
  publication-title: Geosci. Model Dev.
  doi: 10.5194/gmd-7-1247-2014
– volume: 48
  start-page: 1273
  year: 2018
  ident: B101
  article-title: The use of Cronbach’s alpha when developing and reporting research instruments in science education
  publication-title: Res. Sci. Educ.
  doi: 10.1007/s11165-016-9602-2
– volume: 205
  start-page: 107653
  year: 2023
  ident: B80
  article-title: Accuracy of a smartphone-based freeware solution and two shape reconstruction algorithms in log volume measurements
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2023.107653
– ident: B106
  doi: 10.12968/indn.2024.6.28
– volume: 24
  start-page: 112
  year: 2023
  ident: B29
  article-title: Three-dimensional point cloud segmentation algorithm based on depth camera for large size model point cloud unsupervised class segmentation
  publication-title: Sensors
  doi: 10.3390/s24010112
– volume: 9
  start-page: 1
  year: 2008
  ident: B83
  article-title: Future shortage of forest workers drives home need for recruitment efforts
  publication-title: Link. Innov. Netw. Knowl.
– volume: 42
  start-page: 619
  year: 2016
  ident: B115
  article-title: Remote sensing technologies for enhancing forest inventories: a review
  publication-title: Can. J. Remote Sens.
  doi: 10.1080/07038992.2016.1207484
– volume: 43
  start-page: 4338
  year: 2020
  ident: B44
  article-title: Deep learning for 3d point clouds: a survey
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/tpami.2020.3005434
– volume: 22
  start-page: 6028
  year: 2022
  ident: B76
  article-title: Methods of wood volume determining and its implications for forest transport
  publication-title: Sensors
  doi: 10.3390/s22166028
– volume-title: Laan labs
  ident: B64
  article-title: 3d scanner app: capture anything in 3d
– volume: 2022
  start-page: 5481
  year: 2022
  ident: B49
  article-title: Root mean square error (RMSE) or mean absolute error (MAE): when to use them or not
  publication-title: Geosci. Model Dev. Discuss.
  doi: 10.5194/gmd-15-5481-2022
– volume: 7
  start-page: 61
  year: 2006
  ident: B59
  article-title: Poisson surface reconstruction
  publication-title: Proc. Eurogr. Symp. Geom. Process
– start-page: 652
  volume-title: Proc. IEEE conf. Comput. Vis. Pattern recognit.
  year: 2017
  ident: B85
  article-title: Pointnet: deep learning on point sets for 3d classification and segmentation
– volume: 2
  start-page: 53
  year: 2011
  ident: B102
  article-title: Making sense of Cronbach's alpha
  publication-title: Int. J. Med. Educ.
  doi: 10.5116/ijme.4dfb.8dfd
– volume: 12
  start-page: 634
  year: 2020
  ident: B112
  article-title: Structure-aware convolution for 3D point cloud classification and segmentation
  publication-title: Remote Sens.
  doi: 10.3390/rs12040634
– volume: 48
  start-page: 205
  year: 2023
  ident: B113
  article-title: Selected qualitative aspects of LiDAR point clouds: GeoSLAM ZEB-REVO and faro focus 3D X130
  publication-title: Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. - ISPRS Arch.
  doi: 10.5194/isprs-archives-XLVIII-1-W3-2023-205-2023
– volume: 16
  start-page: 243
  year: 2023
  ident: B84
  article-title: Comparison of wood stack volume determination between manual, photo-optical, iPad-LiDAR and handheld-LiDAR based measurement methods
  publication-title: iForest - Biogeosc. For.
  doi: 10.3832/ifor4153-016
– volume: 18
  start-page: 3395
  year: 2009
  ident: B54
  article-title: Conservation gains through HCVF assessments in Bosnia-Herzegovina and Romania
  publication-title: Biodivers. Conserv.
  doi: 10.1007/s10531-009-9649-8
– volume-title: First int. Workshop pattern recognit
  year: 2016
  ident: B63
  article-title: Development of the rounded objects automatic detection method for the log deck volume measurement
– start-page: 728
  volume-title: 2018 int. Conf. 3D vis. (3DV)
  year: 2018
  ident: B117
  article-title: PCN: point completion network
– start-page: 223
  volume-title: Handbook of inter-rater reliability
  year: 2001
  ident: B45
– ident: B34
– volume-title: Bangor: 2017 COFE annu. Meet
  year: 2017
  ident: B37
  article-title: FP innovations forestry 4.0 initiative
– volume: 5
  start-page: 88
  year: 2021
  ident: B47
  article-title: A systematic review on technologies and Industry 4.0 in the forest supply chain: a framework identifying challenges and opportunities
  publication-title: Logist
  doi: 10.3390/logistics5040088
– volume: 2
  start-page: 51
  year: 2011
  ident: B71
  article-title: Conversion coefficients for distilling wood in running standards and everyday practice
  publication-title: South-East Eur. For.
  doi: 10.15177/seefor.11-06
– year: 2022
  ident: B97
  article-title: 3 regression metrics you must know: MAE, MSE, and RMSE
  publication-title: Proclus Acad
– volume: 11
  start-page: 1
  year: 2012
  ident: B108
  article-title: Status and job satisfaction of Greek forest workers
  publication-title: Small-Scale For
  doi: 10.1007/s11842-011-9164-0
– volume: 1981
  start-page: 637
  year: 1981
  ident: B8
  article-title: A RANSAC-based approach to model fitting and its application to finding cylinders in range data
  publication-title: IJCAI
– volume: 45
  start-page: 89
  year: 2006
  ident: B72
  article-title: Variation in the value recovery when bucking to alternative timber assortments and log dimensions
  publication-title: For. Stud
– volume: 13
  start-page: 437
  year: 1990
  ident: B31
  article-title: Internal consistency estimates of reliability
  publication-title: Res. Nurs. Health
  doi: 10.1002/nur.4770130612
– volume: 40
  start-page: 157
  year: 2014
  ident: B61
  article-title: Photogrammetric technique for timber stack volume contol
  publication-title: Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci.
  doi: 10.5194/isprsarchives-XL-3-157-2014
– volume: 38
  start-page: 1
  ident: B111
  article-title: Dynamic graph cnn for learning on point clouds
  publication-title: ACM Trans. Graph.
  doi: 10.1145/3326362
– volume: 55
  start-page: 1
  year: 2021
  ident: B6
  article-title: Reliability of photo-optical measurements of log stack gross volume
  publication-title: Silva Fenn.
  doi: 10.14214/sf.10555
– volume: 9
  start-page: 137
  year: 2003
  ident: B43
  article-title: Econometric analyses of nonindustrial forest landowners: is there anything left to study?
  publication-title: J. For. Econ.
  doi: 10.1078/1104-6899-00028
– volume: 46
  start-page: 454
  year: 1991
  ident: B18
  article-title: Statistics in respiratory medicine. 2. Repeatability and method comparison
  publication-title: Thorax
  doi: 10.1136/thx.46.6.454
– start-page: 269
  volume-title: Romanian forests: national parks and natural parks
  year: 2005
  ident: B105
– volume: 109
  start-page: 102779
  year: 2022
  ident: B26
  article-title: Further application of using a personal laser scanner and simultaneous localization and mapping technology to estimate the log’s volume and its comparison with traditional methods
  publication-title: Int. J. Appl. Earth Obs. Geoinf
  doi: 10.1016/j.jag.2022.102779
– volume: 39
  start-page: 173
  year: 2020
  ident: B60
  article-title: Poisson surface reconstruction with envelope constraints
  publication-title: Compt. Graph. Forum
  doi: 10.1111/cgf.14077
– volume: 103
  start-page: 90
  year: 2022
  ident: B119
  article-title: MaskNet++: inlier/outlier identification for two point clouds
  publication-title: Comput. Graph.
  doi: 10.1016/j.cag.2022.01.008
– volume: 48
  start-page: 994
  year: 2016
  ident: B95
  article-title: Choosing the best index for the average score intraclass correlation coefficient
  publication-title: Behav. Res. Methods
  doi: 10.3758/s13428-015-0623-y
– volume: 24
  start-page: 381
  year: 1981
  ident: B32
  article-title: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography
  publication-title: Commun. ACM
  doi: 10.1145/358669.358692
– ident: B36
– volume: 842
  start-page: 56
  year: 2019
  ident: B74
  article-title: The algorithm and software for timber batch measurement by using image analysis
  publication-title: Motion Imaging Data
  doi: 10.1007/978-3-030-19816-9_5
– volume: 58
  start-page: 127
  year: 2007
  ident: B55
  article-title: Differences in round wood measurements using electronic 2D and 3D systems and standard manual method
  publication-title: Drv. Ind.
– start-page: 39
  volume-title: 1.1 Romanian forests and forestry: an overview. Plan B for Romania’s forests and society
  year: 2022
  ident: B78
– start-page: 43
  volume-title: Proc. 31st int. Conf. Comput. Animat. Soc. Agents
  year: 2018
  ident: B109
  article-title: Large-scale 3D point cloud classification based on feature description matrix by CNN
– volume: 162
  start-page: 206
  year: 2019
  ident: B77
  article-title: Digitization in wood supply–A review on how Industry 4.0 will change the forest value chain
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2019.04.002
– volume: 12
  start-page: 14864
  year: 2022
  ident: B67
  article-title: 3D convolutional neural network for machining feature recognition with gradient-based visual explanations from 3D CAD models
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-022-19212-6
– volume: 86
  start-page: 94
  year: 2000
  ident: B13
  article-title: Reliability: what is it, and how is it measured?
  publication-title: Physiother
  doi: 10.1016/s0031-9406(05)61211-4
– volume: 67
  start-page: 250
  year: 2017
  ident: B104
  article-title: An analysis of the differences among log scaling methods and actual log volume
  publication-title: For. Prod. J.
  doi: 10.13073/FPJ-D-16-00039
– volume: 22
  start-page: 679
  year: 2006
  ident: B51
  article-title: Another look at measures of forecast accuracy
  publication-title: Int. J. Forecast.
  doi: 10.1016/j.ijforecast.2006.03.001
– volume: 15
  start-page: 3076
  year: 2023
  ident: B28
  article-title: A novel filtering method of 3d reconstruction point cloud from tomographic SAR
  publication-title: Remote Sens.
  doi: 10.3390/rs15123076
– volume: 450
  start-page: 117484
  year: 2019
  ident: B5
  article-title: On promoting the use of lidar systems in forest ecosystem research
  publication-title: For. Ecol. Manag.
  doi: 10.1016/j.foreco.2019.117484
– ident: B19
– volume: 15
  start-page: 155
  year: 2016
  ident: B62
  article-title: A guideline of selecting and reporting intraclass correlation coefficients for reliability research
  publication-title: J. Chiropr. Med.
  doi: 10.1016/j.jcm.2016.02.012
SSID ssj0002849398
Score 2.3032298
Snippet Producing reliable log volume data is an essential feature in an effective wood supply chain, and LiDAR sensing, supported by portable platforms, is a...
SourceID doaj
crossref
SourceType Open Website
Enrichment Source
Index Database
SubjectTerms big data
comparison
experience
lidar sensing
measurement
post-processing
Title Intra- and inter-rater reliability in log volume estimation based on LiDAR data and shape reconstruction algorithms: a case study on poplar logs
URI https://doaj.org/article/60c62a2a1e2048cea83037a6f50fadb6
Volume 6
WOSCitedRecordID wos001579705400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: Directory of Open Access Journals
  customDbUrl:
  eissn: 2673-6187
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002849398
  issn: 2673-6187
  databaseCode: DOA
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2673-6187
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002849398
  issn: 2673-6187
  databaseCode: M~E
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dSxwxEA9FhPoiapVateTBt5K6m2Q_4psfJy3Yo0gF35Zkku2dXO-O3UPwpX-Df7Iz2fW4J33xZVmWTDZkJjPzC8lvGDt2oXaFBycSACl0sLjmMFCKNAOHCYFCIR2LTRTDYXl3Z36vlPqiM2EdPXA3cSd5Arm00qaBKGYh2BKdbmHzOktq610k204KswKm7uOWkTbKlN0tGURh5qRu2kB8pzL7TqR6JV1IWYlEK4T9MbJcbbHNPiXkZ91QttmHMN1hH_vq5KPHT-zpJ-3ACo6gnxO9QyOI36HhTZiMO5rtR_zO0Yvxztlwos7o7iRyClOe48v1-PLshtOJ0NhRO7LzwCMeXnLIcjv5O2vGi9G_9pRbDijKI_8syc9nc0TB9Jd2l91eDf5c_BB9JQUBKjMLYXKDMyaVziHPcFUbi4lACKChSKSXKhjjdeYxF3JKAXo8LWuTWpB1VqfBG7XH1qazafjMeIpRzyagyiCdRvDmCgdFqWqvy9yXId1n6cusVtDTjFO1i0mFcIM0UUVNVKSJqtfEPvu2lJl3JBuvtj4nZS1bEkF2_IBmU_VmU71lNl_eo5MDtkEDE7GixCFbQ22FI7YOD4tx23yNFonPX_8HzyMp6cA
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intra-+and+inter-rater+reliability+in+log+volume+estimation+based+on+LiDAR+data+and+shape+reconstruction+algorithms%3A+a+case+study+on+poplar+logs&rft.jtitle=Frontiers+in+remote+sensing&rft.au=Forkuo%2C+Gabriel+Osei&rft.au=Borz%2C+Stelian+Alexandru&rft.date=2025-09-12&rft.issn=2673-6187&rft.eissn=2673-6187&rft.volume=6&rft_id=info:doi/10.3389%2Ffrsen.2025.1506838&rft.externalDBID=n%2Fa&rft.externalDocID=10_3389_frsen_2025_1506838
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2673-6187&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2673-6187&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2673-6187&client=summon