Generalized Exponentiated Gradient Algorithms and Their Application to On-Line Portfolio Selection
Stochastic gradient descent (SGD) and exponentiated gradient (EG) update methods are widely used in signal processing and machine learning. This study introduces a novel family of generalized Exponentiated Gradient updates (EGAB) derived from the alpha-beta (AB) divergence regularization. The EGAB f...
Uložené v:
| Vydané v: | IEEE access Ročník 12; s. 197000 - 197020 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Piscataway
IEEE
2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 2169-3536, 2169-3536 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Stochastic gradient descent (SGD) and exponentiated gradient (EG) update methods are widely used in signal processing and machine learning. This study introduces a novel family of generalized Exponentiated Gradient updates (EGAB) derived from the alpha-beta (AB) divergence regularization. The EGAB framework provides enhanced flexibility for processing data with varying distributions, thanks to the tunable hyperparameters of the AB divergence. We explore the applicability of these updates in online portfolio selection (OLPS) for financial markets with the goal of developing algorithms that achieve high risk-adjusted returns, even under relatively high transaction costs. The proposed EGAB algorithms are developed using constrained gradient optimization with regularization terms, demonstrating their versatility in OLPS by unifying the directional search of various algorithms and enabling interpolation between them. Our analysis and extensive computer simulations reveal that EGAB updates outperform existing OLPS algorithms, delivering good results on several performance metrics, such as cumulative return, average excess return, Sharpe ratio, and Calmar ratio, especially when transaction costs are significant. In conclusion, this study introduces a new family of exponentiated gradient updates and demonstrates their flexibility and effectiveness through extensive simulations across a wide range of real-world financial datasets. |
|---|---|
| AbstractList | Stochastic gradient descent (SGD) and exponentiated gradient (EG) update methods are widely used in signal processing and machine learning. This study introduces a novel family of generalized Exponentiated Gradient updates (EGAB) derived from the alpha-beta (AB) divergence regularization. The EGAB framework provides enhanced flexibility for processing data with varying distributions, thanks to the tunable hyperparameters of the AB divergence. We explore the applicability of these updates in online portfolio selection (OLPS) for financial markets with the goal of developing algorithms that achieve high risk-adjusted returns, even under relatively high transaction costs. The proposed EGAB algorithms are developed using constrained gradient optimization with regularization terms, demonstrating their versatility in OLPS by unifying the directional search of various algorithms and enabling interpolation between them. Our analysis and extensive computer simulations reveal that EGAB updates outperform existing OLPS algorithms, delivering good results on several performance metrics, such as cumulative return, average excess return, Sharpe ratio, and Calmar ratio, especially when transaction costs are significant. In conclusion, this study introduces a new family of exponentiated gradient updates and demonstrates their flexibility and effectiveness through extensive simulations across a wide range of real-world financial datasets. |
| Author | Tanaka, Toshihisa Sarmiento, Auxiliadora Cruces, Sergio Cichocki, Andrzej |
| Author_xml | – sequence: 1 givenname: Andrzej surname: Cichocki fullname: Cichocki, Andrzej organization: Polish Academy of Science, Systems Research Institute, Warszawa, Poland – sequence: 2 givenname: Sergio orcidid: 0000-0003-4121-7137 surname: Cruces fullname: Cruces, Sergio email: sergio@us.es organization: Departamento de Teoría de la Señal y Comunicaciones, Universidad de Sevilla, Seville, Spain – sequence: 3 givenname: Auxiliadora orcidid: 0000-0003-2587-1382 surname: Sarmiento fullname: Sarmiento, Auxiliadora organization: Departamento de Teoría de la Señal y Comunicaciones, Universidad de Sevilla, Seville, Spain – sequence: 4 givenname: Toshihisa orcidid: 0000-0002-5056-9508 surname: Tanaka fullname: Tanaka, Toshihisa organization: Department of Electrical Engineering and Computer Science, Tokyo University of Agriculture and Technology, Koganei-shi, Tokyo, Japan |
| BookMark | eNpNUU1r3DAQFSGF5usXNAdBz95KlmRJx2XZbAMLCWx6FrI0TrQ4kisr0PbXV1uHkrnM53szzLtE5zFFQOgLJStKif623my2h8OqJS1fMdESpvQZumhppxsmWHf-If6Mbub5SKqpWhLyAvU7iJDtGP6Ax9tfU6WOJdhSs122PtQMr8fnlEN5eZ2xjR4_vUDIeD1NY3C2hBRxSfghNvsQAT-mXIY0hoQPMII7ta_Rp8GOM9y8-yv04277tPne7B9295v1vnFM6NLo1oPolKJcgmOsB0Us85rrwWnfekE7xYe-dVxq5pi3ne61G7Tg1tu-5R27QvcLr0_2aKYcXm3-bZIN5l8h5WdjcwluBEOkk5IMVEM3cE-98sBZr4mknhGQqnJ9XbimnH6-wVzMMb3lWM83jAoihKw_rFNsmXI5zXOG4f9WSsxJG7NoY07amHdtKup2QQUA-IBQdX2n2F_LwIzA |
| CODEN | IAECCG |
| Cites_doi | 10.1016/j.ins.2022.01.073 10.1007/s10618-023-00990-0 10.3390/e12061532 10.1111/1467-9965.00058 10.1007/11785231_58 10.1007/s10994-012-5281-z 10.1111/j.1467-9965.1991.tb00002.x 10.1016/j.eswa.2021.115889 10.3390/e13010134 10.1023/a:1007424614876 10.1109/18.485708 10.1007/978-3-031-45170-6_19 10.1145/225058.225121 10.1109/78.923303 10.1111/j.2517-6161.1964.tb00553.x 10.1080/01605682.2020.1848358 10.1162/089976602760128045 10.3390/math12070956 10.1109/ijcnn.2008.4634288 10.1109/TKDE.2016.2563433 10.1007/s10614-023-10430-2 10.1145/2512962 10.1016/j.neucom.2021.04.112 10.1006/inco.1996.2612 10.1093/biomet/85.3.549 10.1016/j.artint.2015.01.006 10.1109/ACCESS.2023.3278980 10.1007/s10878-021-00800-7 10.1002/9780470747278 10.3390/computers5010001 10.1007/s10957-018-1428-9 10.1007/978-4-431-55978-8 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
| DOI | 10.1109/ACCESS.2024.3520389 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Materials Research Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2169-3536 |
| EndPage | 197020 |
| ExternalDocumentID | oai_doaj_org_article_07c770f19e6f4d1d8de43b9071d30e78 10_1109_ACCESS_2024_3520389 10807168 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: MICIU/AEI/10.13039/501100011033 grantid: PID2021-123090NB-I00 – fundername: ERDF/EU – fundername: PAIDI Andalucian grantid: P20_01173; US-1264994/FEDER, EU – fundername: Institute Global Innovation Research (GIR), Tokyo University of Agriculture and Technology (TAUT), Tokyo, Japan |
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c359t-92de5688147ec33be80a3d949fc9d2d51684fb2c4793c3da69b9cf954adab2463 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001387130900046&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2169-3536 |
| IngestDate | Fri Oct 03 12:50:48 EDT 2025 Mon Jun 30 13:27:45 EDT 2025 Sat Nov 29 04:27:16 EST 2025 Wed Aug 27 02:02:12 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0/legalcode |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c359t-92de5688147ec33be80a3d949fc9d2d51684fb2c4793c3da69b9cf954adab2463 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-5056-9508 0000-0003-4121-7137 0000-0003-2587-1382 |
| OpenAccessLink | https://ieeexplore.ieee.org/document/10807168 |
| PQID | 3150557000 |
| PQPubID | 4845423 |
| PageCount | 21 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_07c770f19e6f4d1d8de43b9071d30e78 ieee_primary_10807168 crossref_primary_10_1109_ACCESS_2024_3520389 proquest_journals_3150557000 |
| PublicationCentury | 2000 |
| PublicationDate | 20240000 2024-00-00 20240101 2024-01-01 |
| PublicationDateYYYYMMDD | 2024-01-01 |
| PublicationDate_xml | – year: 2024 text: 20240000 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE access |
| PublicationTitleAbbrev | Access |
| PublicationYear | 2024 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | Lim (ref17) 2022 ref14 ref52 Nock (ref15) 2023 ref16 Kullback (ref24) 1997 ref19 ref18 Cornford (ref53) 2024 ref50 Apostol (ref34) 1967; 1 ref46 ref45 ref47 Nemirovsky (ref3) 1983 ref41 ref44 Huang (ref26) Majidi (ref9) 2021 ref49 ref8 ref7 ref4 ref6 ref5 Basu (ref29) 1998; 85 ref40 Cruces (ref42) 2024 ref35 ref37 D’Orazio (ref22) 2021 ref36 ref31 ref30 Amid (ref12); 125 ref2 ref39 Box (ref33) 1964; 26 ref38 Li (ref43) 2016; 17 Tsai (ref48); 201 ref23 Regli (ref51) 2018 ref20 Amid (ref13) 2022 ref21 ref27 Amid (ref11); 33 Itakura (ref25) Ghai (ref10); 117 Bertsekas (ref1) 2015 Minka (ref28) 2005 Tsallis (ref32) 1994; 17 |
| References_xml | – ident: ref52 doi: 10.1016/j.ins.2022.01.073 – ident: ref19 doi: 10.1007/s10618-023-00990-0 – volume: 33 start-page: 8430 volume-title: Proc. 34th Int. Conf. Neural Inf. Process. Syst. (NIPS) ident: ref11 article-title: Reparameterizing mirror descent as gradient descent – ident: ref27 doi: 10.3390/e12061532 – ident: ref7 doi: 10.1111/1467-9965.00058 – ident: ref31 doi: 10.1007/11785231_58 – ident: ref38 doi: 10.1007/s10994-012-5281-z – ident: ref35 doi: 10.1111/j.1467-9965.1991.tb00002.x – ident: ref47 doi: 10.1016/j.eswa.2021.115889 – ident: ref23 doi: 10.3390/e13010134 – ident: ref8 doi: 10.1023/a:1007424614876 – ident: ref36 doi: 10.1109/18.485708 – ident: ref20 doi: 10.1007/978-3-031-45170-6_19 – volume-title: Problem Complexity and Method Efficiency in Optimization year: 1983 ident: ref3 – ident: ref6 doi: 10.1145/225058.225121 – ident: ref49 doi: 10.1109/78.923303 – volume: 26 start-page: 211 issue: 2 year: 1964 ident: ref33 article-title: An analysis of transformations publication-title: J. Roy. Stat. Society. Ser. B doi: 10.1111/j.2517-6161.1964.tb00553.x – start-page: 17 volume-title: Proc. 6th Int. Congr. Acoust. ident: ref25 article-title: Analysis synthesis telephony based on the maximum likelihood method – volume: 1 volume-title: Calculus year: 1967 ident: ref34 – ident: ref45 doi: 10.1080/01605682.2020.1848358 – start-page: 36 volume-title: Information Theory and Statistics year: 1997 ident: ref24 – volume-title: Divergence measures and message passing year: 2005 ident: ref28 – ident: ref30 doi: 10.1162/089976602760128045 – ident: ref46 doi: 10.3390/math12070956 – volume-title: arXiv:1805.01045 year: 2018 ident: ref51 article-title: Alpha-beta divergence for variational inference – ident: ref21 doi: 10.1109/ijcnn.2008.4634288 – volume-title: arXiv:2110.15412 year: 2021 ident: ref22 article-title: Stochastic mirror descent: Convergence analysis and adaptive variants via the mirror stochastic polyak stepsize – ident: ref41 doi: 10.1109/TKDE.2016.2563433 – ident: ref16 doi: 10.1007/s10614-023-10430-2 – ident: ref37 doi: 10.1145/2512962 – ident: ref18 doi: 10.1016/j.neucom.2021.04.112 – start-page: 720 volume-title: Proc. 32nd Int. Conf. Mach. Learn. ident: ref26 article-title: Log-Euclidean metric learning on symmetric positive definite manifold with application to image set classification – ident: ref5 doi: 10.1006/inco.1996.2612 – volume-title: arXiv:2202.00145 year: 2022 ident: ref13 article-title: Step-size adaptation using exponentiated gradient updates – volume-title: arXiv:2208.14749 year: 2022 ident: ref17 article-title: A quantum online portfolio optimization algorithm – volume: 201 start-page: 1481 volume-title: Proc. Int. Conf. Algorithmic Learn. Theory ident: ref48 article-title: Online self-concordant and relatively smooth minimization, with applications to online portfolio selection and learning quantum states – volume: 117 start-page: 386 volume-title: Proc. 31st Int. Conf. Algorithmic Learn. Theory ident: ref10 article-title: Exponentiated gradient meets gradient descent – volume: 17 start-page: 468 issue: 6 year: 1994 ident: ref32 article-title: What are the numbers that experiments provide publication-title: Química Nova – volume-title: Implementation of exponentiated gradient algorithms based on alpha-beta divergences for OLPS year: 2024 ident: ref42 – volume: 125 start-page: 163 volume-title: Proc. 33rd Int. Conf. Algorithmic Learn. Theory ident: ref12 article-title: Winnowing with gradient descent – volume: 85 start-page: 549 issue: 3 year: 1998 ident: ref29 article-title: Robust and efficient estimation by minimising a density power divergence publication-title: Biometrika doi: 10.1093/biomet/85.3.549 – ident: ref39 doi: 10.1016/j.artint.2015.01.006 – ident: ref40 doi: 10.1109/ACCESS.2023.3278980 – ident: ref44 doi: 10.1007/s10878-021-00800-7 – volume: 17 start-page: 1242 issue: 1 year: 2016 ident: ref43 article-title: OLPS: A toolbox for on-line portfolio selection publication-title: J. Mach. Learn. Res. – ident: ref4 doi: 10.1002/9780470747278 – ident: ref14 doi: 10.3390/computers5010001 – ident: ref50 doi: 10.1007/s10957-018-1428-9 – start-page: 233 volume-title: Convex Optimization Algorithms year: 2015 ident: ref1 – start-page: 1 year: 2024 ident: ref53 article-title: Brain-like learning with exponentiated gradients publication-title: bioRxiv – volume-title: arXiv:2104.01493 year: 2021 ident: ref9 article-title: Exponentiated gradient reweighting for robust training under label noise and beyond – volume-title: arXiv:2306.05487 year: 2023 ident: ref15 article-title: Boosting with tempered exponential measures – ident: ref2 doi: 10.1007/978-4-431-55978-8 |
| SSID | ssj0000816957 |
| Score | 2.300115 |
| Snippet | Stochastic gradient descent (SGD) and exponentiated gradient (EG) update methods are widely used in signal processing and machine learning. This study... |
| SourceID | doaj proquest crossref ieee |
| SourceType | Open Website Aggregation Database Index Database Publisher |
| StartPage | 197000 |
| SubjectTerms | Additives Algorithms Alpha-beta divergences Cost function Costs Data processing exponentiated gradient algorithms Flexibility Machine learning Machine learning algorithms on-line portfolio selection Performance measurement Portfolios Probability distribution Regularization Signal processing algorithms Vectors |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELXQigM9ID5asbAgHziS1o4dO3NcVrtwQAWJturN8ldgpTZZ7Yaq4tczdlLYigMXrnYk228Szxt78oaQt5UGzWMJRQneFbIRtrAuiCJIHtFdOatybcCLT_r0tL68hC97pb5STtggDzwAd8K015o1HKJqZOChDlEKhyEdD4JFnX_zZRr2gqm8B9dcQaVHmSHO4GS-WOCKMCAs5TGSjqQrd88VZcX-scTKX_tydjarJ-TxyBLpfJjdU_Igts_IwZ524HPiRsHo9c8Y6PJ207Up7weZY6AftjmPq6fzq28dBv_fr3fUtoGepUsBOv9zZU37jn5uC4xHI00ppU13te7o11waB7sPyflqebb4WIwFEwovKugLKEOsVF1zqaMXwsWaWRFAQuMhlKHiqpaNK306TfMiWAUOfAOVtMG6UipxRCYtTvcFoUgMnEDvhQRGSCsri1TCMot0TvlSNXpK3t1hZzaDLobJ8QQDM0BtEtRmhHpK3id8fz-aRK1zA5rajKY2_zL1lBwm6-yNV2OfwvbZnbnM-AXujECmm-TFGHv5P8Z-RR6l9QyHLzMy6bc_4mvy0N_06932TX75fgGeDdsS priority: 102 providerName: Directory of Open Access Journals |
| Title | Generalized Exponentiated Gradient Algorithms and Their Application to On-Line Portfolio Selection |
| URI | https://ieeexplore.ieee.org/document/10807168 https://www.proquest.com/docview/3150557000 https://doaj.org/article/07c770f19e6f4d1d8de43b9071d30e78 |
| Volume | 12 |
| WOSCitedRecordID | wos001387130900046&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB7RigM98GoRW0rlA0eydWInjo_LagsHKEi01d4svwIrLclqN1shDvx2xo5bWiEOvURRHortL8l8Mx5_A_CmFFLkvpBZIa3JeMN0po1jmeO5R3NldBVrA15-FGdn9Xwuv6TF6nEtjPc-Jp_5cdiNc_mus9sQKjsJ-XDI7-sd2BGiGhZr3QRUQgUJWYqkLJRTeTKZTrET6AMWfIw8I0jJ3bE-UaQ_VVX551cc7cvpk3u27Ck8TkSSTAbkn8ED3z6HvVvygvtgkqb04pd3ZPZz1bUhNQjJpSPv1zHVqyeT5bduvei__9gQ3TpyHuYNyOTvrDbpO_K5zdBl9SRknTbdctGRr7F6Dp4-gIvT2fn0Q5ZqKmSWlbLPZOF8WdV1zoW3jBlfU82c5LKx0hWuxD7wxhQ2BNwsc7qSRtpGllw7bQpesRew22JzXwJB7mAYGjjkOIxrXmpkG5pqZHyVLapGjODt9Vir1SCdoaLLQaUaoFEBGpWgGcG7gMfNpUH3Oh7AgVbpM1JUWCFok0tfNdzlrnaeM4MOfu4Y9aIewUEA59bzBlxGcHQNr0of6UYxJMNBgYzSw__c9goehSYOIZcj2O3XW_8aHtqrfrFZH0f_Hbeffs-O47v4B2pU2xA |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5BQYIeeBaxUMAHjqR1bCeOj8uqpYhlQWJBvVl-BVYqSbWbVohfz9hxSxHiwC3KQ7H9xZlvxuNvAF5WUskyMFUw5WwhWm4KYz0vvCgDmitr6lQb8MtcLhbN8bH6mDerp70wIYSUfBb24mFay_e9O4uhsv2YD4f8vrkONyohGB23a12GVGINCVXJrC1UUrU_nc2wG-gFMrGHTCOKyf1hf5JMf66r8tfPOFmYw7v_2bZ7cCdTSTIdsb8P10L3ALavCAw-BJtVpVc_gycHP077LiYHIb305M06JXsNZHrytV-vhm_fN8R0nizjygGZ_l7XJkNPPnQFOq2BxLzTtj9Z9eRTqp-Dl3fg8-HBcnZU5KoKheOVGgrFfKjqpimFDI5zGxpquFdCtU555ivsg2gtczHk5rg3tbLKtaoSxhvLRM0fwVaHzX0MBNmD5WjikOVwYURlkG8YapDz1Y7VrZzAq4ux1qejeIZOTgdVeoRGR2h0hmYCryMel7dG5et0Agda54mkqXRS0rZUoW6FL33jg-AWXfzScxpkM4GdCM6V9424TGD3Al6dp-lGc6TDUYOM0if_eOwF3Dpavp_r-dvFu6dwOzZ3DMDswtawPgvP4KY7H1ab9fP0Lf4CobLcMQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Generalized+Exponentiated+Gradient+Algorithms+and+Their+Application+to+On-Line+Portfolio+Selection&rft.jtitle=IEEE+access&rft.au=Cichocki%2C+Andrzej&rft.au=Cruces%2C+Sergio&rft.au=Sarmiento%2C+Auxiliadora&rft.au=Tanaka%2C+Toshihisa&rft.date=2024&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=12&rft.spage=197000&rft.epage=197020&rft_id=info:doi/10.1109%2FACCESS.2024.3520389&rft.externalDocID=10807168 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |