Generalized Exponentiated Gradient Algorithms and Their Application to On-Line Portfolio Selection

Stochastic gradient descent (SGD) and exponentiated gradient (EG) update methods are widely used in signal processing and machine learning. This study introduces a novel family of generalized Exponentiated Gradient updates (EGAB) derived from the alpha-beta (AB) divergence regularization. The EGAB f...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE access Ročník 12; s. 197000 - 197020
Hlavní autori: Cichocki, Andrzej, Cruces, Sergio, Sarmiento, Auxiliadora, Tanaka, Toshihisa
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Piscataway IEEE 2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:2169-3536, 2169-3536
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Stochastic gradient descent (SGD) and exponentiated gradient (EG) update methods are widely used in signal processing and machine learning. This study introduces a novel family of generalized Exponentiated Gradient updates (EGAB) derived from the alpha-beta (AB) divergence regularization. The EGAB framework provides enhanced flexibility for processing data with varying distributions, thanks to the tunable hyperparameters of the AB divergence. We explore the applicability of these updates in online portfolio selection (OLPS) for financial markets with the goal of developing algorithms that achieve high risk-adjusted returns, even under relatively high transaction costs. The proposed EGAB algorithms are developed using constrained gradient optimization with regularization terms, demonstrating their versatility in OLPS by unifying the directional search of various algorithms and enabling interpolation between them. Our analysis and extensive computer simulations reveal that EGAB updates outperform existing OLPS algorithms, delivering good results on several performance metrics, such as cumulative return, average excess return, Sharpe ratio, and Calmar ratio, especially when transaction costs are significant. In conclusion, this study introduces a new family of exponentiated gradient updates and demonstrates their flexibility and effectiveness through extensive simulations across a wide range of real-world financial datasets.
AbstractList Stochastic gradient descent (SGD) and exponentiated gradient (EG) update methods are widely used in signal processing and machine learning. This study introduces a novel family of generalized Exponentiated Gradient updates (EGAB) derived from the alpha-beta (AB) divergence regularization. The EGAB framework provides enhanced flexibility for processing data with varying distributions, thanks to the tunable hyperparameters of the AB divergence. We explore the applicability of these updates in online portfolio selection (OLPS) for financial markets with the goal of developing algorithms that achieve high risk-adjusted returns, even under relatively high transaction costs. The proposed EGAB algorithms are developed using constrained gradient optimization with regularization terms, demonstrating their versatility in OLPS by unifying the directional search of various algorithms and enabling interpolation between them. Our analysis and extensive computer simulations reveal that EGAB updates outperform existing OLPS algorithms, delivering good results on several performance metrics, such as cumulative return, average excess return, Sharpe ratio, and Calmar ratio, especially when transaction costs are significant. In conclusion, this study introduces a new family of exponentiated gradient updates and demonstrates their flexibility and effectiveness through extensive simulations across a wide range of real-world financial datasets.
Author Tanaka, Toshihisa
Sarmiento, Auxiliadora
Cruces, Sergio
Cichocki, Andrzej
Author_xml – sequence: 1
  givenname: Andrzej
  surname: Cichocki
  fullname: Cichocki, Andrzej
  organization: Polish Academy of Science, Systems Research Institute, Warszawa, Poland
– sequence: 2
  givenname: Sergio
  orcidid: 0000-0003-4121-7137
  surname: Cruces
  fullname: Cruces, Sergio
  email: sergio@us.es
  organization: Departamento de Teoría de la Señal y Comunicaciones, Universidad de Sevilla, Seville, Spain
– sequence: 3
  givenname: Auxiliadora
  orcidid: 0000-0003-2587-1382
  surname: Sarmiento
  fullname: Sarmiento, Auxiliadora
  organization: Departamento de Teoría de la Señal y Comunicaciones, Universidad de Sevilla, Seville, Spain
– sequence: 4
  givenname: Toshihisa
  orcidid: 0000-0002-5056-9508
  surname: Tanaka
  fullname: Tanaka, Toshihisa
  organization: Department of Electrical Engineering and Computer Science, Tokyo University of Agriculture and Technology, Koganei-shi, Tokyo, Japan
BookMark eNpNUU1r3DAQFSGF5usXNAdBz95KlmRJx2XZbAMLCWx6FrI0TrQ4kisr0PbXV1uHkrnM53szzLtE5zFFQOgLJStKif623my2h8OqJS1fMdESpvQZumhppxsmWHf-If6Mbub5SKqpWhLyAvU7iJDtGP6Ax9tfU6WOJdhSs122PtQMr8fnlEN5eZ2xjR4_vUDIeD1NY3C2hBRxSfghNvsQAT-mXIY0hoQPMII7ta_Rp8GOM9y8-yv04277tPne7B9295v1vnFM6NLo1oPolKJcgmOsB0Us85rrwWnfekE7xYe-dVxq5pi3ne61G7Tg1tu-5R27QvcLr0_2aKYcXm3-bZIN5l8h5WdjcwluBEOkk5IMVEM3cE-98sBZr4mknhGQqnJ9XbimnH6-wVzMMb3lWM83jAoihKw_rFNsmXI5zXOG4f9WSsxJG7NoY07amHdtKup2QQUA-IBQdX2n2F_LwIzA
CODEN IAECCG
Cites_doi 10.1016/j.ins.2022.01.073
10.1007/s10618-023-00990-0
10.3390/e12061532
10.1111/1467-9965.00058
10.1007/11785231_58
10.1007/s10994-012-5281-z
10.1111/j.1467-9965.1991.tb00002.x
10.1016/j.eswa.2021.115889
10.3390/e13010134
10.1023/a:1007424614876
10.1109/18.485708
10.1007/978-3-031-45170-6_19
10.1145/225058.225121
10.1109/78.923303
10.1111/j.2517-6161.1964.tb00553.x
10.1080/01605682.2020.1848358
10.1162/089976602760128045
10.3390/math12070956
10.1109/ijcnn.2008.4634288
10.1109/TKDE.2016.2563433
10.1007/s10614-023-10430-2
10.1145/2512962
10.1016/j.neucom.2021.04.112
10.1006/inco.1996.2612
10.1093/biomet/85.3.549
10.1016/j.artint.2015.01.006
10.1109/ACCESS.2023.3278980
10.1007/s10878-021-00800-7
10.1002/9780470747278
10.3390/computers5010001
10.1007/s10957-018-1428-9
10.1007/978-4-431-55978-8
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2024.3520389
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Materials Research Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 197020
ExternalDocumentID oai_doaj_org_article_07c770f19e6f4d1d8de43b9071d30e78
10_1109_ACCESS_2024_3520389
10807168
Genre orig-research
GrantInformation_xml – fundername: MICIU/AEI/10.13039/501100011033
  grantid: PID2021-123090NB-I00
– fundername: ERDF/EU
– fundername: PAIDI Andalucian
  grantid: P20_01173; US-1264994/FEDER, EU
– fundername: Institute Global Innovation Research (GIR), Tokyo University of Agriculture and Technology (TAUT), Tokyo, Japan
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c359t-92de5688147ec33be80a3d949fc9d2d51684fb2c4793c3da69b9cf954adab2463
IEDL.DBID RIE
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001387130900046&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2169-3536
IngestDate Fri Oct 03 12:50:48 EDT 2025
Mon Jun 30 13:27:45 EDT 2025
Sat Nov 29 04:27:16 EST 2025
Wed Aug 27 02:02:12 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c359t-92de5688147ec33be80a3d949fc9d2d51684fb2c4793c3da69b9cf954adab2463
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5056-9508
0000-0003-4121-7137
0000-0003-2587-1382
OpenAccessLink https://ieeexplore.ieee.org/document/10807168
PQID 3150557000
PQPubID 4845423
PageCount 21
ParticipantIDs doaj_primary_oai_doaj_org_article_07c770f19e6f4d1d8de43b9071d30e78
ieee_primary_10807168
crossref_primary_10_1109_ACCESS_2024_3520389
proquest_journals_3150557000
PublicationCentury 2000
PublicationDate 20240000
2024-00-00
20240101
2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 20240000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References Lim (ref17) 2022
ref14
ref52
Nock (ref15) 2023
ref16
Kullback (ref24) 1997
ref19
ref18
Cornford (ref53) 2024
ref50
Apostol (ref34) 1967; 1
ref46
ref45
ref47
Nemirovsky (ref3) 1983
ref41
ref44
Huang (ref26)
Majidi (ref9) 2021
ref49
ref8
ref7
ref4
ref6
ref5
Basu (ref29) 1998; 85
ref40
Cruces (ref42) 2024
ref35
ref37
D’Orazio (ref22) 2021
ref36
ref31
ref30
Amid (ref12); 125
ref2
ref39
Box (ref33) 1964; 26
ref38
Li (ref43) 2016; 17
Tsai (ref48); 201
ref23
Regli (ref51) 2018
ref20
Amid (ref13) 2022
ref21
ref27
Amid (ref11); 33
Itakura (ref25)
Ghai (ref10); 117
Bertsekas (ref1) 2015
Minka (ref28) 2005
Tsallis (ref32) 1994; 17
References_xml – ident: ref52
  doi: 10.1016/j.ins.2022.01.073
– ident: ref19
  doi: 10.1007/s10618-023-00990-0
– volume: 33
  start-page: 8430
  volume-title: Proc. 34th Int. Conf. Neural Inf. Process. Syst. (NIPS)
  ident: ref11
  article-title: Reparameterizing mirror descent as gradient descent
– ident: ref27
  doi: 10.3390/e12061532
– ident: ref7
  doi: 10.1111/1467-9965.00058
– ident: ref31
  doi: 10.1007/11785231_58
– ident: ref38
  doi: 10.1007/s10994-012-5281-z
– ident: ref35
  doi: 10.1111/j.1467-9965.1991.tb00002.x
– ident: ref47
  doi: 10.1016/j.eswa.2021.115889
– ident: ref23
  doi: 10.3390/e13010134
– ident: ref8
  doi: 10.1023/a:1007424614876
– ident: ref36
  doi: 10.1109/18.485708
– ident: ref20
  doi: 10.1007/978-3-031-45170-6_19
– volume-title: Problem Complexity and Method Efficiency in Optimization
  year: 1983
  ident: ref3
– ident: ref6
  doi: 10.1145/225058.225121
– ident: ref49
  doi: 10.1109/78.923303
– volume: 26
  start-page: 211
  issue: 2
  year: 1964
  ident: ref33
  article-title: An analysis of transformations
  publication-title: J. Roy. Stat. Society. Ser. B
  doi: 10.1111/j.2517-6161.1964.tb00553.x
– start-page: 17
  volume-title: Proc. 6th Int. Congr. Acoust.
  ident: ref25
  article-title: Analysis synthesis telephony based on the maximum likelihood method
– volume: 1
  volume-title: Calculus
  year: 1967
  ident: ref34
– ident: ref45
  doi: 10.1080/01605682.2020.1848358
– start-page: 36
  volume-title: Information Theory and Statistics
  year: 1997
  ident: ref24
– volume-title: Divergence measures and message passing
  year: 2005
  ident: ref28
– ident: ref30
  doi: 10.1162/089976602760128045
– ident: ref46
  doi: 10.3390/math12070956
– volume-title: arXiv:1805.01045
  year: 2018
  ident: ref51
  article-title: Alpha-beta divergence for variational inference
– ident: ref21
  doi: 10.1109/ijcnn.2008.4634288
– volume-title: arXiv:2110.15412
  year: 2021
  ident: ref22
  article-title: Stochastic mirror descent: Convergence analysis and adaptive variants via the mirror stochastic polyak stepsize
– ident: ref41
  doi: 10.1109/TKDE.2016.2563433
– ident: ref16
  doi: 10.1007/s10614-023-10430-2
– ident: ref37
  doi: 10.1145/2512962
– ident: ref18
  doi: 10.1016/j.neucom.2021.04.112
– start-page: 720
  volume-title: Proc. 32nd Int. Conf. Mach. Learn.
  ident: ref26
  article-title: Log-Euclidean metric learning on symmetric positive definite manifold with application to image set classification
– ident: ref5
  doi: 10.1006/inco.1996.2612
– volume-title: arXiv:2202.00145
  year: 2022
  ident: ref13
  article-title: Step-size adaptation using exponentiated gradient updates
– volume-title: arXiv:2208.14749
  year: 2022
  ident: ref17
  article-title: A quantum online portfolio optimization algorithm
– volume: 201
  start-page: 1481
  volume-title: Proc. Int. Conf. Algorithmic Learn. Theory
  ident: ref48
  article-title: Online self-concordant and relatively smooth minimization, with applications to online portfolio selection and learning quantum states
– volume: 117
  start-page: 386
  volume-title: Proc. 31st Int. Conf. Algorithmic Learn. Theory
  ident: ref10
  article-title: Exponentiated gradient meets gradient descent
– volume: 17
  start-page: 468
  issue: 6
  year: 1994
  ident: ref32
  article-title: What are the numbers that experiments provide
  publication-title: Química Nova
– volume-title: Implementation of exponentiated gradient algorithms based on alpha-beta divergences for OLPS
  year: 2024
  ident: ref42
– volume: 125
  start-page: 163
  volume-title: Proc. 33rd Int. Conf. Algorithmic Learn. Theory
  ident: ref12
  article-title: Winnowing with gradient descent
– volume: 85
  start-page: 549
  issue: 3
  year: 1998
  ident: ref29
  article-title: Robust and efficient estimation by minimising a density power divergence
  publication-title: Biometrika
  doi: 10.1093/biomet/85.3.549
– ident: ref39
  doi: 10.1016/j.artint.2015.01.006
– ident: ref40
  doi: 10.1109/ACCESS.2023.3278980
– ident: ref44
  doi: 10.1007/s10878-021-00800-7
– volume: 17
  start-page: 1242
  issue: 1
  year: 2016
  ident: ref43
  article-title: OLPS: A toolbox for on-line portfolio selection
  publication-title: J. Mach. Learn. Res.
– ident: ref4
  doi: 10.1002/9780470747278
– ident: ref14
  doi: 10.3390/computers5010001
– ident: ref50
  doi: 10.1007/s10957-018-1428-9
– start-page: 233
  volume-title: Convex Optimization Algorithms
  year: 2015
  ident: ref1
– start-page: 1
  year: 2024
  ident: ref53
  article-title: Brain-like learning with exponentiated gradients
  publication-title: bioRxiv
– volume-title: arXiv:2104.01493
  year: 2021
  ident: ref9
  article-title: Exponentiated gradient reweighting for robust training under label noise and beyond
– volume-title: arXiv:2306.05487
  year: 2023
  ident: ref15
  article-title: Boosting with tempered exponential measures
– ident: ref2
  doi: 10.1007/978-4-431-55978-8
SSID ssj0000816957
Score 2.300115
Snippet Stochastic gradient descent (SGD) and exponentiated gradient (EG) update methods are widely used in signal processing and machine learning. This study...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage 197000
SubjectTerms Additives
Algorithms
Alpha-beta divergences
Cost function
Costs
Data processing
exponentiated gradient algorithms
Flexibility
Machine learning
Machine learning algorithms
on-line portfolio selection
Performance measurement
Portfolios
Probability distribution
Regularization
Signal processing algorithms
Vectors
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELXQigM9ID5asbAgHziS1o4dO3NcVrtwQAWJturN8ldgpTZZ7Yaq4tczdlLYigMXrnYk228Szxt78oaQt5UGzWMJRQneFbIRtrAuiCJIHtFdOatybcCLT_r0tL68hC97pb5STtggDzwAd8K015o1HKJqZOChDlEKhyEdD4JFnX_zZRr2gqm8B9dcQaVHmSHO4GS-WOCKMCAs5TGSjqQrd88VZcX-scTKX_tydjarJ-TxyBLpfJjdU_Igts_IwZ524HPiRsHo9c8Y6PJ207Up7weZY6AftjmPq6fzq28dBv_fr3fUtoGepUsBOv9zZU37jn5uC4xHI00ppU13te7o11waB7sPyflqebb4WIwFEwovKugLKEOsVF1zqaMXwsWaWRFAQuMhlKHiqpaNK306TfMiWAUOfAOVtMG6UipxRCYtTvcFoUgMnEDvhQRGSCsri1TCMot0TvlSNXpK3t1hZzaDLobJ8QQDM0BtEtRmhHpK3id8fz-aRK1zA5rajKY2_zL1lBwm6-yNV2OfwvbZnbnM-AXujECmm-TFGHv5P8Z-RR6l9QyHLzMy6bc_4mvy0N_06932TX75fgGeDdsS
  priority: 102
  providerName: Directory of Open Access Journals
Title Generalized Exponentiated Gradient Algorithms and Their Application to On-Line Portfolio Selection
URI https://ieeexplore.ieee.org/document/10807168
https://www.proquest.com/docview/3150557000
https://doaj.org/article/07c770f19e6f4d1d8de43b9071d30e78
Volume 12
WOSCitedRecordID wos001387130900046&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB7RigM98GoRW0rlA0eydWInjo_LagsHKEi01d4svwIrLclqN1shDvx2xo5bWiEOvURRHortL8l8Mx5_A_CmFFLkvpBZIa3JeMN0po1jmeO5R3NldBVrA15-FGdn9Xwuv6TF6nEtjPc-Jp_5cdiNc_mus9sQKjsJ-XDI7-sd2BGiGhZr3QRUQgUJWYqkLJRTeTKZTrET6AMWfIw8I0jJ3bE-UaQ_VVX551cc7cvpk3u27Ck8TkSSTAbkn8ED3z6HvVvygvtgkqb04pd3ZPZz1bUhNQjJpSPv1zHVqyeT5bduvei__9gQ3TpyHuYNyOTvrDbpO_K5zdBl9SRknTbdctGRr7F6Dp4-gIvT2fn0Q5ZqKmSWlbLPZOF8WdV1zoW3jBlfU82c5LKx0hWuxD7wxhQ2BNwsc7qSRtpGllw7bQpesRew22JzXwJB7mAYGjjkOIxrXmpkG5pqZHyVLapGjODt9Vir1SCdoaLLQaUaoFEBGpWgGcG7gMfNpUH3Oh7AgVbpM1JUWCFok0tfNdzlrnaeM4MOfu4Y9aIewUEA59bzBlxGcHQNr0of6UYxJMNBgYzSw__c9goehSYOIZcj2O3XW_8aHtqrfrFZH0f_Hbeffs-O47v4B2pU2xA
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5BQYIeeBaxUMAHjqR1bCeOj8uqpYhlQWJBvVl-BVYqSbWbVohfz9hxSxHiwC3KQ7H9xZlvxuNvAF5WUskyMFUw5WwhWm4KYz0vvCgDmitr6lQb8MtcLhbN8bH6mDerp70wIYSUfBb24mFay_e9O4uhsv2YD4f8vrkONyohGB23a12GVGINCVXJrC1UUrU_nc2wG-gFMrGHTCOKyf1hf5JMf66r8tfPOFmYw7v_2bZ7cCdTSTIdsb8P10L3ALavCAw-BJtVpVc_gycHP077LiYHIb305M06JXsNZHrytV-vhm_fN8R0nizjygGZ_l7XJkNPPnQFOq2BxLzTtj9Z9eRTqp-Dl3fg8-HBcnZU5KoKheOVGgrFfKjqpimFDI5zGxpquFdCtU555ivsg2gtczHk5rg3tbLKtaoSxhvLRM0fwVaHzX0MBNmD5WjikOVwYURlkG8YapDz1Y7VrZzAq4ux1qejeIZOTgdVeoRGR2h0hmYCryMel7dG5et0Agda54mkqXRS0rZUoW6FL33jg-AWXfzScxpkM4GdCM6V9424TGD3Al6dp-lGc6TDUYOM0if_eOwF3Dpavp_r-dvFu6dwOzZ3DMDswtawPgvP4KY7H1ab9fP0Lf4CobLcMQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Generalized+Exponentiated+Gradient+Algorithms+and+Their+Application+to+On-Line+Portfolio+Selection&rft.jtitle=IEEE+access&rft.au=Cichocki%2C+Andrzej&rft.au=Cruces%2C+Sergio&rft.au=Sarmiento%2C+Auxiliadora&rft.au=Tanaka%2C+Toshihisa&rft.date=2024&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=12&rft.spage=197000&rft.epage=197020&rft_id=info:doi/10.1109%2FACCESS.2024.3520389&rft.externalDocID=10807168
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon