Approximate Span Programs

Span programs are a model of computation that have been used to design quantum algorithms, mainly in the query model. It is known that for any decision problem, there exists a span program that leads to an algorithm with optimal quantum query complexity, however finding such an algorithm is generall...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Algorithmica Ročník 81; číslo 6; s. 2158 - 2195
Hlavní autoři: Ito, Tsuyoshi, Jeffery, Stacey
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.06.2019
Springer Nature B.V
Témata:
ISSN:0178-4617, 1432-0541
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Span programs are a model of computation that have been used to design quantum algorithms, mainly in the query model. It is known that for any decision problem, there exists a span program that leads to an algorithm with optimal quantum query complexity, however finding such an algorithm is generally challenging. We consider new ways of designing quantum algorithms using span programs. We show how any span program that decides a function f can also be used to decide “threshold” versions of the function f , or more generally, approximate a quantity called the span program witness size , which is some property of the input related to f . We achieve these results by relaxing the requirement that 1-inputs hit some target exactly in the span program, which could potentially make design of span programs significantly easier. In addition, we give an exposition of span program structure, which increases the general understanding of this important model. One implication of this is alternative algorithms for estimating the witness size when the phase gap of a certain unitary can be lower bounded. We show how to lower bound this phase gap in certain cases. As an application, we give the first upper bounds in the adjacency query model on the quantum time complexity of estimating the effective resistance between s and t , R s , t ( G ) . For this problem we obtain O ~ ( 1 ε 3 / 2 n R s , t ( G ) ) , using O ( log n ) space. In addition, when μ is a lower bound on λ 2 ( G ) , by our phase gap lower bound, we can obtain an upper bound of O ~ 1 ε n R s , t ( G ) / μ for estimating effective resistance, also using O ( log n ) space.
AbstractList Span programs are a model of computation that have been used to design quantum algorithms, mainly in the query model. It is known that for any decision problem, there exists a span program that leads to an algorithm with optimal quantum query complexity, however finding such an algorithm is generally challenging. We consider new ways of designing quantum algorithms using span programs. We show how any span program that decides a function f can also be used to decide “threshold” versions of the function f , or more generally, approximate a quantity called the span program witness size , which is some property of the input related to f . We achieve these results by relaxing the requirement that 1-inputs hit some target exactly in the span program, which could potentially make design of span programs significantly easier. In addition, we give an exposition of span program structure, which increases the general understanding of this important model. One implication of this is alternative algorithms for estimating the witness size when the phase gap of a certain unitary can be lower bounded. We show how to lower bound this phase gap in certain cases. As an application, we give the first upper bounds in the adjacency query model on the quantum time complexity of estimating the effective resistance between s and t , R s , t ( G ) . For this problem we obtain O ~ ( 1 ε 3 / 2 n R s , t ( G ) ) , using O ( log n ) space. In addition, when μ is a lower bound on λ 2 ( G ) , by our phase gap lower bound, we can obtain an upper bound of O ~ 1 ε n R s , t ( G ) / μ for estimating effective resistance, also using O ( log n ) space.
Span programs are a model of computation that have been used to design quantum algorithms, mainly in the query model. It is known that for any decision problem, there exists a span program that leads to an algorithm with optimal quantum query complexity, however finding such an algorithm is generally challenging. We consider new ways of designing quantum algorithms using span programs. We show how any span program that decides a function f can also be used to decide “threshold” versions of the function f, or more generally, approximate a quantity called the span program witness size, which is some property of the input related to f. We achieve these results by relaxing the requirement that 1-inputs hit some target exactly in the span program, which could potentially make design of span programs significantly easier. In addition, we give an exposition of span program structure, which increases the general understanding of this important model. One implication of this is alternative algorithms for estimating the witness size when the phase gap of a certain unitary can be lower bounded. We show how to lower bound this phase gap in certain cases. As an application, we give the first upper bounds in the adjacency query model on the quantum time complexity of estimating the effective resistance between s and t, Rs,t(G). For this problem we obtain O~(1ε3/2nRs,t(G)), using O(logn) space. In addition, when μ is a lower bound on λ2(G), by our phase gap lower bound, we can obtain an upper bound of O~1εnRs,t(G)/μ for estimating effective resistance, also using O(logn) space.
Author Jeffery, Stacey
Ito, Tsuyoshi
Author_xml – sequence: 1
  givenname: Tsuyoshi
  surname: Ito
  fullname: Ito, Tsuyoshi
– sequence: 2
  givenname: Stacey
  surname: Jeffery
  fullname: Jeffery, Stacey
  email: jeffery@cwi.nl
  organization: QuSoft and CWI
BookMark eNp9kE9LAzEQxYNUcFv9AL0VPEdnkmySPZbiPygoqOeQxGzZ0u6uyRb025uygiDoZYYH7zfzeFMyabs2EDJHuEIAdZ0ARMkpoKZQMkXxhBQoOMtK4IQUgEpTIVGdkWlKWwBkqpIFmS_7PnYfzd4OYfHc23bxFLtNtPt0Tk5ru0vh4nvPyOvtzcvqnq4f7x5WyzX1vKwGWoFkitfKMe1E5bTMI1RWelcycOglE4G54KVnWZRWl2-15sp5xx1op_mMXI53c473Q0iD2XaH2OaXhjEUyEuuZXbh6PKxSymG2vQxh46fBsEcGzBjAyY3YI4NGMyM-sX4ZrBD07VDtM3uX5KNZMpf2k2IP5n-hr4ACF5vTw
CitedBy_id crossref_primary_10_1137_21M1391018
Cites_doi 10.1007/BF01270385
10.1145/502090.502097
10.1103/PhysRevLett.103.150502
10.1098/rspa.1998.0164
10.4086/toc.2012.v008a013
10.1109/FOCS.2012.18
10.1109/FOCS.2011.75
10.1145/237814.237866
10.1145/2213977.2213985
10.5948/UPO9781614440222
10.1109/FOCS.2009.55
10.1007/978-3-642-33090-2_18
10.1137/1.9781611973082.44
10.1007/978-3-642-39206-1_10
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2018
Copyright Springer Nature B.V. 2019
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2018
– notice: Copyright Springer Nature B.V. 2019
DBID AAYXX
CITATION
JQ2
DOI 10.1007/s00453-018-0527-1
DatabaseName CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList
ProQuest Computer Science Collection
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1432-0541
EndPage 2195
ExternalDocumentID 10_1007_s00453_018_0527_1
GrantInformation_xml – fundername: NWO Veni Innovational Research Grant
  grantid: 39.021.752
– fundername: National Science Foundation
  grantid: PHY-1125565
  funderid: http://dx.doi.org/10.13039/100000001
– fundername: Gordon and Betty Moore Foundation
  grantid: GBMF-12500028
  funderid: http://dx.doi.org/10.13039/100000936
GroupedDBID -4Z
-59
-5G
-BR
-EM
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
199
1N0
203
23M
2J2
2JN
2JY
2KG
2KM
2LR
2~H
30V
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BDATZ
BGNMA
BSONS
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAS
LLZTM
M4Y
MA-
N9A
NB0
NPVJJ
NQJWS
NU0
O93
O9G
O9I
O9J
OAM
P19
P9O
PF-
PT4
PT5
QOK
QOS
R89
R9I
RHV
RNS
ROL
RPX
RSV
S16
S27
S3B
SAP
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TN5
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7X
Z83
Z88
Z8R
Z8W
Z92
ZMTXR
~EX
-Y2
1SB
28-
2P1
2VQ
5QI
AAAVM
AAOBN
AAPKM
AARHV
AAYTO
AAYXX
ABBRH
ABDBE
ABDPE
ABFSG
ABFSI
ABQSL
ABRTQ
ABULA
ACBXY
ACSTC
ADHKG
AEBTG
AEFIE
AEKMD
AEZWR
AFDZB
AFEXP
AFGCZ
AFHIU
AFOHR
AGGDS
AGQPQ
AHPBZ
AHWEU
AI.
AIXLP
AJBLW
ATHPR
AYFIA
BBWZM
CAG
CITATION
COF
E.L
H13
H~9
KOW
N2Q
NDZJH
O9-
R4E
RNI
RZK
S1Z
S26
S28
SCJ
SCLPG
T16
UQL
VH1
ZY4
JQ2
ID FETCH-LOGICAL-c359t-906273f7b28b49b8649be9a6cb520b1c624e2bec6c21c65a85df837bcb3b08b83
IEDL.DBID RSV
ISICitedReferencesCount 9
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000465544600002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0178-4617
IngestDate Thu Oct 02 16:28:50 EDT 2025
Sat Nov 29 02:20:28 EST 2025
Tue Nov 18 20:27:48 EST 2025
Fri Feb 21 02:43:10 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Quantum algorithms
Span programs
Effective resistance
Quantum query complexity
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c359t-906273f7b28b49b8649be9a6cb520b1c624e2bec6c21c65a85df837bcb3b08b83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2016.12
PQID 2214135386
PQPubID 2043795
PageCount 38
ParticipantIDs proquest_journals_2214135386
crossref_primary_10_1007_s00453_018_0527_1
crossref_citationtrail_10_1007_s00453_018_0527_1
springer_journals_10_1007_s00453_018_0527_1
PublicationCentury 2000
PublicationDate 2019-06-01
PublicationDateYYYYMMDD 2019-06-01
PublicationDate_xml – month: 06
  year: 2019
  text: 2019-06-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Algorithmica
PublicationTitleAbbrev Algorithmica
PublicationYear 2019
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References CR4
CR3
CR6
Harrow, Hassidim, Lloyd (CR12) 2009; 103
CR5
Cleve, Ekert, Macchiavello, Mosca (CR8) 1998; 454
CR19
CR7
CR18
Chandra, Raghavan, Ruzzo, Smolensky, Tiwari (CR9) 1996; 6
CR16
CR15
Beals, Buhrman, Cleve, Mosca, de Wolf (CR2) 2001; 48
CR14
CR13
Reichardt, Špalek (CR21) 2012; 8
CR23
CR11
CR22
CR20
Levin, Peres, Wilmer (CR17) 2009
Doyle, Snell (CR10) 1984
Bennett, Bernstein, Brassard, Vazirani (CR1) 1997; 26
AK Chandra (527_CR9) 1996; 6
527_CR7
527_CR6
527_CR5
527_CR4
527_CR3
527_CR18
527_CR15
527_CR16
DA Levin (527_CR17) 2009
R Cleve (527_CR8) 1998; 454
527_CR19
PG Doyle (527_CR10) 1984
B Reichardt (527_CR21) 2012; 8
527_CR20
AW Harrow (527_CR12) 2009; 103
527_CR13
527_CR14
CH Bennett (527_CR1) 1997; 26
R Beals (527_CR2) 2001; 48
527_CR11
527_CR22
527_CR23
References_xml – year: 2009
  ident: CR17
  publication-title: Markov Chains and Mixing Times
– ident: CR22
– volume: 6
  start-page: 312
  issue: 4
  year: 1996
  end-page: 340
  ident: CR9
  article-title: The electrical resistance of a graph captures its commute and cover times
  publication-title: Comput. Complex.
  doi: 10.1007/BF01270385
– ident: CR19
– ident: CR18
– volume: 48
  start-page: 778
  year: 2001
  end-page: 797
  ident: CR2
  article-title: Quantum lower bounds by polynomials
  publication-title: J. ACM
  doi: 10.1145/502090.502097
– ident: CR3
– ident: CR4
– ident: CR14
– ident: CR15
– volume: 26
  start-page: 1510
  year: 1997
  end-page: 1523
  ident: CR1
  article-title: Strengths and weaknesses of quantum computing
  publication-title: SIAM J. Comput. (special issue on quantum computing)
– ident: CR16
– ident: CR13
– ident: CR11
– volume: 103
  start-page: 150502
  year: 2009
  ident: CR12
  article-title: Quantum algorithm for linear systems of equations
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.103.150502
– volume: 454
  start-page: 339
  issue: 1969
  year: 1998
  end-page: 354
  ident: CR8
  article-title: Quantum algorithms revisited
  publication-title: Proc. Royal Soc. A Math. Phys. Eng. Sci.
  doi: 10.1098/rspa.1998.0164
– year: 1984
  ident: CR10
  publication-title: Random Walks and Electrical Networks, volume 22 of the Carus Mathematical Monographs
– ident: CR6
– ident: CR5
– ident: CR7
– volume: 8
  start-page: 291
  issue: 13
  year: 2012
  end-page: 319
  ident: CR21
  article-title: Span-program-based quantum algorithm for evaluating formulas
  publication-title: Theory Comput.
  doi: 10.4086/toc.2012.v008a013
– ident: CR23
– ident: CR20
– volume: 8
  start-page: 291
  issue: 13
  year: 2012
  ident: 527_CR21
  publication-title: Theory Comput.
  doi: 10.4086/toc.2012.v008a013
– volume: 26
  start-page: 1510
  year: 1997
  ident: 527_CR1
  publication-title: SIAM J. Comput. (special issue on quantum computing)
– ident: 527_CR4
  doi: 10.1109/FOCS.2012.18
– ident: 527_CR16
  doi: 10.1109/FOCS.2011.75
– ident: 527_CR11
  doi: 10.1145/237814.237866
– ident: 527_CR18
– ident: 527_CR5
  doi: 10.1145/2213977.2213985
– ident: 527_CR6
– volume: 6
  start-page: 312
  issue: 4
  year: 1996
  ident: 527_CR9
  publication-title: Comput. Complex.
  doi: 10.1007/BF01270385
– ident: 527_CR15
– volume-title: Random Walks and Electrical Networks, volume 22 of the Carus Mathematical Monographs
  year: 1984
  ident: 527_CR10
  doi: 10.5948/UPO9781614440222
– ident: 527_CR14
– ident: 527_CR13
– ident: 527_CR19
  doi: 10.1109/FOCS.2009.55
– ident: 527_CR7
  doi: 10.1007/978-3-642-33090-2_18
– ident: 527_CR20
  doi: 10.1137/1.9781611973082.44
– volume: 48
  start-page: 778
  year: 2001
  ident: 527_CR2
  publication-title: J. ACM
  doi: 10.1145/502090.502097
– ident: 527_CR3
  doi: 10.1007/978-3-642-39206-1_10
– volume-title: Markov Chains and Mixing Times
  year: 2009
  ident: 527_CR17
– volume: 103
  start-page: 150502
  year: 2009
  ident: 527_CR12
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.103.150502
– ident: 527_CR22
– volume: 454
  start-page: 339
  issue: 1969
  year: 1998
  ident: 527_CR8
  publication-title: Proc. Royal Soc. A Math. Phys. Eng. Sci.
  doi: 10.1098/rspa.1998.0164
– ident: 527_CR23
SSID ssj0012796
Score 2.3437426
Snippet Span programs are a model of computation that have been used to design quantum algorithms, mainly in the query model. It is known that for any decision...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2158
SubjectTerms Algorithm Analysis and Problem Complexity
Algorithms
Complexity
Computer Science
Computer Systems Organization and Communication Networks
Data Structures and Information Theory
Estimation
Lower bounds
Mathematics of Computing
Queries
Theory of Computation
Upper bounds
Title Approximate Span Programs
URI https://link.springer.com/article/10.1007/s00453-018-0527-1
https://www.proquest.com/docview/2214135386
Volume 81
WOSCitedRecordID wos000465544600002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1432-0541
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012796
  issn: 0178-4617
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB6kevBifWK0Sg6elIVks9nHsYjFUylWpbewr0JBqjRR_PnuJtkURQW9LIRslszs45thZucDuNCeCNBygwS1BhHlGpliibCkTBJtHAiammyCjcd8NhOT9h53GbLdQ0iyPqm7y27e-vC5PxwlOWbIuTybDu2452u4mz52oQPMalIuTzuPiMPnEMr8bojPYLS2ML8ERWusGfX_9Ze7sNOalvGwWQt7sGGX-9APtA1xu4sPIBr6OuLvC2er2njqToN40iRplYfwMLq5v75FLUMC0lkuKlQXGc7mTGGuiFCcusYKSbXKcaJSTTGx2M0S1dg95JLnZu48UqVVphKueHYEveXz0h5DrI0kwmIiRc6IyRTX1KiUM0yci5PNTQRJUFWh2_LhnsXiqegKH9eiF070wotepBFcdp-8NLUzfus8CPov2m1UFhinxBNzcBrBVdD3-vWPg538qfcpbDszSDQJYAPoVatXewZb-q1alKvzenV9AJakxqg
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB6kCnqxPnG16h48KYFuNptNjkUsFWsptkpvIa9CQap0q_jzTfYligp6CSybDTuTx8wwk-8DONOeCNAygzi1BhHlGhlhibCkqSTaOCNocrKJdDBgkwkflve4s6ravUpJ5id1fdnNex--9oehdoJT5EKeVeIMlgfMvxs91KkDnOakXJ52HhFnn6tU5ndDfDZGHx7ml6Robmu6zX_95RZslq5l2CnWwjas2PkONCvahrDcxbsQdDyO-NvM-ao2HLnTIBwWRVrZHtx3r8aXPVQyJCAdJ3yJcpDheJoqzBThilHXWC6pVgluq0hTTCx2s0Q1dg-JZImZuohUaRWrNlMs3ofG_GluDyDURhJuMZE8SYmJFdPUqIilmLgQJ56aANqVqoQu4cM9i8WjqIGPc9GFE1140UUUwHn9yXOBnfFb51alf1Fuo0xgHBFPzMFoABeVvj9e_zjY4Z96n8J6b3zbF_3rwc0RbDiXiBfFYC1oLBcv9hjW9Otyli1O8pX2DvBoyYw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA4yRXxxXrE6tQ8-KWFtmqbJ41CHoozBVPYWcisMpI61ij_fpLehqCC-BEKT0JPbOYdz8n0AnClHBGiohowYDbG0hQiRgEiQRGClrRLUJdlEMhrR6ZSNa57TvMl2b0KS1ZsGh9KUFf25Tvvtwzdnibg8IAqDGCXQuj-r2OXRO3d98tSGEVBSEnQ5CnqIra5uwprfDfFZMS2tzS8B0lLvDLv__uMtsFmbnP6g2iPbYMVkO6Db0Dn49eneBd7A4Yu_z6wNa_yJvSX8cZW8le-Bx-H1w-UNrJkToIpiVsASfDhKE4moxExSYgvDBFEyRoEMFUHYILt6RCFbiQWNdWo9ValkJAMqabQPOtlLZg6Ar7TAzCAsWJxgHUmqiJYhTRC2rk-Uag8EzbRxVcOKO3aLZ94CIpeicys6d6Lz0APnbZd5hanxW-Nesxa8Pl45RyjEjrCDEg9cNHO__PzjYId_an0K1sdXQ35_O7o7AhvWUmJVjlgPdIrFqzkGa-qtmOWLk3LTfQBEh9Jw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Approximate+Span+Programs&rft.jtitle=Algorithmica&rft.au=Ito%2C+Tsuyoshi&rft.au=Jeffery%2C+Stacey&rft.date=2019-06-01&rft.pub=Springer+Nature+B.V&rft.issn=0178-4617&rft.eissn=1432-0541&rft.volume=81&rft.issue=6&rft.spage=2158&rft.epage=2195&rft_id=info:doi/10.1007%2Fs00453-018-0527-1&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0178-4617&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0178-4617&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0178-4617&client=summon