A Cloud API Personalized Recommendation Method Based on Multiple Attribute Features and Mashup Requirement Attention
In current mashup-oriented cloud API recommendation systems, insufficient attention to personalized development requirements remains a common issue, particularly regarding developers' needs for attributes such as functionality similarity and complementarity. This paper proposes a novel approach...
Uloženo v:
| Vydáno v: | IEEE access Ročník 13; s. 13285 - 13299 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Piscataway
IEEE
2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 2169-3536, 2169-3536 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | In current mashup-oriented cloud API recommendation systems, insufficient attention to personalized development requirements remains a common issue, particularly regarding developers' needs for attributes such as functionality similarity and complementarity. This paper proposes a novel approach for personalized cloud API feature representation and recommendation. We construct a graph of the cloud API ecosystem with rich side information and design metapaths to capture and characterize various API features. To fully leverage information from intermediate nodes in the metapaths and emphasize the significance of different instances, we employ a translational distance model and graph neural network techniques to aggregate cloud API feature information. Furthermore, we introduce mashup requirement attention, a mechanism that customizes recommendations based on the specific needs of each mashup project, thereby enhancing the accuracy and personalization of API recommendations. Extensive experiments on real-world datasets demonstrate the effectiveness of the proposed method. |
|---|---|
| AbstractList | In current mashup-oriented cloud API recommendation systems, insufficient attention to personalized development requirements remains a common issue, particularly regarding developers' needs for attributes such as functionality similarity and complementarity. This paper proposes a novel approach for personalized cloud API feature representation and recommendation. We construct a graph of the cloud API ecosystem with rich side information and design metapaths to capture and characterize various API features. To fully leverage information from intermediate nodes in the metapaths and emphasize the significance of different instances, we employ a translational distance model and graph neural network techniques to aggregate cloud API feature information. Furthermore, we introduce mashup requirement attention, a mechanism that customizes recommendations based on the specific needs of each mashup project, thereby enhancing the accuracy and personalization of API recommendations. Extensive experiments on real-world datasets demonstrate the effectiveness of the proposed method. |
| Author | Shen, Limin Chen, Zhen Wang, Yuying Li, Chengyu |
| Author_xml | – sequence: 1 givenname: Limin surname: Shen fullname: Shen, Limin organization: College of Information Science and Engineering, Yanshan University, Qinhuangdao, China – sequence: 2 givenname: Yuying orcidid: 0000-0002-1520-5557 surname: Wang fullname: Wang, Yuying email: yuyingwang@stumail.ysu.edu.cn organization: College of Information Science and Engineering, Yanshan University, Qinhuangdao, China – sequence: 3 givenname: Chengyu surname: Li fullname: Li, Chengyu organization: College of Information Science and Engineering, Yanshan University, Qinhuangdao, China – sequence: 4 givenname: Zhen orcidid: 0000-0003-4424-7315 surname: Chen fullname: Chen, Zhen organization: College of Information Science and Engineering, Yanshan University, Qinhuangdao, China |
| BookMark | eNpNUcFu3CAQRVUqNU3zBe0BqefdggGvObpW0qyUqFHTntEYxg0rr9kAPrRfXxxHVZDQDDPvPaT33pOzKUxIyEfOtpwz_aXtuquHh23FKrkViiktxRtyXvFab4QS9dmr_h25TOnAymnKSO3OSW5pN4bZ0fZ-T-8xpjDB6P-ioz_QhuMRJwfZh4neYX4Mjn6FVHbLex6zP41I25yj7-eM9BohzxEThcnRO0iP86moPM0-YtHJC7KUIvaBvB1gTHj5Ui_Ir-urn93N5vb7t33X3m6sUDpvmsFpDWJA1VcAULOaSwY99I6BUBwkF5xXtlG9xd7KQSvXu8HKvrGy4q4XF2S_6roAB3OK_gjxjwngzfMgxN8GYvZ2RFM1TqK0AzSWS-C6mKjZcqGuZKWgaH1etU4xPM2YsjmEORazkhFc6eK7EruCEivKxpBSxOH_r5yZJS2zpmWWtMxLWoX1aWV5RHzF2NU7Xtb_AFcwk40 |
| CODEN | IAECCG |
| Cites_doi | 10.1145/3357384.3357903 10.1145/2831270 10.1007/978-3-642-01247-1_13 10.1080/0951192X.2021.1872105 10.1109/COMPSAC.2017.8 10.1609/aaai.v28i1.8870 10.1007/978-981-15-1899-7_29 10.1002/cpe.7069 10.4018/978-1-7998-7685-4.ch009 10.1109/TASE.2016.2624310 10.1016/j.jpdc.2018.04.002 10.1109/TSC.2021.3098756 10.1109/TSE.2023.3252259 10.1016/j.eswa.2020.113347 10.1109/TCSS.2022.3168595 10.1049/cit2.12135 10.1109/TPDS.2018.2877363 10.1080/09540091.2021.1974819 10.1109/SCC.2019.00040 10.1007/978-3-030-03596-9_30 10.1002/spe.2902 10.1109/TII.2022.3177411 10.1145/3097983.3098036 10.1109/QRS54544.2021.00082 10.1109/TSC.2023.3245652 10.1007/978-981-99-2356-4_6 10.1109/TSC.2020.3001307 10.24963/ijcai.2017/447 10.1109/ACCESS.2018.2890156 10.1007/978-3-030-23554-3_1 10.1016/j.eswa.2018.05.039 10.1109/TSC.2017.2681666 10.1007/s11280-021-00943-x 10.1109/TEM.2019.2961376 10.1109/ISPA-BDCloud-SocialCom-SustainCom51426.2020.00101 10.1145/3292500.3330836 10.1109/CSCWD57460.2023.10152817 10.1109/SCC53864.2021.00015 10.1007/s11432-021-3531-0 10.1145/3308558.3313562 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
| DOI | 10.1109/ACCESS.2024.3505943 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Materials Research Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2169-3536 |
| EndPage | 13299 |
| ExternalDocumentID | oai_doaj_org_article_28d4e4cfa8c14a19943904390a62425a 10_1109_ACCESS_2024_3505943 10767143 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Project of Hebei Key Laboratory of Software Engineering grantid: 22567637H funderid: 10.13039/501100011298 – fundername: National Natural Science Foundation of China grantid: 61772450; 62102348 funderid: 10.13039/501100001809 – fundername: Natural Science Foundation of Hebei Province grantid: F2022203012 funderid: 10.13039/501100003787 – fundername: Science and Technology Research Project of Hebei University grantid: QN2020183 |
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c359t-8fd99a3fe5b2aaa606140ababd0a351a413112c85bcebc4f95dbdfc4b8c421db3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001405911400017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2169-3536 |
| IngestDate | Fri Oct 03 12:48:15 EDT 2025 Mon Jun 30 13:06:29 EDT 2025 Sat Nov 29 04:27:13 EST 2025 Wed Aug 27 01:53:53 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0/legalcode |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c359t-8fd99a3fe5b2aaa606140ababd0a351a413112c85bcebc4f95dbdfc4b8c421db3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-1520-5557 0000-0003-4424-7315 |
| OpenAccessLink | https://ieeexplore.ieee.org/document/10767143 |
| PQID | 3159505537 |
| PQPubID | 4845423 |
| PageCount | 15 |
| ParticipantIDs | ieee_primary_10767143 crossref_primary_10_1109_ACCESS_2024_3505943 doaj_primary_oai_doaj_org_article_28d4e4cfa8c14a19943904390a62425a proquest_journals_3159505537 |
| PublicationCentury | 2000 |
| PublicationDate | 20250000 2025-00-00 20250101 2025-01-01 |
| PublicationDateYYYYMMDD | 2025-01-01 |
| PublicationDate_xml | – year: 2025 text: 20250000 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE access |
| PublicationTitleAbbrev | Access |
| PublicationYear | 2025 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref35 ref12 ref34 ref15 ref14 ref31 Bordes (ref36) ref30 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref39 ref16 ref38 ref19 ref18 Rendle (ref37) ref24 ref23 ref26 ref25 ref20 ref42 ref41 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 |
| References_xml | – ident: ref33 doi: 10.1145/3357384.3357903 – ident: ref29 doi: 10.1145/2831270 – ident: ref28 doi: 10.1007/978-3-642-01247-1_13 – ident: ref25 doi: 10.1080/0951192X.2021.1872105 – ident: ref31 doi: 10.1109/COMPSAC.2017.8 – ident: ref35 doi: 10.1609/aaai.v28i1.8870 – ident: ref23 doi: 10.1007/978-981-15-1899-7_29 – ident: ref12 doi: 10.1002/cpe.7069 – ident: ref38 doi: 10.4018/978-1-7998-7685-4.ch009 – ident: ref8 doi: 10.1109/TASE.2016.2624310 – ident: ref9 doi: 10.1016/j.jpdc.2018.04.002 – ident: ref11 doi: 10.1109/TSC.2021.3098756 – start-page: 18 volume-title: Proc. 25th Conf. Uncertainty Artif. Intell. (UAI) ident: ref37 article-title: BPR: Bayesian personalized ranking from implicit feedback – ident: ref13 doi: 10.1109/TSE.2023.3252259 – ident: ref16 doi: 10.1016/j.eswa.2020.113347 – ident: ref19 doi: 10.1109/TCSS.2022.3168595 – ident: ref27 doi: 10.1049/cit2.12135 – ident: ref24 doi: 10.1109/TPDS.2018.2877363 – ident: ref4 doi: 10.1080/09540091.2021.1974819 – ident: ref39 doi: 10.1109/SCC.2019.00040 – ident: ref17 doi: 10.1007/978-3-030-03596-9_30 – ident: ref7 doi: 10.1002/spe.2902 – ident: ref18 doi: 10.1109/TII.2022.3177411 – ident: ref30 doi: 10.1145/3097983.3098036 – ident: ref42 doi: 10.1109/QRS54544.2021.00082 – ident: ref6 doi: 10.1109/TSC.2023.3245652 – ident: ref14 doi: 10.1007/978-981-99-2356-4_6 – ident: ref20 doi: 10.1109/TSC.2020.3001307 – ident: ref3 doi: 10.24963/ijcai.2017/447 – ident: ref32 doi: 10.1109/ACCESS.2018.2890156 – ident: ref15 doi: 10.1007/978-3-030-23554-3_1 – start-page: 5 volume-title: Proc. Adv. Neural Inf. Process. Syst. (NeurIPS) ident: ref36 article-title: Translating embeddings for modeling multi-relational data – ident: ref26 doi: 10.1016/j.eswa.2018.05.039 – ident: ref22 doi: 10.1109/TSC.2017.2681666 – ident: ref5 doi: 10.1007/s11280-021-00943-x – ident: ref10 doi: 10.1109/TEM.2019.2961376 – ident: ref40 doi: 10.1109/ISPA-BDCloud-SocialCom-SustainCom51426.2020.00101 – ident: ref41 doi: 10.1145/3292500.3330836 – ident: ref2 doi: 10.1109/CSCWD57460.2023.10152817 – ident: ref21 doi: 10.1109/SCC53864.2021.00015 – ident: ref1 doi: 10.1007/s11432-021-3531-0 – ident: ref34 doi: 10.1145/3308558.3313562 |
| SSID | ssj0000816957 |
| Score | 2.3415413 |
| Snippet | In current mashup-oriented cloud API recommendation systems, insufficient attention to personalized development requirements remains a common issue,... |
| SourceID | doaj proquest crossref ieee |
| SourceType | Open Website Aggregation Database Index Database Publisher |
| StartPage | 13285 |
| SubjectTerms | Accuracy Attention mechanism Blogs cloud application programming interface Collaboration Customization Data mining Ecosystems Feature extraction Graph neural networks Graphical representations mashup-oriented Mashups multiple attribute features personalized recommendation Recommender systems Semantics Social networking (online) Tagging |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA4iHvQgPnF9kYNHq22TtMmxLooelD0oeAuTR1HQVXa7Hvz1ZtKsrHjwIrSHlpCkM21mvjD9PkJOCltVwCzLrLM246BYBlJB5oWUxjnTemai2ER9dycfH9VoQeoLa8J6euDecOeldNxz24K0BQdksg0oHU_APxtETI1C1rMApuIaLItKiTrRDBW5Om-Gw_BEARCW_IwJZClhP0JRZOxPEiu_1uUYbK42yHrKEmnTz26TLPnxFllb4A7cJl1Dhy9vM0eb0Q0dzVPqT-8oIsrXV5_Ukuht1IimFyFcOYrXqYSQNl2vduUp5oGzgLspjB29henT7D30gjXCcfMQW_ZVkTvk4eryfnidJQmFzDKhuky2TilgrRemBIAK8V8OBozLgYkCOLLtlFYKY72xvFXCGddabqTlZeEM2yXL47ex3yM0hPLa5-GQzPHCO8m8NNxAWABC97IckNO5NfV7z5ShI8LIle6Nr9H4Ohl_QC7Q4t9NkeY63gjO18n5-i_nD8gO-mthvLpCQfcBOZw7UKdvcqpZyNzC2ILV-_8x9gFZLVELOG7HHJLlbjLzR2TFfnTP08lxfB2_AI_w4vY priority: 102 providerName: Directory of Open Access Journals |
| Title | A Cloud API Personalized Recommendation Method Based on Multiple Attribute Features and Mashup Requirement Attention |
| URI | https://ieeexplore.ieee.org/document/10767143 https://www.proquest.com/docview/3159505537 https://doaj.org/article/28d4e4cfa8c14a19943904390a62425a |
| Volume | 13 |
| WOSCitedRecordID | wos001405911400017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwEB0VxKE9UGip2BaQDz02NIntjX0MKxAcFu2hlbhZ44-olcouYhMOHPrb63G8iKriUCmKksixE0_smXFm3gP4XLnpFLnjhfPOFQI1L1BpLIJUynpvu8BtIptorq_VzY1e5GT1lAsTQkjBZ-GUDtO_fL9yAy2VxRHeTImvewu2mqYZk7WeFlSIQULLJiMLVaX-2s5m8SWiD1iLUy4JmIT_pX0SSH9mVflnKk765eLtfz7ZHuxmQ5K1o-T34VVYvoM3z-AF30Pfstmv1eBZu7hii43V_Rg8I6fzNlY5EiqxeaKRZmdRo3lG5znKkLX9SIgVGJmKQ3TNGS49m-P6x3AXa6Ew4rS-SCXHwMkD-H5x_m12WWSWhcJxqftCdV5r5F2QtkbEKbmIJVq0vkQuKxQEyFM7Ja0L1olOS29954RVTtSVt_wDbC9Xy3AILGr7JpRxU9yLKnjFg7LCYpwjYvWqnsCXTe-buxFMwyQnpNRmFJYhYZksrAmckYSeihISdroQu97kgWVq5UUQrkPlKoGEdMw1pfuWSJkvEidwQOJ61t4oqQkcbQRu8rBdGx6Nu9i25M3HF277BK9rYgBOizBHsN3fD-EYdtxD_3N9f5I8-rif_z4_SV_nH5Mo49M |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5BQYIeeBaxUMAHjqQksb2xj-mqVSu6qz0UqTdr_IiKBLtVN-HAr6_H8VZFiEOlHJLIsRN_ceaRmfkAPlduOkXueOG8c4VAzQtUGosglbLe2y5wm8gmmsVCXVzoZU5WT7kwIYQUfBYOaDf9y_drN5CrLK7wZkp83Q_hkRSirsZ0rVuXCnFIaNnk2kJVqb-2s1l8jGgF1uKASypNwv-SP6lMf-ZV-edjnCTM8fN73tsLeJZVSdaO2L-EB2H1CnbvFBh8DX3LZj_Xg2ft8pQtt3r3n-AZmZ2_YpcjpRKbJyJpdhhlmmd0nOMMWduPlFiBkbI4ROOc4cqzOW4uh6vYCwUSJw8jtRxDJ_fg-_HR-eykyDwLheNS94XqvNbIuyBtjYhTMhJLtGh9iVxWKKgkT-2UtC5YJzotvfWdE1a5CIK3_A3srNar8BZYlPdNKOOmuBdV8IoHZYXF-JWI3at6Al-2s2-uxnIaJpkhpTYjWIbAMhmsCRwSQrdNqRZ2OhGn3uSlZWrlRRCuQ-UqgVTrmGtK-C2Rcl8kTmCP4Loz3ojUBPa3gJu8cDeGR_Uuji158-4_l32CJyfn8zNzdrr49h6e1sQHnFwy-7DTXw_hAzx2v_sfm-uP6e28AdNM5PQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Cloud+API+Personalized+Recommendation+Method+Based+on+Multiple+Attribute+Features+and+Mashup+Requirement+Attention&rft.jtitle=IEEE+access&rft.au=Shen%2C+Limin&rft.au=Wang%2C+Yuying&rft.au=Li%2C+Chengyu&rft.au=Chen%2C+Zhen&rft.date=2025&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=13&rft.spage=13285&rft.epage=13299&rft_id=info:doi/10.1109%2FACCESS.2024.3505943&rft.externalDocID=10767143 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |