A Cloud API Personalized Recommendation Method Based on Multiple Attribute Features and Mashup Requirement Attention

In current mashup-oriented cloud API recommendation systems, insufficient attention to personalized development requirements remains a common issue, particularly regarding developers' needs for attributes such as functionality similarity and complementarity. This paper proposes a novel approach...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE access Ročník 13; s. 13285 - 13299
Hlavní autoři: Shen, Limin, Wang, Yuying, Li, Chengyu, Chen, Zhen
Médium: Journal Article
Jazyk:angličtina
Vydáno: Piscataway IEEE 2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:2169-3536, 2169-3536
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In current mashup-oriented cloud API recommendation systems, insufficient attention to personalized development requirements remains a common issue, particularly regarding developers' needs for attributes such as functionality similarity and complementarity. This paper proposes a novel approach for personalized cloud API feature representation and recommendation. We construct a graph of the cloud API ecosystem with rich side information and design metapaths to capture and characterize various API features. To fully leverage information from intermediate nodes in the metapaths and emphasize the significance of different instances, we employ a translational distance model and graph neural network techniques to aggregate cloud API feature information. Furthermore, we introduce mashup requirement attention, a mechanism that customizes recommendations based on the specific needs of each mashup project, thereby enhancing the accuracy and personalization of API recommendations. Extensive experiments on real-world datasets demonstrate the effectiveness of the proposed method.
AbstractList In current mashup-oriented cloud API recommendation systems, insufficient attention to personalized development requirements remains a common issue, particularly regarding developers' needs for attributes such as functionality similarity and complementarity. This paper proposes a novel approach for personalized cloud API feature representation and recommendation. We construct a graph of the cloud API ecosystem with rich side information and design metapaths to capture and characterize various API features. To fully leverage information from intermediate nodes in the metapaths and emphasize the significance of different instances, we employ a translational distance model and graph neural network techniques to aggregate cloud API feature information. Furthermore, we introduce mashup requirement attention, a mechanism that customizes recommendations based on the specific needs of each mashup project, thereby enhancing the accuracy and personalization of API recommendations. Extensive experiments on real-world datasets demonstrate the effectiveness of the proposed method.
Author Shen, Limin
Chen, Zhen
Wang, Yuying
Li, Chengyu
Author_xml – sequence: 1
  givenname: Limin
  surname: Shen
  fullname: Shen, Limin
  organization: College of Information Science and Engineering, Yanshan University, Qinhuangdao, China
– sequence: 2
  givenname: Yuying
  orcidid: 0000-0002-1520-5557
  surname: Wang
  fullname: Wang, Yuying
  email: yuyingwang@stumail.ysu.edu.cn
  organization: College of Information Science and Engineering, Yanshan University, Qinhuangdao, China
– sequence: 3
  givenname: Chengyu
  surname: Li
  fullname: Li, Chengyu
  organization: College of Information Science and Engineering, Yanshan University, Qinhuangdao, China
– sequence: 4
  givenname: Zhen
  orcidid: 0000-0003-4424-7315
  surname: Chen
  fullname: Chen, Zhen
  organization: College of Information Science and Engineering, Yanshan University, Qinhuangdao, China
BookMark eNpNUcFu3CAQRVUqNU3zBe0BqefdggGvObpW0qyUqFHTntEYxg0rr9kAPrRfXxxHVZDQDDPvPaT33pOzKUxIyEfOtpwz_aXtuquHh23FKrkViiktxRtyXvFab4QS9dmr_h25TOnAymnKSO3OSW5pN4bZ0fZ-T-8xpjDB6P-ioz_QhuMRJwfZh4neYX4Mjn6FVHbLex6zP41I25yj7-eM9BohzxEThcnRO0iP86moPM0-YtHJC7KUIvaBvB1gTHj5Ui_Ir-urn93N5vb7t33X3m6sUDpvmsFpDWJA1VcAULOaSwY99I6BUBwkF5xXtlG9xd7KQSvXu8HKvrGy4q4XF2S_6roAB3OK_gjxjwngzfMgxN8GYvZ2RFM1TqK0AzSWS-C6mKjZcqGuZKWgaH1etU4xPM2YsjmEORazkhFc6eK7EruCEivKxpBSxOH_r5yZJS2zpmWWtMxLWoX1aWV5RHzF2NU7Xtb_AFcwk40
CODEN IAECCG
Cites_doi 10.1145/3357384.3357903
10.1145/2831270
10.1007/978-3-642-01247-1_13
10.1080/0951192X.2021.1872105
10.1109/COMPSAC.2017.8
10.1609/aaai.v28i1.8870
10.1007/978-981-15-1899-7_29
10.1002/cpe.7069
10.4018/978-1-7998-7685-4.ch009
10.1109/TASE.2016.2624310
10.1016/j.jpdc.2018.04.002
10.1109/TSC.2021.3098756
10.1109/TSE.2023.3252259
10.1016/j.eswa.2020.113347
10.1109/TCSS.2022.3168595
10.1049/cit2.12135
10.1109/TPDS.2018.2877363
10.1080/09540091.2021.1974819
10.1109/SCC.2019.00040
10.1007/978-3-030-03596-9_30
10.1002/spe.2902
10.1109/TII.2022.3177411
10.1145/3097983.3098036
10.1109/QRS54544.2021.00082
10.1109/TSC.2023.3245652
10.1007/978-981-99-2356-4_6
10.1109/TSC.2020.3001307
10.24963/ijcai.2017/447
10.1109/ACCESS.2018.2890156
10.1007/978-3-030-23554-3_1
10.1016/j.eswa.2018.05.039
10.1109/TSC.2017.2681666
10.1007/s11280-021-00943-x
10.1109/TEM.2019.2961376
10.1109/ISPA-BDCloud-SocialCom-SustainCom51426.2020.00101
10.1145/3292500.3330836
10.1109/CSCWD57460.2023.10152817
10.1109/SCC53864.2021.00015
10.1007/s11432-021-3531-0
10.1145/3308558.3313562
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2024.3505943
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Materials Research Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 13299
ExternalDocumentID oai_doaj_org_article_28d4e4cfa8c14a19943904390a62425a
10_1109_ACCESS_2024_3505943
10767143
Genre orig-research
GrantInformation_xml – fundername: Project of Hebei Key Laboratory of Software Engineering
  grantid: 22567637H
  funderid: 10.13039/501100011298
– fundername: National Natural Science Foundation of China
  grantid: 61772450; 62102348
  funderid: 10.13039/501100001809
– fundername: Natural Science Foundation of Hebei Province
  grantid: F2022203012
  funderid: 10.13039/501100003787
– fundername: Science and Technology Research Project of Hebei University
  grantid: QN2020183
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c359t-8fd99a3fe5b2aaa606140ababd0a351a413112c85bcebc4f95dbdfc4b8c421db3
IEDL.DBID RIE
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001405911400017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2169-3536
IngestDate Fri Oct 03 12:48:15 EDT 2025
Mon Jun 30 13:06:29 EDT 2025
Sat Nov 29 04:27:13 EST 2025
Wed Aug 27 01:53:53 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c359t-8fd99a3fe5b2aaa606140ababd0a351a413112c85bcebc4f95dbdfc4b8c421db3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1520-5557
0000-0003-4424-7315
OpenAccessLink https://ieeexplore.ieee.org/document/10767143
PQID 3159505537
PQPubID 4845423
PageCount 15
ParticipantIDs ieee_primary_10767143
crossref_primary_10_1109_ACCESS_2024_3505943
doaj_primary_oai_doaj_org_article_28d4e4cfa8c14a19943904390a62425a
proquest_journals_3159505537
PublicationCentury 2000
PublicationDate 20250000
2025-00-00
20250101
2025-01-01
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 20250000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2025
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref14
ref31
Bordes (ref36)
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref39
ref16
ref38
ref19
ref18
Rendle (ref37)
ref24
ref23
ref26
ref25
ref20
ref42
ref41
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
References_xml – ident: ref33
  doi: 10.1145/3357384.3357903
– ident: ref29
  doi: 10.1145/2831270
– ident: ref28
  doi: 10.1007/978-3-642-01247-1_13
– ident: ref25
  doi: 10.1080/0951192X.2021.1872105
– ident: ref31
  doi: 10.1109/COMPSAC.2017.8
– ident: ref35
  doi: 10.1609/aaai.v28i1.8870
– ident: ref23
  doi: 10.1007/978-981-15-1899-7_29
– ident: ref12
  doi: 10.1002/cpe.7069
– ident: ref38
  doi: 10.4018/978-1-7998-7685-4.ch009
– ident: ref8
  doi: 10.1109/TASE.2016.2624310
– ident: ref9
  doi: 10.1016/j.jpdc.2018.04.002
– ident: ref11
  doi: 10.1109/TSC.2021.3098756
– start-page: 18
  volume-title: Proc. 25th Conf. Uncertainty Artif. Intell. (UAI)
  ident: ref37
  article-title: BPR: Bayesian personalized ranking from implicit feedback
– ident: ref13
  doi: 10.1109/TSE.2023.3252259
– ident: ref16
  doi: 10.1016/j.eswa.2020.113347
– ident: ref19
  doi: 10.1109/TCSS.2022.3168595
– ident: ref27
  doi: 10.1049/cit2.12135
– ident: ref24
  doi: 10.1109/TPDS.2018.2877363
– ident: ref4
  doi: 10.1080/09540091.2021.1974819
– ident: ref39
  doi: 10.1109/SCC.2019.00040
– ident: ref17
  doi: 10.1007/978-3-030-03596-9_30
– ident: ref7
  doi: 10.1002/spe.2902
– ident: ref18
  doi: 10.1109/TII.2022.3177411
– ident: ref30
  doi: 10.1145/3097983.3098036
– ident: ref42
  doi: 10.1109/QRS54544.2021.00082
– ident: ref6
  doi: 10.1109/TSC.2023.3245652
– ident: ref14
  doi: 10.1007/978-981-99-2356-4_6
– ident: ref20
  doi: 10.1109/TSC.2020.3001307
– ident: ref3
  doi: 10.24963/ijcai.2017/447
– ident: ref32
  doi: 10.1109/ACCESS.2018.2890156
– ident: ref15
  doi: 10.1007/978-3-030-23554-3_1
– start-page: 5
  volume-title: Proc. Adv. Neural Inf. Process. Syst. (NeurIPS)
  ident: ref36
  article-title: Translating embeddings for modeling multi-relational data
– ident: ref26
  doi: 10.1016/j.eswa.2018.05.039
– ident: ref22
  doi: 10.1109/TSC.2017.2681666
– ident: ref5
  doi: 10.1007/s11280-021-00943-x
– ident: ref10
  doi: 10.1109/TEM.2019.2961376
– ident: ref40
  doi: 10.1109/ISPA-BDCloud-SocialCom-SustainCom51426.2020.00101
– ident: ref41
  doi: 10.1145/3292500.3330836
– ident: ref2
  doi: 10.1109/CSCWD57460.2023.10152817
– ident: ref21
  doi: 10.1109/SCC53864.2021.00015
– ident: ref1
  doi: 10.1007/s11432-021-3531-0
– ident: ref34
  doi: 10.1145/3308558.3313562
SSID ssj0000816957
Score 2.3415413
Snippet In current mashup-oriented cloud API recommendation systems, insufficient attention to personalized development requirements remains a common issue,...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage 13285
SubjectTerms Accuracy
Attention mechanism
Blogs
cloud application programming interface
Collaboration
Customization
Data mining
Ecosystems
Feature extraction
Graph neural networks
Graphical representations
mashup-oriented
Mashups
multiple attribute features
personalized recommendation
Recommender systems
Semantics
Social networking (online)
Tagging
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA4iHvQgPnF9kYNHq22TtMmxLooelD0oeAuTR1HQVXa7Hvz1ZtKsrHjwIrSHlpCkM21mvjD9PkJOCltVwCzLrLM246BYBlJB5oWUxjnTemai2ER9dycfH9VoQeoLa8J6euDecOeldNxz24K0BQdksg0oHU_APxtETI1C1rMApuIaLItKiTrRDBW5Om-Gw_BEARCW_IwJZClhP0JRZOxPEiu_1uUYbK42yHrKEmnTz26TLPnxFllb4A7cJl1Dhy9vM0eb0Q0dzVPqT-8oIsrXV5_Ukuht1IimFyFcOYrXqYSQNl2vduUp5oGzgLspjB29henT7D30gjXCcfMQW_ZVkTvk4eryfnidJQmFzDKhuky2TilgrRemBIAK8V8OBozLgYkCOLLtlFYKY72xvFXCGddabqTlZeEM2yXL47ex3yM0hPLa5-GQzPHCO8m8NNxAWABC97IckNO5NfV7z5ShI8LIle6Nr9H4Ohl_QC7Q4t9NkeY63gjO18n5-i_nD8gO-mthvLpCQfcBOZw7UKdvcqpZyNzC2ILV-_8x9gFZLVELOG7HHJLlbjLzR2TFfnTP08lxfB2_AI_w4vY
  priority: 102
  providerName: Directory of Open Access Journals
Title A Cloud API Personalized Recommendation Method Based on Multiple Attribute Features and Mashup Requirement Attention
URI https://ieeexplore.ieee.org/document/10767143
https://www.proquest.com/docview/3159505537
https://doaj.org/article/28d4e4cfa8c14a19943904390a62425a
Volume 13
WOSCitedRecordID wos001405911400017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwEB0VxKE9UGip2BaQDz02NIntjX0MKxAcFu2hlbhZ44-olcouYhMOHPrb63G8iKriUCmKksixE0_smXFm3gP4XLnpFLnjhfPOFQI1L1BpLIJUynpvu8BtIptorq_VzY1e5GT1lAsTQkjBZ-GUDtO_fL9yAy2VxRHeTImvewu2mqYZk7WeFlSIQULLJiMLVaX-2s5m8SWiD1iLUy4JmIT_pX0SSH9mVflnKk765eLtfz7ZHuxmQ5K1o-T34VVYvoM3z-AF30Pfstmv1eBZu7hii43V_Rg8I6fzNlY5EiqxeaKRZmdRo3lG5znKkLX9SIgVGJmKQ3TNGS49m-P6x3AXa6Ew4rS-SCXHwMkD-H5x_m12WWSWhcJxqftCdV5r5F2QtkbEKbmIJVq0vkQuKxQEyFM7Ja0L1olOS29954RVTtSVt_wDbC9Xy3AILGr7JpRxU9yLKnjFg7LCYpwjYvWqnsCXTe-buxFMwyQnpNRmFJYhYZksrAmckYSeihISdroQu97kgWVq5UUQrkPlKoGEdMw1pfuWSJkvEidwQOJ61t4oqQkcbQRu8rBdGx6Nu9i25M3HF277BK9rYgBOizBHsN3fD-EYdtxD_3N9f5I8-rif_z4_SV_nH5Mo49M
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5BQYIeeBaxUMAHjqQksb2xj-mqVSu6qz0UqTdr_IiKBLtVN-HAr6_H8VZFiEOlHJLIsRN_ceaRmfkAPlduOkXueOG8c4VAzQtUGosglbLe2y5wm8gmmsVCXVzoZU5WT7kwIYQUfBYOaDf9y_drN5CrLK7wZkp83Q_hkRSirsZ0rVuXCnFIaNnk2kJVqb-2s1l8jGgF1uKASypNwv-SP6lMf-ZV-edjnCTM8fN73tsLeJZVSdaO2L-EB2H1CnbvFBh8DX3LZj_Xg2ft8pQtt3r3n-AZmZ2_YpcjpRKbJyJpdhhlmmd0nOMMWduPlFiBkbI4ROOc4cqzOW4uh6vYCwUSJw8jtRxDJ_fg-_HR-eykyDwLheNS94XqvNbIuyBtjYhTMhJLtGh9iVxWKKgkT-2UtC5YJzotvfWdE1a5CIK3_A3srNar8BZYlPdNKOOmuBdV8IoHZYXF-JWI3at6Al-2s2-uxnIaJpkhpTYjWIbAMhmsCRwSQrdNqRZ2OhGn3uSlZWrlRRCuQ-UqgVTrmGtK-C2Rcl8kTmCP4Loz3ojUBPa3gJu8cDeGR_Uuji158-4_l32CJyfn8zNzdrr49h6e1sQHnFwy-7DTXw_hAzx2v_sfm-uP6e28AdNM5PQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Cloud+API+Personalized+Recommendation+Method+Based+on+Multiple+Attribute+Features+and+Mashup+Requirement+Attention&rft.jtitle=IEEE+access&rft.au=Shen%2C+Limin&rft.au=Wang%2C+Yuying&rft.au=Li%2C+Chengyu&rft.au=Chen%2C+Zhen&rft.date=2025&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=13&rft.spage=13285&rft.epage=13299&rft_id=info:doi/10.1109%2FACCESS.2024.3505943&rft.externalDocID=10767143
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon