Example-Based Super-Resolution Image Reconstruction for Positron Emission Tomography Using Sparse Coding

This paper presents example-based methods for super-resolution (SR) reconstruction from a single set of low-resolution projections (or a sinogram) in positron emission tomography (PET). While deep learning-based SR approaches have shown promise across various imaging modalities, their application in...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE access Ročník 12; s. 182590 - 182602
Hlavní autori: Ren, Xue, Lee, Soo-Jin
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Piscataway IEEE 2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:2169-3536, 2169-3536
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract This paper presents example-based methods for super-resolution (SR) reconstruction from a single set of low-resolution projections (or a sinogram) in positron emission tomography (PET). While deep learning-based SR approaches have shown promise across various imaging modalities, their application in medical imaging is often hindered by the challenge of acquiring large and diverse training datasets, which are typically scarce in clinical practice. To address this limitation, we adopt sparse coding (SC)-based SR techniques, which require only a moderate amount of training data to construct dictionaries for reconstructing high-resolution (HR) images from low-quality projections acquired with low-resolution detectors. Initially, we employ SC-based regularization using a single over-complete dictionary to represent learned image features within a single feature space. We then extend this approach to joint sparse coding (JSC)-based regularization, which improves SR reconstruction accuracy by using a joint dictionary trained on a limited set of HR PET and anatomical images, such as X-ray computed tomography (CT) or magnetic resonance (MR) images, from the same patient. These images are assumed to reside in coupled feature spaces. To further improve performance, we propose integrating SC (or JSC) regularization with non-local regularization (NLR), where the balance between these two types of regularization is adaptively determined based on patch differences in the PET and anatomical images. Experimental results indicate that while SC-based methods integrated with NLR offer modest improvements over non-SC-based methods, JSC-based methods achieve significantly superior reconstruction accuracy, outperforming both SC-based and non-SC-based methods, as validated by multiple image quality assessment metrics.
AbstractList This paper presents example-based methods for super-resolution (SR) reconstruction from a single set of low-resolution projections (or a sinogram) in positron emission tomography (PET). While deep learning-based SR approaches have shown promise across various imaging modalities, their application in medical imaging is often hindered by the challenge of acquiring large and diverse training datasets, which are typically scarce in clinical practice. To address this limitation, we adopt sparse coding (SC)-based SR techniques, which require only a moderate amount of training data to construct dictionaries for reconstructing high-resolution (HR) images from low-quality projections acquired with low-resolution detectors. Initially, we employ SC-based regularization using a single over-complete dictionary to represent learned image features within a single feature space. We then extend this approach to joint sparse coding (JSC)-based regularization, which improves SR reconstruction accuracy by using a joint dictionary trained on a limited set of HR PET and anatomical images, such as X-ray computed tomography (CT) or magnetic resonance (MR) images, from the same patient. These images are assumed to reside in coupled feature spaces. To further improve performance, we propose integrating SC (or JSC) regularization with non-local regularization (NLR), where the balance between these two types of regularization is adaptively determined based on patch differences in the PET and anatomical images. Experimental results indicate that while SC-based methods integrated with NLR offer modest improvements over non-SC-based methods, JSC-based methods achieve significantly superior reconstruction accuracy, outperforming both SC-based and non-SC-based methods, as validated by multiple image quality assessment metrics.
Author Ren, Xue
Lee, Soo-Jin
Author_xml – sequence: 1
  givenname: Xue
  orcidid: 0000-0002-0066-7003
  surname: Ren
  fullname: Ren, Xue
  organization: Department of Electrical and Electronic Engineering, Pai Chai University, Daejeon, Republic of Korea
– sequence: 2
  givenname: Soo-Jin
  orcidid: 0000-0003-1069-6198
  surname: Lee
  fullname: Lee, Soo-Jin
  email: sjlee@pcu.ac.kr
  organization: Department of Electrical and Electronic Engineering, Pai Chai University, Daejeon, Republic of Korea
BookMark eNpNUU1r3DAQFSWFfDS_ID0YcvZWH5ZtHVOzTRYCLdnkLMbSaONlbbmSDdl_X20cSuYy8x7z3gy8S3I2-AEJuWF0xRhVP-6aZr3drjjlxUpIRktKv5ALzkqVCynKs0_zObmOcU9T1YmS1QV5Xb9BPx4w_wkRbbadRwz5E0Z_mKfOD9mmhx1mT2j8EKcwm3fS-ZD98bGbQgLrvovxxD773u8CjK_H7CV2wy7bjhAiZo23CX0jXx0cIl5_9Cvy8mv93Dzkj7_vN83dY26EVFNeG1CFYkKCs4q3ruRcKqO4Fcay0jpeU9Maw1pTyyqhliEVVDnqCpAShLgim8XXetjrMXQ9hKP20Ol3woedhjB15oC6Mqo0zFhpKyxU6wDbgoNktStrdAKS1-3iNQb_d8Y46b2fw5De14IVgvJasDptiWXLBB9jQPf_KqP6lJBeEtKnhPRHQkn1fVF1iPhJUVW8EJX4B5D_kDQ
CODEN IAECCG
Cites_doi 10.1109/TMI.2003.812251
10.1109/TIP.2008.2008065
10.1109/CVPR.2016.182
10.1016/B978-1-4160-5198-5.00018-6
10.1002/mp.13627
10.1109/78.258082
10.1007/978-3-658-18057-7_3
10.1109/TRPMS.2020.3014786
10.1109/JPROC.2019.2936809
10.1109/MSP.2003.1203207
10.1109/ACCESS.2023.3251396
10.1137/S003614450037906X
10.1109/TMI.2015.2427777
10.1109/TIP.2012.2192127
10.1016/B978-0-12-374457-9.00021-4
10.1109/TGRS.2015.2457614
10.1109/TPAMI.2022.3203009
10.1109/TMM.2019.2919431
10.1109/79.560323
10.1109/TMI.2010.2076827
10.1109/42.363108
10.1109/TIP.2003.819861
10.1109/TCI.2022.3175309
10.1088/0031-9155/44/11/311
10.1109/TRPMS.2022.3161569
10.1109/TIP.2010.2050625
10.1145/3390462
10.1109/TSP.2006.881199
10.2352/J.ImagingSci.Technol.2021.65.1.010502
10.1088/0031-9155/58/16/5803
10.3354/cr030079
10.1088/0031-9155/60/2/807
10.1016/j.media.2019.03.013
10.1109/TMI.2012.2195669
10.1088/0031-9155/61/18/6833
10.1088/0031-9155/61/2/791
10.1109/ISBI.2008.4540943
10.1109/ACCESS.2024.3420175
10.1109/TIP.2013.2265881
10.1080/00207178908953472
10.1145/1008304.1008305
10.1016/j.nima.2010.11.092
10.1109/TIP.2006.881969
10.1088/0031-9155/49/11/002
10.1109/TIP.2005.859378
10.1109/TBME.2012.2217493
10.1109/TSP.2010.2046596
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2024.3510600
DatabaseName IEEE Xplore (IEEE)
IEEE Xplore Digital Library Open Access
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList

Materials Research Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 182602
ExternalDocumentID oai_doaj_org_article_7c96c1cd5d7e49bfaeb42a518f68ef3a
10_1109_ACCESS_2024_3510600
10772437
Genre orig-research
GrantInformation_xml – fundername: National Research Foundation of Korea
  funderid: 10.13039/501100003725
– fundername: Korean Government (MSIT)
  grantid: 2022R1F1A1060484
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c359t-8ca949135afd92bf62259c92d3cd16df280cbcc1bc857f28b1e0309f0f4a55a33
IEDL.DBID DOA
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001375790900018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2169-3536
IngestDate Fri Oct 03 12:53:28 EDT 2025
Mon Jun 30 13:55:47 EDT 2025
Sat Nov 29 04:27:14 EST 2025
Wed Aug 27 02:33:23 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c359t-8ca949135afd92bf62259c92d3cd16df280cbcc1bc857f28b1e0309f0f4a55a33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1069-6198
0000-0002-0066-7003
OpenAccessLink https://doaj.org/article/7c96c1cd5d7e49bfaeb42a518f68ef3a
PQID 3143028318
PQPubID 4845423
PageCount 13
ParticipantIDs crossref_primary_10_1109_ACCESS_2024_3510600
proquest_journals_3143028318
doaj_primary_oai_doaj_org_article_7c96c1cd5d7e49bfaeb42a518f68ef3a
ieee_primary_10772437
PublicationCentury 2000
PublicationDate 20240000
2024-00-00
20240101
2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 20240000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref11
ref10
ref17
ref16
Sureshbabu (ref38) 2005; 33
ref19
ref18
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref35
ref34
ref36
ref31
ref30
ref33
ref32
ref2
Czernin (ref37) 2004; 45
ref1
ref39
ref24
ref23
ref26
ref25
Mairal (ref40) 2010; 11
ref20
ref22
ref21
ref28
ref27
ref29
References_xml – ident: ref45
  doi: 10.1109/TMI.2003.812251
– ident: ref21
  doi: 10.1109/TIP.2008.2008065
– ident: ref12
  doi: 10.1109/CVPR.2016.182
– ident: ref1
  doi: 10.1016/B978-1-4160-5198-5.00018-6
– ident: ref8
  doi: 10.1002/mp.13627
– ident: ref32
  doi: 10.1109/78.258082
– ident: ref28
  doi: 10.1007/978-3-658-18057-7_3
– ident: ref5
  doi: 10.1109/TRPMS.2020.3014786
– ident: ref6
  doi: 10.1109/JPROC.2019.2936809
– ident: ref4
  doi: 10.1109/MSP.2003.1203207
– ident: ref13
  doi: 10.1109/ACCESS.2023.3251396
– ident: ref31
  doi: 10.1137/S003614450037906X
– ident: ref36
  doi: 10.1109/TMI.2015.2427777
– ident: ref26
  doi: 10.1109/TIP.2012.2192127
– ident: ref46
  doi: 10.1016/B978-0-12-374457-9.00021-4
– ident: ref24
  doi: 10.1109/TGRS.2015.2457614
– ident: ref14
  doi: 10.1109/TPAMI.2022.3203009
– ident: ref10
  doi: 10.1109/TMM.2019.2919431
– ident: ref2
  doi: 10.1109/79.560323
– ident: ref35
  doi: 10.1109/TMI.2010.2076827
– ident: ref43
  doi: 10.1109/42.363108
– ident: ref47
  doi: 10.1109/TIP.2003.819861
– ident: ref50
  doi: 10.1109/TCI.2022.3175309
– ident: ref44
  doi: 10.1088/0031-9155/44/11/311
– ident: ref9
  doi: 10.1109/TRPMS.2022.3161569
– ident: ref25
  doi: 10.1109/TIP.2010.2050625
– ident: ref11
  doi: 10.1145/3390462
– ident: ref39
  doi: 10.1109/TSP.2006.881199
– ident: ref29
  doi: 10.2352/J.ImagingSci.Technol.2021.65.1.010502
– ident: ref16
  doi: 10.1088/0031-9155/58/16/5803
– ident: ref48
  doi: 10.3354/cr030079
– ident: ref17
  doi: 10.1088/0031-9155/60/2/807
– ident: ref7
  doi: 10.1016/j.media.2019.03.013
– ident: ref15
  doi: 10.1109/TMI.2012.2195669
– ident: ref18
  doi: 10.1088/0031-9155/61/18/6833
– ident: ref19
  doi: 10.1088/0031-9155/61/2/791
– ident: ref34
  doi: 10.1109/ISBI.2008.4540943
– ident: ref27
  doi: 10.1109/ACCESS.2024.3420175
– ident: ref33
  doi: 10.1109/TIP.2013.2265881
– volume: 33
  start-page: 156
  issue: 3
  year: 2005
  ident: ref38
  article-title: PET/CT imaging artifacts
  publication-title: J. Nucl. Med. Technol.
– ident: ref41
  doi: 10.1080/00207178908953472
– ident: ref30
  doi: 10.1145/1008304.1008305
– ident: ref3
  doi: 10.1016/j.nima.2010.11.092
– ident: ref20
  doi: 10.1109/TIP.2006.881969
– volume: 45
  start-page: 1
  issue: 1
  year: 2004
  ident: ref37
  article-title: PET/CT imaging: Facts, opinions, hopes, and questions
  publication-title: J. Nucl. Med.
– volume: 11
  start-page: 19
  issue: 1
  year: 2010
  ident: ref40
  article-title: Online learning for matrix factorization and sparse coding
  publication-title: J. Mach. Learn. Res.
– ident: ref42
  doi: 10.1088/0031-9155/49/11/002
– ident: ref49
  doi: 10.1109/TIP.2005.859378
– ident: ref23
  doi: 10.1109/TBME.2012.2217493
– ident: ref22
  doi: 10.1109/TSP.2010.2046596
SSID ssj0000816957
Score 2.3069084
Snippet This paper presents example-based methods for super-resolution (SR) reconstruction from a single set of low-resolution projections (or a sinogram) in positron...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage 182590
SubjectTerms Accuracy
Coding
Computed tomography
Dictionaries
Image acquisition
Image coding
Image edge detection
Image quality
Image reconstruction
Image resolution
Imaging
inverse problems
Magnetic resonance
Medical imaging
penalized-likelihood methods
Positron emission
Positron emission tomography
Quality assessment
Regularization
Sparse approximation
sparse coding
Spatial resolution
super-resolution
Superresolution
Tomography
SummonAdditionalLinks – databaseName: IEEE Electronic Library (IEL)
  dbid: RIE
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07bxQxELZIRAEFz6BcCMgFJQ7r9btMThdBE0VKkNJZ9tgWFLk7XRLEz2fsdZKTEAXderWr9fqb8Tzs-UzIJxBCFwWKZT0GJnMILDqVGAfrTLAFgYF22IQ5O7NXV-68F6u3Wpicc9t8lo_qZVvLTyu4q6ky1HD0BaUwO2THGD0Vaz0kVOoJEk6ZzizEB_fleD7Hn8AYcJRHAmVP1zK2LevTSPr7qSp_TcXNvpy-_M-evSIvuiNJjyfkX5MnefmGPN-iF3xLfix-h0r-y07QVCV6cbfOG1bz9ZO00W_XOJnQGoA-0shSdGLped3JtcHGAqWgptPo5eq6c1vTtsmAXqwxIs50vqq2b498P11czr-yfrICA6HcLbMQnHRcqFCSG2PRqNUO3JgEJK5TGe0AEYBHsMpgK_Jcl2LKUGRQKgjxjuwuV8u8Tyia-0EGiY5O4DJAikaDRr2OVuQkrZqRz_cj7tcTgYZvgcfg_ASQrwD5DtCMnFRUHh6t7NftBg6378rkDTgNHJJKJksXS8hRjkFxW7TNRYQZ2asQbX1vQmdGDu9B9l1Vb7xAj7E6Wdwe_OO19-RZ7eKUeDkku4hI_kCewq_bnzebj00K_wCm8d1f
  priority: 102
  providerName: IEEE
Title Example-Based Super-Resolution Image Reconstruction for Positron Emission Tomography Using Sparse Coding
URI https://ieeexplore.ieee.org/document/10772437
https://www.proquest.com/docview/3143028318
https://doaj.org/article/7c96c1cd5d7e49bfaeb42a518f68ef3a
Volume 12
WOSCitedRecordID wos001375790900018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07TxwxELYQSkGKKA-iXEKQi5QxrNfvEk6HoAhCAiQ6yx7bgoK70wFRqvz2jL1LslKKNGlW8molr-eb8cz48Q0hX0AIXRQolnUfmMwhsOhUYhysM8EWBAZasQlzfm5vbtzFpNRXPRM20AMPgjs04DRwSCqZLF0sIUfZB8Vt0TYX0UKjzrhJMtXmYMu1U2akGeKdOzyaz3FEmBD28kCgIup6p23iihpj_1hi5a95uTmbk9fk1Rgl0qPh796Qrbx8S15OuAPfkdvFj1CZfdkx-qFEL5_WecPqYvygSvTsHmcKWrPLPxyxFCNUelGPaW2wsUCI61oZvVrdj8TVtJ0goJdrTHczna-qY9sl1yeLq_kpG8smMBDKPTILwUnHhQoluT4WjSbrwPVJQOI6ld52EAF4BKsMtiLPdZ-ldEUGpYIQ78n2crXMHwhFX97JIDGKCVwGSNFo0Gi00YqcpFUz8vVZgn49sGP4llV0zg8C91XgfhT4jBxXKf_-tFJbtxcIuB8B9_8CfEZ2K0aT_jBBkMLMyN4zaH60wwcvMBysERS3H_9H35_ITh3PsASzR7YRvvyZvIDvj3cPm_2mgvj89nOx3y4S_gLHSOOd
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NTxQxFG8UTZQDfmFYRe3Bo8Xp9GPaI2yWQMQNCWvCrem8tsEDu5sFDH8-r52CmxgO3qaTmUynv76-j_b9HiFfQQidFCgWdeuZjN6z3qrAOBjbeZMQGCjFJrrp1Jyf29OarF5yYWKM5fBZ3MuXZS8_LOAmh8pQwtEWlKJ7Sp7l0lk1XeshpJJrSFjVVW4h3tjv--Mx_gZ6ga3cEzj7dE5kW9M_haa_1lX5ZzEuGubw1X_27TXZqqYk3R-wf0OexPlbsrlGMPiOXExufab_ZQeorAI9u1nGFcsR-2G-0eNLXE5odkH_EslSNGPpaT7LtcLGBOdBDqjR2eKyslvTcsyAni3RJ450vMjab5v8OpzMxkes1lZgIJS9Zga8lZYL5VOwbZ80yrUF2wYBgeuQWtNAD8B7MKrDVs9j3oxJTZJeKS_Ee7IxX8zjDqGo8BvpJZo6nksPoe80aJTs3ogYpFEj8u1-xN1yoNBwxfVorBsAchkgVwEakYOMysOjmf-63MDhdlWcXAdWA4egQhel7ZOPvWy94iZpE5PwI7KdIVr73oDOiOzeg-yqsF45gTZjNrO4-fDIa1_Ii6PZzxN3cjz98ZG8zN0dwjC7ZAPRiZ_Ic_hz_ftq9bnMyDtTeOCo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Example-Based+Super-Resolution+Image+Reconstruction+for+Positron+Emission+Tomography+Using+Sparse+Coding&rft.jtitle=IEEE+access&rft.au=Ren%2C+Xue&rft.au=Lee%2C+Soo-Jin&rft.date=2024&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=12&rft.spage=182590&rft.epage=182602&rft_id=info:doi/10.1109%2FACCESS.2024.3510600&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2024_3510600
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon