Example-Based Super-Resolution Image Reconstruction for Positron Emission Tomography Using Sparse Coding
This paper presents example-based methods for super-resolution (SR) reconstruction from a single set of low-resolution projections (or a sinogram) in positron emission tomography (PET). While deep learning-based SR approaches have shown promise across various imaging modalities, their application in...
Uložené v:
| Vydané v: | IEEE access Ročník 12; s. 182590 - 182602 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Piscataway
IEEE
2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 2169-3536, 2169-3536 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | This paper presents example-based methods for super-resolution (SR) reconstruction from a single set of low-resolution projections (or a sinogram) in positron emission tomography (PET). While deep learning-based SR approaches have shown promise across various imaging modalities, their application in medical imaging is often hindered by the challenge of acquiring large and diverse training datasets, which are typically scarce in clinical practice. To address this limitation, we adopt sparse coding (SC)-based SR techniques, which require only a moderate amount of training data to construct dictionaries for reconstructing high-resolution (HR) images from low-quality projections acquired with low-resolution detectors. Initially, we employ SC-based regularization using a single over-complete dictionary to represent learned image features within a single feature space. We then extend this approach to joint sparse coding (JSC)-based regularization, which improves SR reconstruction accuracy by using a joint dictionary trained on a limited set of HR PET and anatomical images, such as X-ray computed tomography (CT) or magnetic resonance (MR) images, from the same patient. These images are assumed to reside in coupled feature spaces. To further improve performance, we propose integrating SC (or JSC) regularization with non-local regularization (NLR), where the balance between these two types of regularization is adaptively determined based on patch differences in the PET and anatomical images. Experimental results indicate that while SC-based methods integrated with NLR offer modest improvements over non-SC-based methods, JSC-based methods achieve significantly superior reconstruction accuracy, outperforming both SC-based and non-SC-based methods, as validated by multiple image quality assessment metrics. |
|---|---|
| AbstractList | This paper presents example-based methods for super-resolution (SR) reconstruction from a single set of low-resolution projections (or a sinogram) in positron emission tomography (PET). While deep learning-based SR approaches have shown promise across various imaging modalities, their application in medical imaging is often hindered by the challenge of acquiring large and diverse training datasets, which are typically scarce in clinical practice. To address this limitation, we adopt sparse coding (SC)-based SR techniques, which require only a moderate amount of training data to construct dictionaries for reconstructing high-resolution (HR) images from low-quality projections acquired with low-resolution detectors. Initially, we employ SC-based regularization using a single over-complete dictionary to represent learned image features within a single feature space. We then extend this approach to joint sparse coding (JSC)-based regularization, which improves SR reconstruction accuracy by using a joint dictionary trained on a limited set of HR PET and anatomical images, such as X-ray computed tomography (CT) or magnetic resonance (MR) images, from the same patient. These images are assumed to reside in coupled feature spaces. To further improve performance, we propose integrating SC (or JSC) regularization with non-local regularization (NLR), where the balance between these two types of regularization is adaptively determined based on patch differences in the PET and anatomical images. Experimental results indicate that while SC-based methods integrated with NLR offer modest improvements over non-SC-based methods, JSC-based methods achieve significantly superior reconstruction accuracy, outperforming both SC-based and non-SC-based methods, as validated by multiple image quality assessment metrics. |
| Author | Ren, Xue Lee, Soo-Jin |
| Author_xml | – sequence: 1 givenname: Xue orcidid: 0000-0002-0066-7003 surname: Ren fullname: Ren, Xue organization: Department of Electrical and Electronic Engineering, Pai Chai University, Daejeon, Republic of Korea – sequence: 2 givenname: Soo-Jin orcidid: 0000-0003-1069-6198 surname: Lee fullname: Lee, Soo-Jin email: sjlee@pcu.ac.kr organization: Department of Electrical and Electronic Engineering, Pai Chai University, Daejeon, Republic of Korea |
| BookMark | eNpNUU1r3DAQFSWFfDS_ID0YcvZWH5ZtHVOzTRYCLdnkLMbSaONlbbmSDdl_X20cSuYy8x7z3gy8S3I2-AEJuWF0xRhVP-6aZr3drjjlxUpIRktKv5ALzkqVCynKs0_zObmOcU9T1YmS1QV5Xb9BPx4w_wkRbbadRwz5E0Z_mKfOD9mmhx1mT2j8EKcwm3fS-ZD98bGbQgLrvovxxD773u8CjK_H7CV2wy7bjhAiZo23CX0jXx0cIl5_9Cvy8mv93Dzkj7_vN83dY26EVFNeG1CFYkKCs4q3ruRcKqO4Fcay0jpeU9Maw1pTyyqhliEVVDnqCpAShLgim8XXetjrMXQ9hKP20Ol3woedhjB15oC6Mqo0zFhpKyxU6wDbgoNktStrdAKS1-3iNQb_d8Y46b2fw5De14IVgvJasDptiWXLBB9jQPf_KqP6lJBeEtKnhPRHQkn1fVF1iPhJUVW8EJX4B5D_kDQ |
| CODEN | IAECCG |
| Cites_doi | 10.1109/TMI.2003.812251 10.1109/TIP.2008.2008065 10.1109/CVPR.2016.182 10.1016/B978-1-4160-5198-5.00018-6 10.1002/mp.13627 10.1109/78.258082 10.1007/978-3-658-18057-7_3 10.1109/TRPMS.2020.3014786 10.1109/JPROC.2019.2936809 10.1109/MSP.2003.1203207 10.1109/ACCESS.2023.3251396 10.1137/S003614450037906X 10.1109/TMI.2015.2427777 10.1109/TIP.2012.2192127 10.1016/B978-0-12-374457-9.00021-4 10.1109/TGRS.2015.2457614 10.1109/TPAMI.2022.3203009 10.1109/TMM.2019.2919431 10.1109/79.560323 10.1109/TMI.2010.2076827 10.1109/42.363108 10.1109/TIP.2003.819861 10.1109/TCI.2022.3175309 10.1088/0031-9155/44/11/311 10.1109/TRPMS.2022.3161569 10.1109/TIP.2010.2050625 10.1145/3390462 10.1109/TSP.2006.881199 10.2352/J.ImagingSci.Technol.2021.65.1.010502 10.1088/0031-9155/58/16/5803 10.3354/cr030079 10.1088/0031-9155/60/2/807 10.1016/j.media.2019.03.013 10.1109/TMI.2012.2195669 10.1088/0031-9155/61/18/6833 10.1088/0031-9155/61/2/791 10.1109/ISBI.2008.4540943 10.1109/ACCESS.2024.3420175 10.1109/TIP.2013.2265881 10.1080/00207178908953472 10.1145/1008304.1008305 10.1016/j.nima.2010.11.092 10.1109/TIP.2006.881969 10.1088/0031-9155/49/11/002 10.1109/TIP.2005.859378 10.1109/TBME.2012.2217493 10.1109/TSP.2010.2046596 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
| DOI | 10.1109/ACCESS.2024.3510600 |
| DatabaseName | IEEE Xplore (IEEE) IEEE Xplore Digital Library Open Access IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Materials Research Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2169-3536 |
| EndPage | 182602 |
| ExternalDocumentID | oai_doaj_org_article_7c96c1cd5d7e49bfaeb42a518f68ef3a 10_1109_ACCESS_2024_3510600 10772437 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Research Foundation of Korea funderid: 10.13039/501100003725 – fundername: Korean Government (MSIT) grantid: 2022R1F1A1060484 |
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c359t-8ca949135afd92bf62259c92d3cd16df280cbcc1bc857f28b1e0309f0f4a55a33 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001375790900018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2169-3536 |
| IngestDate | Fri Oct 03 12:53:28 EDT 2025 Mon Jun 30 13:55:47 EDT 2025 Sat Nov 29 04:27:14 EST 2025 Wed Aug 27 02:33:23 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0/legalcode |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c359t-8ca949135afd92bf62259c92d3cd16df280cbcc1bc857f28b1e0309f0f4a55a33 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-1069-6198 0000-0002-0066-7003 |
| OpenAccessLink | https://doaj.org/article/7c96c1cd5d7e49bfaeb42a518f68ef3a |
| PQID | 3143028318 |
| PQPubID | 4845423 |
| PageCount | 13 |
| ParticipantIDs | crossref_primary_10_1109_ACCESS_2024_3510600 proquest_journals_3143028318 doaj_primary_oai_doaj_org_article_7c96c1cd5d7e49bfaeb42a518f68ef3a ieee_primary_10772437 |
| PublicationCentury | 2000 |
| PublicationDate | 20240000 2024-00-00 20240101 2024-01-01 |
| PublicationDateYYYYMMDD | 2024-01-01 |
| PublicationDate_xml | – year: 2024 text: 20240000 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE access |
| PublicationTitleAbbrev | Access |
| PublicationYear | 2024 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref15 ref14 ref11 ref10 ref17 ref16 Sureshbabu (ref38) 2005; 33 ref19 ref18 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref35 ref34 ref36 ref31 ref30 ref33 ref32 ref2 Czernin (ref37) 2004; 45 ref1 ref39 ref24 ref23 ref26 ref25 Mairal (ref40) 2010; 11 ref20 ref22 ref21 ref28 ref27 ref29 |
| References_xml | – ident: ref45 doi: 10.1109/TMI.2003.812251 – ident: ref21 doi: 10.1109/TIP.2008.2008065 – ident: ref12 doi: 10.1109/CVPR.2016.182 – ident: ref1 doi: 10.1016/B978-1-4160-5198-5.00018-6 – ident: ref8 doi: 10.1002/mp.13627 – ident: ref32 doi: 10.1109/78.258082 – ident: ref28 doi: 10.1007/978-3-658-18057-7_3 – ident: ref5 doi: 10.1109/TRPMS.2020.3014786 – ident: ref6 doi: 10.1109/JPROC.2019.2936809 – ident: ref4 doi: 10.1109/MSP.2003.1203207 – ident: ref13 doi: 10.1109/ACCESS.2023.3251396 – ident: ref31 doi: 10.1137/S003614450037906X – ident: ref36 doi: 10.1109/TMI.2015.2427777 – ident: ref26 doi: 10.1109/TIP.2012.2192127 – ident: ref46 doi: 10.1016/B978-0-12-374457-9.00021-4 – ident: ref24 doi: 10.1109/TGRS.2015.2457614 – ident: ref14 doi: 10.1109/TPAMI.2022.3203009 – ident: ref10 doi: 10.1109/TMM.2019.2919431 – ident: ref2 doi: 10.1109/79.560323 – ident: ref35 doi: 10.1109/TMI.2010.2076827 – ident: ref43 doi: 10.1109/42.363108 – ident: ref47 doi: 10.1109/TIP.2003.819861 – ident: ref50 doi: 10.1109/TCI.2022.3175309 – ident: ref44 doi: 10.1088/0031-9155/44/11/311 – ident: ref9 doi: 10.1109/TRPMS.2022.3161569 – ident: ref25 doi: 10.1109/TIP.2010.2050625 – ident: ref11 doi: 10.1145/3390462 – ident: ref39 doi: 10.1109/TSP.2006.881199 – ident: ref29 doi: 10.2352/J.ImagingSci.Technol.2021.65.1.010502 – ident: ref16 doi: 10.1088/0031-9155/58/16/5803 – ident: ref48 doi: 10.3354/cr030079 – ident: ref17 doi: 10.1088/0031-9155/60/2/807 – ident: ref7 doi: 10.1016/j.media.2019.03.013 – ident: ref15 doi: 10.1109/TMI.2012.2195669 – ident: ref18 doi: 10.1088/0031-9155/61/18/6833 – ident: ref19 doi: 10.1088/0031-9155/61/2/791 – ident: ref34 doi: 10.1109/ISBI.2008.4540943 – ident: ref27 doi: 10.1109/ACCESS.2024.3420175 – ident: ref33 doi: 10.1109/TIP.2013.2265881 – volume: 33 start-page: 156 issue: 3 year: 2005 ident: ref38 article-title: PET/CT imaging artifacts publication-title: J. Nucl. Med. Technol. – ident: ref41 doi: 10.1080/00207178908953472 – ident: ref30 doi: 10.1145/1008304.1008305 – ident: ref3 doi: 10.1016/j.nima.2010.11.092 – ident: ref20 doi: 10.1109/TIP.2006.881969 – volume: 45 start-page: 1 issue: 1 year: 2004 ident: ref37 article-title: PET/CT imaging: Facts, opinions, hopes, and questions publication-title: J. Nucl. Med. – volume: 11 start-page: 19 issue: 1 year: 2010 ident: ref40 article-title: Online learning for matrix factorization and sparse coding publication-title: J. Mach. Learn. Res. – ident: ref42 doi: 10.1088/0031-9155/49/11/002 – ident: ref49 doi: 10.1109/TIP.2005.859378 – ident: ref23 doi: 10.1109/TBME.2012.2217493 – ident: ref22 doi: 10.1109/TSP.2010.2046596 |
| SSID | ssj0000816957 |
| Score | 2.3069084 |
| Snippet | This paper presents example-based methods for super-resolution (SR) reconstruction from a single set of low-resolution projections (or a sinogram) in positron... |
| SourceID | doaj proquest crossref ieee |
| SourceType | Open Website Aggregation Database Index Database Publisher |
| StartPage | 182590 |
| SubjectTerms | Accuracy Coding Computed tomography Dictionaries Image acquisition Image coding Image edge detection Image quality Image reconstruction Image resolution Imaging inverse problems Magnetic resonance Medical imaging penalized-likelihood methods Positron emission Positron emission tomography Quality assessment Regularization Sparse approximation sparse coding Spatial resolution super-resolution Superresolution Tomography |
| SummonAdditionalLinks | – databaseName: IEEE Electronic Library (IEL) dbid: RIE link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07bxQxELZIRAEFz6BcCMgFJQ7r9btMThdBE0VKkNJZ9tgWFLk7XRLEz2fsdZKTEAXderWr9fqb8Tzs-UzIJxBCFwWKZT0GJnMILDqVGAfrTLAFgYF22IQ5O7NXV-68F6u3Wpicc9t8lo_qZVvLTyu4q6ky1HD0BaUwO2THGD0Vaz0kVOoJEk6ZzizEB_fleD7Hn8AYcJRHAmVP1zK2LevTSPr7qSp_TcXNvpy-_M-evSIvuiNJjyfkX5MnefmGPN-iF3xLfix-h0r-y07QVCV6cbfOG1bz9ZO00W_XOJnQGoA-0shSdGLped3JtcHGAqWgptPo5eq6c1vTtsmAXqwxIs50vqq2b498P11czr-yfrICA6HcLbMQnHRcqFCSG2PRqNUO3JgEJK5TGe0AEYBHsMpgK_Jcl2LKUGRQKgjxjuwuV8u8Tyia-0EGiY5O4DJAikaDRr2OVuQkrZqRz_cj7tcTgYZvgcfg_ASQrwD5DtCMnFRUHh6t7NftBg6378rkDTgNHJJKJksXS8hRjkFxW7TNRYQZ2asQbX1vQmdGDu9B9l1Vb7xAj7E6Wdwe_OO19-RZ7eKUeDkku4hI_kCewq_bnzebj00K_wCm8d1f priority: 102 providerName: IEEE |
| Title | Example-Based Super-Resolution Image Reconstruction for Positron Emission Tomography Using Sparse Coding |
| URI | https://ieeexplore.ieee.org/document/10772437 https://www.proquest.com/docview/3143028318 https://doaj.org/article/7c96c1cd5d7e49bfaeb42a518f68ef3a |
| Volume | 12 |
| WOSCitedRecordID | wos001375790900018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07TxwxELYQSkGKKA-iXEKQi5QxrNfvEk6HoAhCAiQ6yx7bgoK70wFRqvz2jL1LslKKNGlW8molr-eb8cz48Q0hX0AIXRQolnUfmMwhsOhUYhysM8EWBAZasQlzfm5vbtzFpNRXPRM20AMPgjs04DRwSCqZLF0sIUfZB8Vt0TYX0UKjzrhJMtXmYMu1U2akGeKdOzyaz3FEmBD28kCgIup6p23iihpj_1hi5a95uTmbk9fk1Rgl0qPh796Qrbx8S15OuAPfkdvFj1CZfdkx-qFEL5_WecPqYvygSvTsHmcKWrPLPxyxFCNUelGPaW2wsUCI61oZvVrdj8TVtJ0goJdrTHczna-qY9sl1yeLq_kpG8smMBDKPTILwUnHhQoluT4WjSbrwPVJQOI6ld52EAF4BKsMtiLPdZ-ldEUGpYIQ78n2crXMHwhFX97JIDGKCVwGSNFo0Gi00YqcpFUz8vVZgn49sGP4llV0zg8C91XgfhT4jBxXKf_-tFJbtxcIuB8B9_8CfEZ2K0aT_jBBkMLMyN4zaH60wwcvMBysERS3H_9H35_ITh3PsASzR7YRvvyZvIDvj3cPm_2mgvj89nOx3y4S_gLHSOOd |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NTxQxFG8UTZQDfmFYRe3Bo8Xp9GPaI2yWQMQNCWvCrem8tsEDu5sFDH8-r52CmxgO3qaTmUynv76-j_b9HiFfQQidFCgWdeuZjN6z3qrAOBjbeZMQGCjFJrrp1Jyf29OarF5yYWKM5fBZ3MuXZS8_LOAmh8pQwtEWlKJ7Sp7l0lk1XeshpJJrSFjVVW4h3tjv--Mx_gZ6ga3cEzj7dE5kW9M_haa_1lX5ZzEuGubw1X_27TXZqqYk3R-wf0OexPlbsrlGMPiOXExufab_ZQeorAI9u1nGFcsR-2G-0eNLXE5odkH_EslSNGPpaT7LtcLGBOdBDqjR2eKyslvTcsyAni3RJ450vMjab5v8OpzMxkes1lZgIJS9Zga8lZYL5VOwbZ80yrUF2wYBgeuQWtNAD8B7MKrDVs9j3oxJTZJeKS_Ee7IxX8zjDqGo8BvpJZo6nksPoe80aJTs3ogYpFEj8u1-xN1yoNBwxfVorBsAchkgVwEakYOMysOjmf-63MDhdlWcXAdWA4egQhel7ZOPvWy94iZpE5PwI7KdIVr73oDOiOzeg-yqsF45gTZjNrO4-fDIa1_Ii6PZzxN3cjz98ZG8zN0dwjC7ZAPRiZ_Ic_hz_ftq9bnMyDtTeOCo |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Example-Based+Super-Resolution+Image+Reconstruction+for+Positron+Emission+Tomography+Using+Sparse+Coding&rft.jtitle=IEEE+access&rft.au=Ren%2C+Xue&rft.au=Lee%2C+Soo-Jin&rft.date=2024&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=12&rft.spage=182590&rft.epage=182602&rft_id=info:doi/10.1109%2FACCESS.2024.3510600&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2024_3510600 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |