Parallelizing the dual revised simplex method

This paper introduces the design and implementation of two parallel dual simplex solvers for general large scale sparse linear programming problems. One approach, called PAMI, extends a relatively unknown pivoting strategy called suboptimization and exploits parallelism across multiple iterations. T...

Full description

Saved in:
Bibliographic Details
Published in:Mathematical programming computation Vol. 10; no. 1; pp. 119 - 142
Main Authors: Huangfu, Q., Hall, J. A. J.
Format: Journal Article
Language:English
Published: Berlin/Heidelberg Springer Berlin Heidelberg 01.03.2018
Springer Nature B.V
Subjects:
ISSN:1867-2949, 1867-2957
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper introduces the design and implementation of two parallel dual simplex solvers for general large scale sparse linear programming problems. One approach, called PAMI, extends a relatively unknown pivoting strategy called suboptimization and exploits parallelism across multiple iterations. The other, called SIP, exploits purely single iteration parallelism by overlapping computational components when possible. Computational results show that the performance of PAMI is superior to that of the leading open-source simplex solver, and that SIP complements PAMI in achieving speedup when PAMI results in slowdown. One of the authors has implemented the techniques underlying PAMI within the FICO Xpress simplex solver and this paper presents computational results demonstrating their value. In developing the first parallel revised simplex solver of general utility, this work represents a significant achievement in computational optimization.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1867-2949
1867-2957
DOI:10.1007/s12532-017-0130-5