Open-circuit fault diagnosis of power rectifier using sparse autoencoder based deep neural network

This paper is concerned with the open-circuit fault diagnosis of phase-controlled three-phase full-bridge rectifier by using a sparse autoencoder-based deep neural network (SAE-based DNN). Firstly, some preliminaries on SAE-based DNN are briefly introduced to automatically learn the representative f...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Neurocomputing (Amsterdam) Ročník 311; s. 1 - 10
Hlavní autori: Xu, Lin, Cao, Maoyong, Song, Baoye, Zhang, Jiansheng, Liu, Yurong, Alsaadi, Fuad E.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier B.V 15.10.2018
Predmet:
ISSN:0925-2312, 1872-8286
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract This paper is concerned with the open-circuit fault diagnosis of phase-controlled three-phase full-bridge rectifier by using a sparse autoencoder-based deep neural network (SAE-based DNN). Firstly, some preliminaries on SAE-based DNN are briefly introduced to automatically learn the representative fault features from the raw fault signals. Then, a novel strategy is developed to design the structure of the SAE-based DNN, by which the depth and hidden neurons of the SAE-based DNN could be regularly determined to extract the features of input signals. Furthermore, the fault model and system framework are presented to diagnose the open-circuit fault of the three-phase full-bridge rectifier. Finally, the effectiveness of the developed novel strategy is verified by the results of simulation experiments, and the superiority of the novel SAE-based DNN is evaluated by comparing with other frequently used approaches.
AbstractList This paper is concerned with the open-circuit fault diagnosis of phase-controlled three-phase full-bridge rectifier by using a sparse autoencoder-based deep neural network (SAE-based DNN). Firstly, some preliminaries on SAE-based DNN are briefly introduced to automatically learn the representative fault features from the raw fault signals. Then, a novel strategy is developed to design the structure of the SAE-based DNN, by which the depth and hidden neurons of the SAE-based DNN could be regularly determined to extract the features of input signals. Furthermore, the fault model and system framework are presented to diagnose the open-circuit fault of the three-phase full-bridge rectifier. Finally, the effectiveness of the developed novel strategy is verified by the results of simulation experiments, and the superiority of the novel SAE-based DNN is evaluated by comparing with other frequently used approaches.
Author Song, Baoye
Alsaadi, Fuad E.
Cao, Maoyong
Liu, Yurong
Xu, Lin
Zhang, Jiansheng
Author_xml – sequence: 1
  givenname: Lin
  surname: Xu
  fullname: Xu, Lin
  organization: College of Electrical Engineering and Automation, Shandong University of Science and Technology, Qingdao 266590, China
– sequence: 2
  givenname: Maoyong
  surname: Cao
  fullname: Cao, Maoyong
  email: my-cao@263.net
  organization: College of Electrical Engineering and Automation, Shandong University of Science and Technology, Qingdao 266590, China
– sequence: 3
  givenname: Baoye
  orcidid: 0000-0003-1631-5237
  surname: Song
  fullname: Song, Baoye
  email: songbaoye@gmail.com
  organization: College of Electrical Engineering and Automation, Shandong University of Science and Technology, Qingdao 266590, China
– sequence: 4
  givenname: Jiansheng
  surname: Zhang
  fullname: Zhang, Jiansheng
  organization: College of Electrical Engineering and Automation, Shandong University of Science and Technology, Qingdao 266590, China
– sequence: 5
  givenname: Yurong
  surname: Liu
  fullname: Liu, Yurong
  organization: Department of Mathematics, Yangzhou University, Yangzhou 225002, China
– sequence: 6
  givenname: Fuad E.
  surname: Alsaadi
  fullname: Alsaadi, Fuad E.
  organization: Department of Electrical and Computer Engineering, Faculty of Engineering, King Abdulaziz University, Jeddah 21589, Saudi Arabia
BookMark eNqFkMtKAzEUhoMo2FbfwEVeYMYkc0tcCFK8QaEbXYdMclJS28mQZCy-vSl15UJX_4HD93PON0fngx8AoRtKSkpoe7stB5i035eMUF6SpiQ1OUMzyjtWcMbbczQjgjUFqyi7RPMYt4TQjjIxQ_16hKHQLujJJWzVtEvYOLUZfHQRe4tHf4CAA-jkrMvTFN2wwXFUIQJWU_IwaG_yolcRDDYAI87XBLXLkQ4-fFyhC6t2Ea5_coHenx7fli_Fav38unxYFbpqRCo4Z7XqDaGWM2F7JkxXQcOtElY1jaFKQNMLo3gLle1BdUZwyivou7aGmvbVAtWnXh18jAGsHIPbq_AlKZFHT3IrT57k0ZMkjcyeMnb3C9MuqeT8kIJyu__g-xMM-bHP7EdG7bIRMO6oTBrv_i74Bk_xi9U
CitedBy_id crossref_primary_10_1007_s43236_024_00915_0
crossref_primary_10_3390_sym12030458
crossref_primary_10_1007_s12293_020_00304_7
crossref_primary_10_1109_ACCESS_2025_3593168
crossref_primary_10_1016_j_measurement_2019_107232
crossref_primary_10_1016_j_amc_2021_126318
crossref_primary_10_1109_TIM_2025_3554872
crossref_primary_10_1109_TPEL_2021_3131293
crossref_primary_10_3390_s19040758
crossref_primary_10_3390_s19051041
crossref_primary_10_1016_j_neucom_2019_03_003
crossref_primary_10_1109_TCYB_2021_3109618
crossref_primary_10_1080_23311916_2021_2010510
crossref_primary_10_1109_ACCESS_2020_2994368
crossref_primary_10_1155_2020_7463291
crossref_primary_10_1080_21642583_2020_1836526
crossref_primary_10_1016_j_enbuild_2025_115452
crossref_primary_10_1049_iet_pel_2020_0510
crossref_primary_10_1109_ACCESS_2020_3011730
crossref_primary_10_1016_j_dt_2023_11_021
crossref_primary_10_1109_TIM_2024_3376012
crossref_primary_10_1016_j_enconman_2019_111793
crossref_primary_10_1016_j_measurement_2023_112774
crossref_primary_10_1007_s00500_020_04717_x
crossref_primary_10_1016_j_jvoice_2020_05_029
crossref_primary_10_1088_1361_6501_ab3a59
crossref_primary_10_1109_TIE_2020_3020252
crossref_primary_10_3390_app9122490
crossref_primary_10_1002_mp_16224
crossref_primary_10_1109_TTE_2020_3006057
crossref_primary_10_1080_21642583_2020_1731005
crossref_primary_10_1088_1361_6501_ab48c7
crossref_primary_10_1109_JESTPE_2023_3316627
crossref_primary_10_1186_s10033_021_00569_0
crossref_primary_10_1109_TIM_2022_3168929
crossref_primary_10_1016_j_neucom_2020_11_037
crossref_primary_10_1007_s12273_025_1327_6
crossref_primary_10_1016_j_neucom_2018_09_050
crossref_primary_10_1016_j_eswa_2020_113309
crossref_primary_10_1016_j_enbuild_2020_110026
crossref_primary_10_3390_electronics8020209
crossref_primary_10_1049_pel2_12094
crossref_primary_10_1109_ACCESS_2019_2913049
crossref_primary_10_1155_2021_5526173
crossref_primary_10_1007_s40747_021_00337_6
crossref_primary_10_1080_02533839_2023_2262722
crossref_primary_10_1016_j_measurement_2022_112331
crossref_primary_10_1016_j_neucom_2019_07_017
crossref_primary_10_1088_2058_6272_ac9aa9
crossref_primary_10_1109_ACCESS_2019_2917311
crossref_primary_10_1016_j_cmpb_2022_107112
crossref_primary_10_1016_j_neucom_2019_06_059
crossref_primary_10_1109_JESTIE_2024_3358729
crossref_primary_10_1016_j_neucom_2021_04_122
crossref_primary_10_1016_j_neucom_2020_08_009
crossref_primary_10_1016_j_eswa_2022_118918
crossref_primary_10_1016_j_knosys_2023_111324
crossref_primary_10_1016_j_measurement_2021_110460
crossref_primary_10_1016_j_enbuild_2019_06_034
Cites_doi 10.1109/TIE.2015.2417501
10.1038/323533a0
10.1016/j.neucom.2017.03.056
10.1016/j.neucom.2017.12.007
10.1007/s12559-016-9442-4
10.1109/TPEL.2015.2454534
10.1016/j.scient.2011.06.013
10.1109/TPEL.2016.2608842
10.1109/TPEL.2014.2334363
10.1007/s12559-016-9396-6
10.1016/j.ymssp.2015.10.025
10.1016/j.neucom.2017.10.038
10.1016/j.knosys.2016.12.012
10.1109/TPAMI.2013.50
10.1126/science.1127647
10.1016/j.neucom.2017.05.061
10.1016/j.neucom.2017.08.043
10.1109/TNNLS.2015.2465174
10.1109/TPEL.2010.2049377
10.1109/TPEL.2017.2704589
10.1109/TNNLS.2016.2635080
10.1109/TNNLS.2017.2728639
10.1016/j.neucom.2008.06.033
10.1016/j.neucom.2015.06.008
10.1016/j.measurement.2016.04.007
10.1109/TNNLS.2016.2524621
10.1109/TNNLS.2017.2740400
10.1016/j.neucom.2016.12.038
10.1007/s12559-016-9404-x
10.6113/JPE.2016.16.3.1097
10.1109/TPEL.2016.2587339
10.1038/nature14539
10.1109/TEC.2014.2312173
10.1108/AA-11-2015-094
10.1111/cogs.12049
10.1109/TNNLS.2016.2516030
ContentType Journal Article
Copyright 2018 Elsevier B.V.
Copyright_xml – notice: 2018 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.neucom.2018.05.040
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-8286
EndPage 10
ExternalDocumentID 10_1016_j_neucom_2018_05_040
S0925231218306155
GroupedDBID ---
--K
--M
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AADPK
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXLA
AAXUO
AAYFN
ABBOA
ABCQJ
ABFNM
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
KOM
LG9
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSN
SSV
SSZ
T5K
ZMT
~G-
29N
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
HLZ
HVGLF
HZ~
R2-
SBC
SEW
WUQ
XPP
~HD
ID FETCH-LOGICAL-c359t-8824abd01f829fb29d73e58fa9fa55d1a9e5b9da86e3fbea7d98183eb764e41b3
ISICitedReferencesCount 70
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000438313100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0925-2312
IngestDate Sat Nov 29 07:12:52 EST 2025
Tue Nov 18 22:26:21 EST 2025
Fri Feb 23 02:47:30 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Fault diagnosis
Power rectifier
Feature extraction
Deep neural network
Sparse autoencoder
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c359t-8824abd01f829fb29d73e58fa9fa55d1a9e5b9da86e3fbea7d98183eb764e41b3
ORCID 0000-0003-1631-5237
PageCount 10
ParticipantIDs crossref_primary_10_1016_j_neucom_2018_05_040
crossref_citationtrail_10_1016_j_neucom_2018_05_040
elsevier_sciencedirect_doi_10_1016_j_neucom_2018_05_040
PublicationCentury 2000
PublicationDate 2018-10-15
PublicationDateYYYYMMDD 2018-10-15
PublicationDate_xml – month: 10
  year: 2018
  text: 2018-10-15
  day: 15
PublicationDecade 2010
PublicationTitle Neurocomputing (Amsterdam)
PublicationYear 2018
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Jia, Lei, Lin, Zhou, Lu (bib0014) 2016; 72–73
Tian, Ge (bib0033) 2016
Hinton (bib0013) 2014; 38
H. Liu, Z. Wang, B. Shen, X. Liu, Event-triggered
F. Wu, J. Zhao, Y. Liu, D. Zhou, H. Luo, Primary source inductive energy analysis based real-time multiple open-circuit fault diagnosis in two-level three-phase PWM boost rectifier, IEEE Trans. Power Electron., doi
Renaudineau, Martin, Nahid-Mobarakeh, Pierfederici (bib0024) 2015; 30
Song, Wang, Sheng (bib0029) 2016; 36
Rumelhart, Hinton, Williams (bib0025) 1986; 323
Li, Shi, Wang, Wang, Wang, Xu (bib0016) 2016; 31
Ma, Gu, Wang (bib0022) 2009; 72
Cai, Zhao, Liu, Xie (bib0002) 2017; 32
Bengio, Courville, Vincent (bib0003) 2013; 35
Li, Sanchez, Zurita, Cerrada, Cabrera, Vasquez (bib0017) 2015; 163
Liu, Li, Liu (bib0019) 2018; 282
Salah, Bacha, Chaari, El (bib0026) 2014; 29
Gao, Cecati, Ding (bib0008) 2015; 62
Cui, Tang, Shi, Zhang (bib0005) 2017
Ren, Wei, Gong, Shen (bib0023) 2015; 35
Yang, Xiang, Bryant, Mawby, Ran, Tavner (bib0041) 2010; 25
Hinton, Salakhutdinov (bib0012) 2006; 313
Wang, Zhan, Zhou, Cui (bib0036) 2013; 52
Y. Liu, Z. Wang, Y. Yuan, F.E. Alsaadi, Partial-nodes-based state estimation for complex networks with unbounded distributed delays, IEEE Trans. Neural Netw. Learn. Syst., doi
Han, Lu, Hou, Qiao (bib0011) 2016
state estimation for delayed stochastic memristive neural networks with missing measurements: the discrete timecase, IEEE Trans. Neural Netw. Learn. Syst., doi
Wang, Zhan, Zhou (bib0037) 2012; 19
Zeng, Zhang, Song, Liu, Li, Dobaie (bib0042) 2018; 273
Zeng, Zhang, Li, Liang, Dobaie (bib0044) 2017; 247
LeCun, Bengio, Hinton (bib0015) 2015; 521
Liu, Wang, Liu, Zeng, Liu, Alsaadi (bib0020) 2016; 234
Shen, Wang, Qiao (bib0028) 2017; 28
L. Wang, Z. Wang, G. Wei, F.E. Alsaadi, Finite-time state estimation for recurrent delayed neural networks with component-based event-triggering protocol, IEEE Trans. Neural Netw. Learn. Syst., doi
Zeng, Wang, Zhang, Alsaadi (bib0043) 2016; 8
Vincent, Larochelle, Lajoie, Bengio, Manzagol (bib0034) 2010; 11
Shao, Jiang, Wang, Zhao (bib0027) 2017; 119
Sun, Shao, Zhao, Yan, Zhang, Chen (bib0032) 2016; 89
In press.
Song, Wang, Zou (bib0030) 2017; 9
Wu, Zhao (bib0039) 2017; 32
Zou, Wang, Gao, Liu (bib0046) 2017; 28
Gao, Cecati, Ding (bib0007) 2015; 62
Gomaty, Selvaperumal (bib0009) 2016; 16
Zeng, Wang, Zhang, Liu, Alsaadi (bib0045) 2016; 8
Wang, Liu, Bao (bib0038) 2016
Cai, Du, Gao, Liu (bib0004) 2016
Badem, Basturk, Caliskan, Yuksel (bib0001) 2017; 266
Song, Wang, Zou, Xu, Alsaadi (bib0031) 2017
Guo, Zhang, Liu (bib0010) 2018; 275
Cui, Tang, Shi, Zhang (bib0006) 2017; 37
LeCun (10.1016/j.neucom.2018.05.040_bib0015) 2015; 521
Song (10.1016/j.neucom.2018.05.040_bib0031) 2017
Tian (10.1016/j.neucom.2018.05.040_bib0033) 2016
Cui (10.1016/j.neucom.2018.05.040_bib0006) 2017; 37
Guo (10.1016/j.neucom.2018.05.040_bib0010) 2018; 275
Cui (10.1016/j.neucom.2018.05.040_bib0005) 2017
Han (10.1016/j.neucom.2018.05.040_bib0011) 2016
Wang (10.1016/j.neucom.2018.05.040_bib0037) 2012; 19
Zeng (10.1016/j.neucom.2018.05.040_bib0044) 2017; 247
Shao (10.1016/j.neucom.2018.05.040_bib0027) 2017; 119
Yang (10.1016/j.neucom.2018.05.040_bib0041) 2010; 25
Liu (10.1016/j.neucom.2018.05.040_bib0020) 2016; 234
Zou (10.1016/j.neucom.2018.05.040_bib0046) 2017; 28
Sun (10.1016/j.neucom.2018.05.040_bib0032) 2016; 89
Cai (10.1016/j.neucom.2018.05.040_bib0004) 2016
Gao (10.1016/j.neucom.2018.05.040_bib0007) 2015; 62
10.1016/j.neucom.2018.05.040_bib0018
10.1016/j.neucom.2018.05.040_bib0040
Renaudineau (10.1016/j.neucom.2018.05.040_bib0024) 2015; 30
Song (10.1016/j.neucom.2018.05.040_bib0029) 2016; 36
Hinton (10.1016/j.neucom.2018.05.040_bib0013) 2014; 38
10.1016/j.neucom.2018.05.040_bib0021
Li (10.1016/j.neucom.2018.05.040_bib0017) 2015; 163
Wang (10.1016/j.neucom.2018.05.040_bib0038) 2016
Badem (10.1016/j.neucom.2018.05.040_bib0001) 2017; 266
Cai (10.1016/j.neucom.2018.05.040_bib0002) 2017; 32
Gomaty (10.1016/j.neucom.2018.05.040_bib0009) 2016; 16
Gao (10.1016/j.neucom.2018.05.040_bib0008) 2015; 62
Salah (10.1016/j.neucom.2018.05.040_bib0026) 2014; 29
Vincent (10.1016/j.neucom.2018.05.040_bib0034) 2010; 11
Zeng (10.1016/j.neucom.2018.05.040_bib0042) 2018; 273
Bengio (10.1016/j.neucom.2018.05.040_bib0003) 2013; 35
Ma (10.1016/j.neucom.2018.05.040_bib0022) 2009; 72
Rumelhart (10.1016/j.neucom.2018.05.040_bib0025) 1986; 323
Shen (10.1016/j.neucom.2018.05.040_bib0028) 2017; 28
Li (10.1016/j.neucom.2018.05.040_bib0016) 2016; 31
Wang (10.1016/j.neucom.2018.05.040_bib0036) 2013; 52
10.1016/j.neucom.2018.05.040_bib0035
Zeng (10.1016/j.neucom.2018.05.040_bib0043) 2016; 8
Hinton (10.1016/j.neucom.2018.05.040_bib0012) 2006; 313
Song (10.1016/j.neucom.2018.05.040_bib0030) 2017; 9
Jia (10.1016/j.neucom.2018.05.040_bib0014) 2016; 72–73
Zeng (10.1016/j.neucom.2018.05.040_bib0045) 2016; 8
Wu (10.1016/j.neucom.2018.05.040_bib0039) 2017; 32
Ren (10.1016/j.neucom.2018.05.040_bib0023) 2015; 35
Liu (10.1016/j.neucom.2018.05.040_bib0019) 2018; 282
References_xml – volume: 16
  start-page: 1097
  year: 2016
  end-page: 1109
  ident: bib0009
  article-title: Fault detection and classification with optimization techniques for a three-phase single-inverter circuit
  publication-title: J. Power Electron.
– volume: 52
  start-page: 266
  year: 2013
  end-page: 269
  ident: bib0036
  article-title: A fault diagnosis method for three-phase rectifiers
  publication-title: Int. J. Electr. Power Energy Syst.
– volume: 38
  start-page: 1078
  year: 2014
  end-page: 1101
  ident: bib0013
  article-title: Where do features come from?
  publication-title: Cognit. Sci.
– reference: . In press.
– volume: 36
  start-page: 138
  year: 2016
  end-page: 145
  ident: bib0029
  article-title: A new genetic algorithm approach to smooth path planning for mobile robots
  publication-title: Assem. Autom.
– start-page: 3403
  year: 2016
  end-page: 3407
  ident: bib0033
  article-title: An on-line fault diagnostic method based on frequency-domain analysis for IGBTs in traction PWM rectifiers
  publication-title: Proceedings of IEEE Eighth International Power Electronics and Motion Control Conference
– reference: F. Wu, J. Zhao, Y. Liu, D. Zhou, H. Luo, Primary source inductive energy analysis based real-time multiple open-circuit fault diagnosis in two-level three-phase PWM boost rectifier, IEEE Trans. Power Electron., doi:
– volume: 32
  start-page: 3935
  year: 2017
  end-page: 3944
  ident: bib0039
  article-title: Current similarity analysis-based open-circuit fault diagnosis for two-level three-phase PWM rectifier
  publication-title: IEEE Trans. Power Electron.
– start-page: 6678
  year: 2016
  end-page: 6683
  ident: bib0038
  article-title: Deep learning neural network for power system fault diagnosis
  publication-title: Proceedings of the Thirty Fifth Chinese Control Conference
– volume: 28
  start-page: 1152
  year: 2017
  end-page: 1163
  ident: bib0028
  article-title: Event-triggered state estimation for discrete-time multi-delayed neural networks with stochastic parameters and incomplete measurements
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– year: 2016
  ident: bib0011
  article-title: An adaptive-PSO-based self-organizing RBF neural network
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 119
  start-page: 200
  year: 2017
  end-page: 220
  ident: bib0027
  article-title: An enhancement deep feature fusion method for rotating machinery fault diagnosis
  publication-title: Knowl. Based Syst.
– volume: 273
  start-page: 643
  year: 2018
  end-page: 649
  ident: bib0042
  article-title: Facial expression recognition via learning deep sparse autoencoders
  publication-title: Neurocomputing
– reference: Y. Liu, Z. Wang, Y. Yuan, F.E. Alsaadi, Partial-nodes-based state estimation for complex networks with unbounded distributed delays, IEEE Trans. Neural Netw. Learn. Syst., doi:
– volume: 28
  start-page: 1139
  year: 2017
  end-page: 1151
  ident: bib0046
  article-title: State estimation for discrete-time dynamical networks with time-varying delays and stochastic disturbances under the round-robin protocol
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 282
  start-page: 16
  year: 2018
  end-page: 24
  ident: bib0019
  article-title: Linear-quadratic optimal control for unknown mean-field stochastic discrete-time system via adaptive dynamic programming approach
  publication-title: Neurocomputing
– volume: 62
  start-page: 3757
  year: 2015
  end-page: 3767
  ident: bib0007
  article-title: A survey of fault diagnosis and fault-tolerant techniques–part I: fault diagnosis with model-based and signal-based approaches
  publication-title: IEEE Trans. Ind. Electron.
– volume: 163
  start-page: 119
  year: 2015
  end-page: 127
  ident: bib0017
  article-title: Multimodal deep support vector classification with homologous features and its application to gearbox fault diagnosis
  publication-title: Neurocomputing
– reference: L. Wang, Z. Wang, G. Wei, F.E. Alsaadi, Finite-time state estimation for recurrent delayed neural networks with component-based event-triggering protocol, IEEE Trans. Neural Netw. Learn. Syst., doi:
– volume: 37
  start-page: 5696
  year: 2017
  end-page: 5706
  ident: bib0006
  article-title: A fault feature extraction method of aerospace generator rotating rectifier based on improved stacked auto-encoder
  publication-title: Proc. Chin. Soc. Electr. Eng.
– year: 2017
  ident: bib0031
  article-title: A new approach to smooth global path planning of mobile robots with kinematic constraints
  publication-title: Proceedings of the International Journal of Machine Learning and Cybernetics
– volume: 19
  start-page: 721
  year: 2012
  end-page: 726
  ident: bib0037
  article-title: Application of s transform in fault diagnosis of power electronics circuits
  publication-title: Sci. Iran. D
– volume: 32
  start-page: 5590
  year: 2017
  end-page: 5600
  ident: bib0002
  article-title: A data-driven fault diagnosis methodology in three-phase inverters for PMSM drive systems
  publication-title: IEEE Trans. Power Electron.
– reference: H. Liu, Z. Wang, B. Shen, X. Liu, Event-triggered
– volume: 8
  start-page: 143
  year: 2016
  end-page: 152
  ident: bib0043
  article-title: A novel switching delayed PSO algorithm for estimating unknown parameters of lateral flow immunoassay
  publication-title: Cognit. Comput.
– start-page: 1101
  year: 2016
  end-page: 1105
  ident: bib0004
  article-title: A fault diagnosis method used for the three-phase full-bridge rectifier circuit
  publication-title: Proceedings of International Symposium on Computer, Consumer and Control
– volume: 35
  start-page: 3089
  year: 2015
  end-page: 3101
  ident: bib0023
  article-title: Fault feature extraction technology for power devices in power electronic converters: a review
  publication-title: Proc. Chin. Soc. Electr. Eng.
– volume: 521
  start-page: 436
  year: 2015
  end-page: 444
  ident: bib0015
  article-title: Review: deep learning
  publication-title: Nature
– volume: 35
  start-page: 1798
  year: 2013
  end-page: 1828
  ident: bib0003
  article-title: Representation learning: a review and new perspectives
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 9
  start-page: 5
  year: 2017
  end-page: 17
  ident: bib0030
  article-title: On global smooth path planning for mobile robots using a novel multimodal delayed PSO algorithm
  publication-title: Cognit. Comput.
– volume: 313
  start-page: 504
  year: 2006
  end-page: 507
  ident: bib0012
  article-title: Reducing the dimensionality of data with neural networks
  publication-title: Science
– volume: 30
  start-page: 3356
  year: 2015
  end-page: 3363
  ident: bib0024
  article-title: DC-DC converters dynamic modeling with state observer-based parameter estimation
  publication-title: IEEE Trans. Power Electron.
– volume: 72–73
  start-page: 303
  year: 2016
  end-page: 315
  ident: bib0014
  article-title: Deep neural networks: a promising tool for fault characteristic mining and intelligent diagnosis of rotating machinery with massive data
  publication-title: Mech. Syst. Signal Process.
– volume: 72
  start-page: 2909
  year: 2009
  end-page: 2914
  ident: bib0022
  article-title: Fault diagnosis of power electronic system based on fault gradation and neural network group
  publication-title: Neurocomputing
– volume: 247
  start-page: 165
  year: 2017
  end-page: 172
  ident: bib0044
  article-title: Denoising and deblurring gold immunochromatographic strip images via gradient projection algorithms
  publication-title: Neurocomputing
– volume: 234
  start-page: 11
  year: 2016
  end-page: 26
  ident: bib0020
  article-title: A survey of deep neural network architectures and their applications
  publication-title: Neurocomputing
– volume: 25
  start-page: 2734
  year: 2010
  end-page: 2752
  ident: bib0041
  article-title: Condition monitoring for device reliability in power electronic converters: a review
  publication-title: IEEE Trans. Power Electron.
– volume: 89
  start-page: 171
  year: 2016
  end-page: 178
  ident: bib0032
  article-title: A sparse auto-encoder-based deep neural network approach for induction motor faults classification
  publication-title: Measurement
– start-page: 256
  year: 2017
  end-page: 261
  ident: bib0005
  article-title: Generator rotating rectifier fault detection method based on stacked auto-encoder
  publication-title: Proceedings of IEEE Workshop on Electrical Machines Design, Control and Diagnosis
– volume: 266
  start-page: 506
  year: 2017
  end-page: 526
  ident: bib0001
  article-title: A new efficient training strategy for deep neural networks by hybridization of artificial bee colony and limited-memory BFGS optimization algorithms
  publication-title: Neurocomputing
– volume: 31
  start-page: 3165
  year: 2016
  end-page: 3176
  ident: bib0016
  article-title: Fault diagnosis and tolerant control of single IGBT open-circuit failure in modular multilevel converters
  publication-title: IEEE Trans. Power Electron.
– volume: 11
  start-page: 3371
  year: 2010
  end-page: 3408
  ident: bib0034
  article-title: Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion
  publication-title: J. Mach. Learn. Res.
– volume: 29
  start-page: 594
  year: 2014
  end-page: 601
  ident: bib0026
  article-title: Brushless three-phase synchronous generator under rotating diode failure conditions
  publication-title: IEEE Trans. Energy Convers.
– volume: 8
  start-page: 684
  year: 2016
  end-page: 692
  ident: bib0045
  article-title: Deep belief networks for quantitative analysis of a gold immunochromatographic strip
  publication-title: Cognit. Comput.
– volume: 62
  start-page: 3768
  year: 2015
  end-page: 3774
  ident: bib0008
  article-title: A survey of fault diagnosis and fault-tolerant techniques–part II: fault diagnosis with knowledge-based and hybrid/active approaches
  publication-title: IEEE Trans. Ind. Electron.
– reference: state estimation for delayed stochastic memristive neural networks with missing measurements: the discrete timecase, IEEE Trans. Neural Netw. Learn. Syst., doi:
– volume: 275
  start-page: 2041
  year: 2018
  end-page: 2054
  ident: bib0010
  article-title: Exponential input-to-state stability for complex-valued memristor-based BAM neural networks with multiple time-varying delays
  publication-title: Neurocomputing
– volume: 323
  start-page: 533
  year: 1986
  end-page: 536
  ident: bib0025
  article-title: Learning representations by back-propagating errors
  publication-title: Nature
– volume: 62
  start-page: 3768
  issue: 6
  year: 2015
  ident: 10.1016/j.neucom.2018.05.040_bib0008
  article-title: A survey of fault diagnosis and fault-tolerant techniques–part II: fault diagnosis with knowledge-based and hybrid/active approaches
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2015.2417501
– start-page: 3403
  year: 2016
  ident: 10.1016/j.neucom.2018.05.040_bib0033
  article-title: An on-line fault diagnostic method based on frequency-domain analysis for IGBTs in traction PWM rectifiers
– volume: 323
  start-page: 533
  year: 1986
  ident: 10.1016/j.neucom.2018.05.040_bib0025
  article-title: Learning representations by back-propagating errors
  publication-title: Nature
  doi: 10.1038/323533a0
– volume: 247
  start-page: 165
  year: 2017
  ident: 10.1016/j.neucom.2018.05.040_bib0044
  article-title: Denoising and deblurring gold immunochromatographic strip images via gradient projection algorithms
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.03.056
– volume: 282
  start-page: 16
  year: 2018
  ident: 10.1016/j.neucom.2018.05.040_bib0019
  article-title: Linear-quadratic optimal control for unknown mean-field stochastic discrete-time system via adaptive dynamic programming approach
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.12.007
– start-page: 256
  year: 2017
  ident: 10.1016/j.neucom.2018.05.040_bib0005
  article-title: Generator rotating rectifier fault detection method based on stacked auto-encoder
– volume: 9
  start-page: 5
  issue: 1
  year: 2017
  ident: 10.1016/j.neucom.2018.05.040_bib0030
  article-title: On global smooth path planning for mobile robots using a novel multimodal delayed PSO algorithm
  publication-title: Cognit. Comput.
  doi: 10.1007/s12559-016-9442-4
– year: 2017
  ident: 10.1016/j.neucom.2018.05.040_bib0031
  article-title: A new approach to smooth global path planning of mobile robots with kinematic constraints
– start-page: 1101
  year: 2016
  ident: 10.1016/j.neucom.2018.05.040_bib0004
  article-title: A fault diagnosis method used for the three-phase full-bridge rectifier circuit
– volume: 31
  start-page: 3165
  issue: 4
  year: 2016
  ident: 10.1016/j.neucom.2018.05.040_bib0016
  article-title: Fault diagnosis and tolerant control of single IGBT open-circuit failure in modular multilevel converters
  publication-title: IEEE Trans. Power Electron.
  doi: 10.1109/TPEL.2015.2454534
– volume: 35
  start-page: 3089
  issue: 12
  year: 2015
  ident: 10.1016/j.neucom.2018.05.040_bib0023
  article-title: Fault feature extraction technology for power devices in power electronic converters: a review
  publication-title: Proc. Chin. Soc. Electr. Eng.
– volume: 19
  start-page: 721
  issue: 3
  year: 2012
  ident: 10.1016/j.neucom.2018.05.040_bib0037
  article-title: Application of s transform in fault diagnosis of power electronics circuits
  publication-title: Sci. Iran. D
  doi: 10.1016/j.scient.2011.06.013
– volume: 32
  start-page: 5590
  issue: 7
  year: 2017
  ident: 10.1016/j.neucom.2018.05.040_bib0002
  article-title: A data-driven fault diagnosis methodology in three-phase inverters for PMSM drive systems
  publication-title: IEEE Trans. Power Electron.
  doi: 10.1109/TPEL.2016.2608842
– volume: 62
  start-page: 3757
  issue: 6
  year: 2015
  ident: 10.1016/j.neucom.2018.05.040_bib0007
  article-title: A survey of fault diagnosis and fault-tolerant techniques–part I: fault diagnosis with model-based and signal-based approaches
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2015.2417501
– volume: 11
  start-page: 3371
  issue: 12
  year: 2010
  ident: 10.1016/j.neucom.2018.05.040_bib0034
  article-title: Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion
  publication-title: J. Mach. Learn. Res.
– start-page: 6678
  year: 2016
  ident: 10.1016/j.neucom.2018.05.040_bib0038
  article-title: Deep learning neural network for power system fault diagnosis
– volume: 30
  start-page: 3356
  issue: 6
  year: 2015
  ident: 10.1016/j.neucom.2018.05.040_bib0024
  article-title: DC-DC converters dynamic modeling with state observer-based parameter estimation
  publication-title: IEEE Trans. Power Electron.
  doi: 10.1109/TPEL.2014.2334363
– volume: 8
  start-page: 143
  issue: 2
  year: 2016
  ident: 10.1016/j.neucom.2018.05.040_bib0043
  article-title: A novel switching delayed PSO algorithm for estimating unknown parameters of lateral flow immunoassay
  publication-title: Cognit. Comput.
  doi: 10.1007/s12559-016-9396-6
– volume: 72–73
  start-page: 303
  year: 2016
  ident: 10.1016/j.neucom.2018.05.040_bib0014
  article-title: Deep neural networks: a promising tool for fault characteristic mining and intelligent diagnosis of rotating machinery with massive data
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2015.10.025
– volume: 275
  start-page: 2041
  year: 2018
  ident: 10.1016/j.neucom.2018.05.040_bib0010
  article-title: Exponential input-to-state stability for complex-valued memristor-based BAM neural networks with multiple time-varying delays
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.10.038
– volume: 119
  start-page: 200
  year: 2017
  ident: 10.1016/j.neucom.2018.05.040_bib0027
  article-title: An enhancement deep feature fusion method for rotating machinery fault diagnosis
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2016.12.012
– volume: 35
  start-page: 1798
  issue: 8
  year: 2013
  ident: 10.1016/j.neucom.2018.05.040_bib0003
  article-title: Representation learning: a review and new perspectives
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2013.50
– volume: 313
  start-page: 504
  issue: 5786
  year: 2006
  ident: 10.1016/j.neucom.2018.05.040_bib0012
  article-title: Reducing the dimensionality of data with neural networks
  publication-title: Science
  doi: 10.1126/science.1127647
– volume: 266
  start-page: 506
  year: 2017
  ident: 10.1016/j.neucom.2018.05.040_bib0001
  article-title: A new efficient training strategy for deep neural networks by hybridization of artificial bee colony and limited-memory BFGS optimization algorithms
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.05.061
– volume: 273
  start-page: 643
  year: 2018
  ident: 10.1016/j.neucom.2018.05.040_bib0042
  article-title: Facial expression recognition via learning deep sparse autoencoders
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.08.043
– year: 2016
  ident: 10.1016/j.neucom.2018.05.040_bib0011
  article-title: An adaptive-PSO-based self-organizing RBF neural network
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2015.2465174
– volume: 25
  start-page: 2734
  issue: 11
  year: 2010
  ident: 10.1016/j.neucom.2018.05.040_bib0041
  article-title: Condition monitoring for device reliability in power electronic converters: a review
  publication-title: IEEE Trans. Power Electron.
  doi: 10.1109/TPEL.2010.2049377
– ident: 10.1016/j.neucom.2018.05.040_bib0040
  doi: 10.1109/TPEL.2017.2704589
– ident: 10.1016/j.neucom.2018.05.040_bib0035
  doi: 10.1109/TNNLS.2016.2635080
– ident: 10.1016/j.neucom.2018.05.040_bib0018
  doi: 10.1109/TNNLS.2017.2728639
– volume: 72
  start-page: 2909
  year: 2009
  ident: 10.1016/j.neucom.2018.05.040_bib0022
  article-title: Fault diagnosis of power electronic system based on fault gradation and neural network group
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2008.06.033
– volume: 52
  start-page: 266
  issue: 1
  year: 2013
  ident: 10.1016/j.neucom.2018.05.040_bib0036
  article-title: A fault diagnosis method for three-phase rectifiers
  publication-title: Int. J. Electr. Power Energy Syst.
– volume: 163
  start-page: 119
  year: 2015
  ident: 10.1016/j.neucom.2018.05.040_bib0017
  article-title: Multimodal deep support vector classification with homologous features and its application to gearbox fault diagnosis
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.06.008
– volume: 89
  start-page: 171
  year: 2016
  ident: 10.1016/j.neucom.2018.05.040_bib0032
  article-title: A sparse auto-encoder-based deep neural network approach for induction motor faults classification
  publication-title: Measurement
  doi: 10.1016/j.measurement.2016.04.007
– volume: 28
  start-page: 1139
  issue: 5
  year: 2017
  ident: 10.1016/j.neucom.2018.05.040_bib0046
  article-title: State estimation for discrete-time dynamical networks with time-varying delays and stochastic disturbances under the round-robin protocol
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2016.2524621
– ident: 10.1016/j.neucom.2018.05.040_bib0021
  doi: 10.1109/TNNLS.2017.2740400
– volume: 37
  start-page: 5696
  issue: 19
  year: 2017
  ident: 10.1016/j.neucom.2018.05.040_bib0006
  article-title: A fault feature extraction method of aerospace generator rotating rectifier based on improved stacked auto-encoder
  publication-title: Proc. Chin. Soc. Electr. Eng.
– volume: 234
  start-page: 11
  year: 2016
  ident: 10.1016/j.neucom.2018.05.040_bib0020
  article-title: A survey of deep neural network architectures and their applications
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.12.038
– volume: 8
  start-page: 684
  issue: 4
  year: 2016
  ident: 10.1016/j.neucom.2018.05.040_bib0045
  article-title: Deep belief networks for quantitative analysis of a gold immunochromatographic strip
  publication-title: Cognit. Comput.
  doi: 10.1007/s12559-016-9404-x
– volume: 16
  start-page: 1097
  issue: 3
  year: 2016
  ident: 10.1016/j.neucom.2018.05.040_bib0009
  article-title: Fault detection and classification with optimization techniques for a three-phase single-inverter circuit
  publication-title: J. Power Electron.
  doi: 10.6113/JPE.2016.16.3.1097
– volume: 32
  start-page: 3935
  issue: 5
  year: 2017
  ident: 10.1016/j.neucom.2018.05.040_bib0039
  article-title: Current similarity analysis-based open-circuit fault diagnosis for two-level three-phase PWM rectifier
  publication-title: IEEE Trans. Power Electron.
  doi: 10.1109/TPEL.2016.2587339
– volume: 521
  start-page: 436
  year: 2015
  ident: 10.1016/j.neucom.2018.05.040_bib0015
  article-title: Review: deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 29
  start-page: 594
  issue: 3
  year: 2014
  ident: 10.1016/j.neucom.2018.05.040_bib0026
  article-title: Brushless three-phase synchronous generator under rotating diode failure conditions
  publication-title: IEEE Trans. Energy Convers.
  doi: 10.1109/TEC.2014.2312173
– volume: 36
  start-page: 138
  issue: 2
  year: 2016
  ident: 10.1016/j.neucom.2018.05.040_bib0029
  article-title: A new genetic algorithm approach to smooth path planning for mobile robots
  publication-title: Assem. Autom.
  doi: 10.1108/AA-11-2015-094
– volume: 38
  start-page: 1078
  issue: 6
  year: 2014
  ident: 10.1016/j.neucom.2018.05.040_bib0013
  article-title: Where do features come from?
  publication-title: Cognit. Sci.
  doi: 10.1111/cogs.12049
– volume: 28
  start-page: 1152
  issue: 5
  year: 2017
  ident: 10.1016/j.neucom.2018.05.040_bib0028
  article-title: Event-triggered state estimation for discrete-time multi-delayed neural networks with stochastic parameters and incomplete measurements
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2016.2516030
SSID ssj0017129
Score 2.4896936
Snippet This paper is concerned with the open-circuit fault diagnosis of phase-controlled three-phase full-bridge rectifier by using a sparse autoencoder-based deep...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Deep neural network
Fault diagnosis
Feature extraction
Power rectifier
Sparse autoencoder
Title Open-circuit fault diagnosis of power rectifier using sparse autoencoder based deep neural network
URI https://dx.doi.org/10.1016/j.neucom.2018.05.040
Volume 311
WOSCitedRecordID wos000438313100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-8286
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017129
  issn: 0925-2312
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWLQcu5S1aCvKBWxS0eTiOj0tVBBWqOBS0t8iJbbHVkqx2k6r9C_3VzNhOmlJU6IFLFFnJ5DFfZsaTmc-EvFOVAscsk7CMVAUTFNybpTBVMZkWmksd25L_71_4yUm-WIivk8lV3wtzvuJ1nV9ciPV_VTWMgbKxdfYe6h6EwgDsg9JhC2qH7T8pHktEwmq5qbplGxjZrVpMsGI9naMeWeO6aIE1dAZbTTqbLQDDstnqQHZtg9SWyDCBDk4FSut1gKyXoMva1YyPA1pL7lHZpSF80mH-E7kXFAJtSDIsOj__v_7l0bhOoeay8b4T0zy-PvgDDA-AG1Lax4Dk7Q_tD_eZisjSxrpezT7lGLMQ4skb1jfxttbZz2jkiF256y0T77INZ-_hybHeBy9kuVcd69NNRu3fPN1Qf9iXtp0VTkqBUooZK0DKA7ITcybyKdmZfz5aHA__pHgUO-ZG_xR9I6atFrx9N38OdEbBy-kTsutnHXTu0PKUTHT9jDzuV_Sg3sA_J-UYPNSChw7goY2hFjx0AA-14KEOPHQEHmrBQxE81IGHevC8IN8-Hp0efgr9KhxhlTDRhjAFS2WpZpHJY2HKWCieaJYbKYxkTEVSaFYKJfNMJ6bUkisBQWCiS56lOo3K5CWZ1k2tXxGaslTJMmMsMTEEwpnM80orxZXOZyDX7JGkf2VF5SnqcaWUVXGXwvZIOJy1dhQtfzme99oofJjpwscCIHbnmfv3vNJr8uj6Ozgg03bT6TfkYXXeLrebtx5fvwCGKKXk
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Open-circuit+fault+diagnosis+of+power+rectifier+using+sparse+autoencoder+based+deep+neural+network&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=Xu%2C+Lin&rft.au=Cao%2C+Maoyong&rft.au=Song%2C+Baoye&rft.au=Zhang%2C+Jiansheng&rft.date=2018-10-15&rft.issn=0925-2312&rft.volume=311&rft.spage=1&rft.epage=10&rft_id=info:doi/10.1016%2Fj.neucom.2018.05.040&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_neucom_2018_05_040
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon